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The orthogonality and completeness conditions of group representation theory are shown to provide
complementary orthonormality relations for weighted double coset matrix elements. The double coset
matrix elemeats are appropriate for symmetry adaption of the basis to two subgroup sequences using
the double coset decomposition H \G/K. When applied to the symmetric and unitary groups, the
double coset matrix elements assume the role of recoupling coefficients. The orthonormality properties
give nontrivial relations between coefficienis coupling tensors of different rank and/or different

dimensions.

1. INTRODUCTION

In a series of papers, '? hereaffer referred to as I
and I, we have been investigating the properties of
double coset matrices in irreducible representations
of 2 group symmetry adapted to different subgroup
sequences, Double coset decompaosition of a group is
not only important for establishing mathematically
unique labels, but is often dictated by the physical sig-
nificance of the subgroups. With the shell model of
identical particle systems in mind, we have directed
our attention in particular to the symmetric group.
Due to the intertwining of the symmeiric group algebra
with the algebra of the general linear group via Mh
rank {ensor representations, several nontrivial rela-
tions between recoupling coefficients in S, and GL(n)
for different rank N and dimension n have been shown
to follow from the orthogonality properites associated
with these double coset matrix elements (DCME). The
orthogonality properties of the DCME as used in I ex-
press the assumed (for compact or finite groups)
unitarity of the matrix representation and the group
orthogonality condition. The group completeness condi-
tion, although noted, was restricted to a consideration
of class characters in representations symmetry adapt-
ed to identical subgroup sequences, The purpose of
this paper is to show the completeness condition re-
quires no such restriction and leads to complementary
orthogonality properties that express the unitarity of
the transformation between induced matrix representa-
tions known to be eguivalent as shown by Mackey.?®

Any finite (or by extension any compact} group can be
decomposed into a unjon of disjoint double cosets with
respect to any two of its subgroups as

G=UHqK=UKq"H,
q q
In a representation symmetiry adapted to the subgroup
sequences

~K—=q'HgNn K=

G‘H"HﬂqKq"sLo

for the left (lower) and right (upper) indices, the double
coset matrix elements have been shown to have the
farm
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Here 3, 2, 3y, ;3, label the irreps of the correspond-
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ing groups G, H, K, and L,

The orthogonality relation over the group G was
shown in I to require orthonormality of the form

NV R S R
{gdq[,x h)x',l } [,)L ,l,]
when summed over g, ;i,, where {x] denotes the dimen-
sion of the irrep and g, %, %, and 4, are the orders of
the groups G, H, K, and L, respectively, This is in
addition to the orthonormality implied by the unitarity
of the form Eq, (1.1) as given in Eq, (2.1).

(1.2)

The well-known orthogonality and completeness con-
ditions in the representation theory of finite or com-
pact groups requires the unitarity of the g-dimensional
square matrix

CRY:
g [m n

with rows and columns designated by the sets (umn, g,).
This is in addition to the unitarity of the [x}-dimen-
sional square matrix |2 £1] with rows and columns
designated by the sets (m,n). Similarly we show the
completeness condition along with the group orthogonal-~
ity relation requires the unitarity of the weighted
DCME in Eq, (1.2) with rows and columns designated
by the sets (x,4,%,). The weighted double coset matrix
can be considered as the unitary transformation be~
tween representations equivalent by Mackey’s

theorem:

[x,tG]+H z%? [, +L~L J+H.

The theorems and their proofs are given in Sec, 2,
while Sec. 3 compares the result given here to a much
earlier result by Frame,* To the author’s knowledge
this is the only other published report dealing explicitly
with special properties of matrices representing double
coset elements,

2. ORTHOGONALITY RELATIONS

Theovem: The double coset matrix (DCM) [} Jlis
unitary with the irrep labels (,, 1,) designating the
rows and columns respectively.

Proof: The theorem follows directly from the

unitarity of the matrix representation of finite groups.
From Eq. (1,1) we obtain
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Theorem: The weighted DCM

{ reDALAIN Y2 A,
gd [ 1] PP
is a square unitary matrix with the labels (A, g ;A,)

designating the rows and columns respectively.

Proof: The group orthogonality relation Eq, (2,3) of
I requires that

(ML) [7\ "1][7" )‘J]*zﬁ"".

2 2.2
pre AT L o Jla oy .2

The group completeness condition requires the remain-
ing orthonormality. Under the decomposition
~K™qHqNnK=°L

G H~HNqKq'=L,

a general element g< G belongs to a unique double
coset but the specific g=hgk is not unique in the (,%)
pair. However, for a given choice of (left, right) coset
representatives H/L, =0, “INK=17 the specification
g=0(,)g7=0q ()7 with 1,=q(l)g"'=1 is unique. The
completeness relation requires

> ([L] X olgT)[ A
rpumogn\ g )L MmNt | L m!

=084 ,8y01 040 0

P sk

Multiply both sides by

l}x o V¥ r U7
m lxjm.ll i}\;nll n

and sum on o, I, I’, and 7', Using orthogonality in H
and K, one obtains on the left

53 _he()] [x x,:l[ oy T][)\ Aj]*
el AT o dlaymt nd L o)
Using orthogonality in L, one obtained on the right

5% g de fir o [ », 7 .
@ [NIlm '] Lym n
Since these expressions are equal for general ¢’ and 7,
one obtains

* B
» rEe[A][2] [x A,:] by x,] —5. 5N
» gd [T )L o 7q
By setting g =¢’, ,\,=,)], and summing Eq. (2.3) over
1Ay, ¢ and using Eq. (2.2) for a fixed ;x, A, one obtains
an equality for intertwining numbers
92, 2,4G@) =23 (2, \,4L),

showing the adjusted DCM to be square, and the theorem
is proved.

o'l’q"r']*

1ot
Ajn

2.3)
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It is interesting to note that various combinations of
the above orthogonality relations give some well-known
results in the theory of induced representations: E.g.,

A, for a=x', Z[\]x Ed. (2.2) gives
/
hk
=1

R 1. X
a%;jm_h]’ 1.e., ngdq 2

B. for =/, ?[xl]x Eq. (2.3) gives

1
hk[n]
gdq[{‘)\[ ZE [)\]::ij [Aj]

or

Z=5p] ad D)= o)

q

as required by the Frobenius reciprocity relation, and
C. for a, =1}, 27 XEq. (2.1) gives
]

IO, A H)=9 (04, 2,4 K),

as required by Mackey’s theorem.

3. DISCUSSION

Frame has demonstrated certain modified double co-
set coefficients pt,(f¥/nt’)'/? form a p* dimensional
square matrix with rows and columns designated by
(a, ). Here we wish to show that this is equivalent to
Eq. (2.2) and Eq. (2.3) for the case a= 1% =),
The superscript A° indicates the one-dimensional totally
symmetric irrep of the corresponding group., For this
purpose we give the following identification between the
notation adopted by Frame and that used here:

ts

Frame: H', H, a, £=7p0o, fx, nfxs’ Pars [

This work: H, K, ¢, A (and multiplicity labels —see
below), 1],

g (np)/? [ b )\;’] b

= —_— = number of DC,
dq L] dq iko ik‘? ? "

With this change in notation the unitarity expressed in

Frame’s article is the same as stating

{[x]hk} 1/2[ A x;’]
gdq 17\0 1)\?

is a square unitary matrix of dimension Eq with rows
and columns designated by (,g). The restriction to the
one -dimensional totally symmetric irreps of the sub-
groups is due to the fact that symmetry adaption to the
subgroups as used in Frame’s article is determined by
diagonalizing only the idempotents associated with these
irreps [Eqs. (4.7) and (4.8) of Ref, 4]. Frame allows
for possible multiple occurrence of these irreps in the
subduction of the irrep F, on the subgroups; i.e.,

F4 H! contains the totally symmetric irrep of that group
pi times. The multiplicity labels thus take values p
<pb, o< uf with 2, utf,=g/ht and 2, u5f,=g/h°. These
multiplicity labels have been suppressed in our notation
and, of course, would have to be included as discussed
inI,

The DCME of the symmetric group under the decom-
position ®¢S, ¥\Sx/®,S; are recoupling coefficients of
the outer product and in I were shown to be identical
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with the recoupling coefficients of the inner product in such considerations will be reported in a future
the unitary unimodular group, In II these same coeffi- communication,

cients have also been shown to be DCME of the unitary
group under the decomposition ®, U(n)\U(n)/®,U(n,). The
double coset analysis used in II is similar to that used

1 ;
by Wigner® in giving a generalized Euler angle param- J.J. Sullivan, J, Math. Phys. 14, 387 (1973), referred to

. . . . as I.
etrization to certain subgroups of GL(r) that contain 23.J. Sullivan, J. Math. Phys. 18, 756 (1975), referred to
U(n). An analogous extension of the proofs in II to these as I,
groups can be made. The orthonormality relations re~ 3G.W. Mackey, “The Theory of Group Representations,”

lations reported here can be applied to these recoupling University of Chicago Lecture Notes 1955.

4
. s ) cps J.S. Frame, Bull. Am, Math, Soc. 54, 740 (1948); Proc.
coefficients with respect to double coset decomposition Symp. Pure Math. 6, 89 (1962).

of the. symrpetric group and the uI.litE.l!'y group. With SE.P. Wigner “On a Generalization of Euler’s Angles,” in
certain choices the sums canbe limited so as to allow Group Theory and Its Applications, Vol. I, edited by E. M,
direct evaluation of some of the DCME. The results of Loebl (Academic, New York, 1969),
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We generalize the notion of P-representation, introducing a space of generalized functions, such that every
Hilbert-Schmidt operator has a P-representation. Then we extend that notion to another space of
generalized function, such that every bounded operator has a P-representation.

I. INTRODUCTION

Let {| n)} denotes an orthonormal basis in an infinite
dimension separable Hilbert space //; the coherent
states [ o) in // are defined by

| @)=exp (— I_t;[f) (,g(h%nﬂi l")) s

« being a complex number.

Let A be a linear operator in #/, a P-representation
of A is a weak integral over the complex plane such
that A= [ P(a)l a){ald®a, where | a){a| is the projector
on the one-dimensional subspace generated by | a),
P(a) is a complex valued function, a=dxdy, if a=x
+1iy, and dx is the Lebesgue measure on the line.

This representation was firstly established by
Sudarshan’ for certain “density matrix” operators. Then
it has been proved that every “density matrix” operator
does not have a P-representation but is a uniform limit
of operators having a Pfrepresentation.z"’

In what sense can we generalize this representation
in order that every operator has a “generalized” P-
representation ?

Miller and Miskhin® gave a partial answer to that
question. They considered the function P(«), in the
P-representation, as a generalized function in Z’ (the
space of Fourier transform of compact support distri-
butions) and proved that every bounded operator has a
P-representation, They established their results using
Fourier transform techniques; they considered the ex-
pression (¢! a)aly) P(a) as the product of a function
by a distribution the whole acting as a functional on Z.
But in that case we do not have a weak equality of the

type
(b, A= [ (¢ |¥a|y) P(a)da;

indeed the function {¢ | a){a|®) is not in Z, And as
Cahill® pointed out this representation is mainly related
to the kernel representation of Glauber” and cannot be
considered as a generalization of the P-representation.

In this work we consider the linear space generated
by the functions (¢ | a){a| P); we study the possible
Hilbertian topology on that space, and, using the tech-
niques of Hilbert space with negative norm, we show
that for every Hilbert—Schmidt operator p there exists
a generalized function P(a) such that

(b, |pty= [ (®|a)a|t) Pla)d®a
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(this integral having a symbolic sense when P(a) is not
an ordinary function),

Then we extend these results to bounded operators
using a topology of Banach type.
1. COHERENT STATES AND FISCHER SPACE

The proper framework to study the problems of
P-representation is the theory of Fischer space.®?®

A Fischer space is a space of entire functions of a
complex variable, which are square integrable with
respect to the measure du(z) on the complex plane:

1
dp(z)= —exp(~|z|*) Pz,

where d?z=dx dy,and z=x+iy, This space 7 is a sepa-
rable Hilbert space with scalar product

(f,8)7 = [ fle)g(2) du(z)

and norm
Al = (f =) > du(z))* 72
from this equality we obtain the following inequality:

|A(z)| <exp(z| 2| *)lFil

Therefore the functional on 7 which associates with each
function f its value at point Z is a bounded functional;
then by the Riesz—Frechet theorem

vz3Je,c suchthat (eesf)7=1(2).

In particular we obtain
(e, €)7=exp(2’' 2).
Moreover, if 7, is the operator defined on 7 by
Tf=f(2)e,,
one can prove by direct calculation the weak equality
I=,f m,du(z).

Furthermore, if // is a separable Hilbert space and
| @) the coherent states in #/, there exists an isometric
isomorphism i between #/ and 7 such that

il |ayexp(=|a|?/2)]=e,.

Let A be a bounded operator in # and let A’ be the
corresponding operator in 7, defined by

viet, A'()=iAil(f).

Copyright © 1975 American Institute of Physics 1710



Definition: A has a P-representation if there exists
a complex valued function P(z) such that we have the
weak equality

A=, [ 1P duz);
we have in that case

(f,48)3= [ f(2)g(@)P(2) dp(2).

11l. TENSOR PRODUCT OF FISHER SPACE AND
SPACE ¢

Let / be the linear space generated by formal pro-
duct g(z' }f(2), fand g 7.

Let § be the space of functions of one complex vari-
able obtained from each function in L by restriction
to the manifold z=2’,

Lemma 1: [ is isomorphic to§ .

Proof: Let h(z’,z) be an element in /[ ; (2, z) is an
entire function of each complex variable 2’ and z.
Therefore, it is an entire function of the two complex
variables 2’ and z.

Let z and &’ be two functions in / such that k(z, z)
=¥ (z, 2); then the function - %’ is an entire function
of 2z’ and 2z which is equal to zero on the manifold 2z’
=z. By the analytic continuation theorem?® % - 7’ is
identically equal to zero; and h="#’, Therefore, the
application which associates with 2(z’,z) in / the
function %(z,z) in G is an injection, It is trivial that
this application is also a surjection and an
homomorphism.

QED

Consider now the bounded operator A in 7, and let
F, be the application which assigns to each element
5,g,(2) inG the complex number Z,(g,,4,)7.

Corollary 1: F, is a linear functional,

This is obvious from the construction of F, and the
isomorphism between /[ and G,

Corollary 2: G can be equipped with a pre-Hilbertian
topology.

Indeed we can define on / a pre-Hilbertian structure
with scalar product

(Ze e, Zepeyom),
= ZEP @), @ NP @2 @) 5,

which according to Lemma 1 induced on G a pre-
Hilbertian structure with norm

=6l =21 f @ au@]l [ 15,2 au .

Let G, be the Hilbert space obtained from § by com-
pletion with respect to the norm |l°llgl.

Lemma 2: The functions in § are square integrable
with respect to the measure

dy’ (2)= (1/m) exp(-|z|?)du(2).

Proof: The functions in § are linear combination

1711 J. Math. Phys., Vol. 16, No. 9, September 1976

of product f(z)g(z), where f and g are in 7; therefore,
they are continuous functions of z. Furthermore, the
tanctions (1/7)[Z, f,(z)g,(z)] exp(~! z1?) are integrables
with respect to the measure d?z, and then square in-
tegrables, Therefore, the functions in § are square in-
tegrable with respect to the measure

du’(2)= (1/n)exp(-|z|?)dp(2). QED

Corollary®:  can be equipped with another pre-
Hilbertian topology with norm

Hf(z)g(Z)Néz: [ 1) 12|g@)|2dp’ (2).

Let ;  and ; . be the Hilbert space obtained respec-
tively by completion of § in the norm ||'|lg1 and llellg;

IV. P-REPRESENTATION OF HILBERT SCHMIDT
OPERATOR

Lemma 3: Let A be a Hilbert—Schmidt operator in
7; then the linear functional F, is a bounded linear
functional in §,.

Proof: Let {e,(2)} be an orthonormal basis in 7; we
have

l%) | e;(2), Ae, (z))}, |2=C <,
and we have also for every element 3, ; a,.e,(2)
® e (z') in 7© F

I Z2ay,e,@)® ¢, (@)% o 5 ={§ |a,, |2

Then
kel -
12Zaye,(2e, (z)u=gl=,§ |a, |?

and
|Fy (gj)a”e,(z)ej (2)> |*=] ‘%)a”(e, (z),Ae,(Z))} |*
< g |ay, |2f,? | (ey(2), e, (2))5 |?

< C”{%)a,,e, (2)e, (E)”zg1 QED

It is worth to note that this lemma induce a kernel
representation of A. Indeed in that case 3K(z,2’)
c 7®7 such that

(f,Ag)= [ [ K(z,2' }f(2)g(z") du(z) du(z’).

In order to have a P-representation we need, in a cer-
tain sense, F, to be bounded in §,, But, unfortunately,
this is not always the case. To overcome this difficulty,
we shall build on §, a “Hilbert space with negative
norm” equipment,

V. GENERALIZED P-REPRESENTATION FOR
HILBERT-SCHMIDT OPERATORS

Let us define on § a third norm

et~ =M~ +itll -~ o
3 gl g2
[llg , is again a Hilbertian norm and [|-ll;-_ > ll-ll;; . Let
G5 be the completion of G with respect t§ the nofm
[I1lg; 53 then G, G, and (, is dense in §,.

Following Berezanskii,!! we shall consider § jasa
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Hilbert space with positive norm, and § » as a Hilbert
space with zero norm, and then construct the corre-
sponding Hilbert space with negative norm. A vecior
g in §, generates a linear functional /, on G, such
that

VG, LN =(g,/G>-
This functional is bounded; indeed
2.0 < ligligalfllg > <llgll g, Wl .-

Consider the norm

el _=nz‘,u=is€u§3[ .1, /iAlg I

we have IIgIlg <||g||g2.

Definition: Let §_ be the completion of § with respeect
to the norm II-Ilg_.

Lemma 4: There is a_“scalar product” [a,f]; de-
fined for e _and fcG, which coincides withthe scalar
product in G, for a G ,; such that

|la, 7 | <llalig il -

Furthermore if / is a bounded functional on § 3, there
exists a vector o, ¢ G _ such that

l(f)=[anf]gz Vf€ga-
The proof of this lemma can be found in Berezanskii. !

Definition: A bounded operator A in a Hilbert space
# is said to have a generalized P-representation if
there exists a generalized function P(z) in g . such
that we have the weak equality

(r,4°8) =[P, fgl,
= [ f(z)g(2) exp(-|z|*)P(2) du(z),

this integral being considered in a generalized sense
if P(z) is not inG,, P is called the generator of the
P-representation.,

Theorem 1: Every Hilbert—Schmidt operator in a
Hilbert space has a generalized P-representation.

Proof: Let A be a Hilbert—Schmidt operator in #
and let A’ be the corresponding operator in the Fischer
space /; by Lemma 3 the linear functional F,, is a
bounded linear functional on G .

Therefore, F,, is a bounded linear functional on § s*
Then by Lemma 4 there exists a generalized function
Pin G _ such that

F, ( ggaije,(z)e,(z)) - [p, E;ai,e,(z)e,(z)] G,
and in particular we have

(f’A’g) = [P’fg]gz
and, if P e-g-z, we have

(407 = - f A2 Ple) expl=| ] du (2).

Theorem 2: To every generalized function P in g .
there corresponds a bounded operator A such that A
has a generalized P-representation with generator P.

QED
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Proof: Let P be an element in § _; P is a bounded
linear functional on § ,; there exists a bilinear function
B on #/ such that

[P,f(2)g(2)],=B(f,g).

Let us show that this bilinear functional is continuous
in each variable.

Let {g,} be a sequence in / such that
limllg, — gllyy=0;
e
we have

| B(f, g, - 8)|=[P,f(z)(g,(2) - g(z))],.
But

IP,f(E)(g"(Z) _g(z))]o$ Ilf(gn "'g)||g3

< (S If12duM ([ |g - g, |2 du)/?

+{(W/m [ |7]2|g-2,]2exp(~| 2| au]* /2
The function |f1?exp(~12z!?) is a continuous function of
2z which is bounded. Let

M=sup[|f|?exp(-|z|2)];
we have

[P, f(2)(g, () — g ()] < (Ifll+ M)ilg - g,II.

Then the bilinear functional is continuous in each vari-
able. Therefore, = a bounded operator A such that

B(f’g)= (f,Ag).,

This operator has a generalized P-representation with
generator P, QED

We obtain also, as a direct consequence a result of
Klauder —Rocca type.**

Theorem 3: Every Hilbert—Schmidt operator is the
uniform limit of operators having a P representation.

Proof: Let A be a Hilbert—Schmidt operator with P
as a generator of its P-representation. P is in Q ., and
G . is dense in G _; then there exists a sequence P, of
elements in §,, which converges, in ||-||g_ norm, to P,
Let the A, be the bounded operators, which have a P-
representation, with P, as a generator (it is a P-rep-
resentation, and not a generalized P-representation,
because P; is inG,).

Let us show that 1A - Al converges to 0. We have
sup

4 - 4,ll= [, (4 - 4))y |
Ilf|l)[7/=1||g n,L/,l
= sup |[P-P, fg]g‘2 [

Hfu Z=tiigh 7 al
< p_p

”f“}s:;lI:n} =1 a ’”g_“fg”gg)
sllP—P,Hg sup

gl - »
- 1f1 7 alligh =l Ve gs

put
Hfgllg3=(f lF12aur/2(f | g|2du)t /2

+[/m [ |f]2|g]2exp(= |2 |)du]?
=17l 4 llgl 5 +[@/m) [ |f12]g|?exp(~|z|Ddp] /%
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We have
[f(2)|< exp(| 2] */2)lifll 5.

Therefore,
|72 | <exp(|2 |)IIFIy

and

[a/m [ |£|?|g|?exp(=|2|2)du]/?
s[(llfn_z;,/nf |g|2du]”2$|lfll},ILgI|}/\/?

so that
, sup =1Ilfgllg S. 5 (A gl+A gl /Y my =1
nfn 7 =ligh 7 8 uf07xl,lgi Ful
+1/V7
and

I -4, lI<(@+ 1A DIP - Pyl - QED

VI. GENERALIZED P-REPRESENTATION FOR
BOUNDED OPERATORS

In order to construct the P-representation for
bounded operators, we have to introduce a new topology
on the tensor product of 7 space.

Let us define the norm on 7®7,

Z)f ®g:ll= inf E”f Il Il
“‘ i i” (C# % a5, B0 1718l
and let II-li;;, be the corresponding norm on G . Then

the complétion G, of § with respect to that norm is a
Banach space,

Lemma 5: Let A be a bounded operator in #; then
the linear functional F, is a bounded linear functional

inG,.

Proof:

[F, &Cri8)]=26:, 480 | <IAIZHE I gl 5,
but, if

2f®g,=2f"®g},
then

FAEfié{)=FA(2f'¢é¢)
and

Fy&rg)<lAll inf Z 511 g,

£t {8 =Cf{ B}
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Let us now define an equipment of the Hilbert space
G »; let us introduce the norm on ¢

lells=ll-ll, M-l

Let § 5 be the completion of § with respect to that norm
then. G, is a Banach space densely included in G,. Let
G’ be the dual of G,. G, can be densely included in G’.

Theorem 4: Every bounded operator A in a Hilbert
space // has a generalized P representation the genera-
tor of which is in G’

Proof: By Lemma 5.the corresponding linear function-
al F, is bounded on G,, Therefore, there exists a gen-
eralized vector P in G’ such that

FA(thg;)=[P;Ef¢g¢]

In particular, when P is inG,, we have
FA(Z/j?,g,)= (P,Zfigg)gz

and
(f,Ag)= [ P(2)f(z)g(z) exp(~|2z|?)du(2).

Theorem 5: To every generalized function P in g 4
there corresponds a bounded operator A such that A
has a generalized P-representation,

Proof: The proof is the same as the one for Theorem
2; indeed for functions in § of the type f(z)g(z) the

norm Iill, is equal to the norm ii-ii,, QED

For the same reason, taking into account the proof
of Theorem 3, we obtain a theorem of Klauder—Rocca
type for bounded operators:

Theorem 6: Every bounded operator is the uniform
limit of operators having a P-representation,
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Jacobi’s principle for the case of time-varying

Hamiltonian
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We present a generalization of Jacobi’s principle to the case where the particle Hamiltonian varies with
time, illustrating the formalism with an example from particle mechanics. It can be applied also to
Stueckelberg mechanics to the case of variable mass, and we give an example.

1. INTRODUCTION

In particle mechanics, the equations of motion can be
derived from Hamilton’s principle that the first order,
fixed end point variation 84, of the action

A= [2atL(g, 4, 1), 1.1)
vanish. Here ¢ is a compact notation for the N general-
ized coordinates gy, ..., ¢y, ¢ means the time (¢) deri-
vative, and L is the system’s Lagrangian. The variation
of A is produced by variations 8¢ and d¢, of ¢ and ¢,
with 6¢ defined by {d/dt, 6]=0. Jacobi’s principle, which
is a variation condition giving equations of the system
trajectory, is arrived at by first going over to the ex~
tended configuration space in which the time is treated
as a coordinate and, in the case where the time is ig-
norable, eliminating it from the formalism by Routh’s
method. That ¢ is ignorable means that its conjugate
momentum, p,, is constant and hence, by the identity,

pe tH=Q, (1.2)

where H is the Hamiltonian derived from L, that the

Hamiltonian is constant. So Jacobi’s principle applies
only to the case in which H is constant in time; and the
system trajectories are labeled by this constant value,

H=E. (1.3)

In the present paper we extend Routh’s “ignoration”
formalism for ignorable coordinates to the case of a
nonignorable time coordinate. The main points of the
paper are the realization that the derivation of Jacobi’s
principle works for the time dependent case and an ex-
plication of the meaning of this generalization.

In Sec. 2 we produce the main result of the paper, in
Sec. 3 we give an illustrative example from classical
mechanics, in Sec. 4 we give an example from
Stueckelberg mechanics, and in Sec. 5 we conclude the
paper.

2. EXTENSION OF JACOBI’S PRINCIPLE

In the extended configuration space g and ¢ are func-
tions of a parameter 7 and the action is

A= [T2ar g, t;q', 1), 2.1)
where primes denote differention by 7,
Lig,t;q',ty=t"Llq, q"/t', ), (2.2)

and where we assume ¢’ >0, as this entails no loss of
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generality. The fixed end point first order variation
condition,

'A=0, (2.3)
where 6'q” and &'t are defined from 6’ and 6t by
[6’,d/dT]=0, produces equations of motion of ¢ and ¢
equivalent to those stemming from 84 =0; the additional
equation stemming from (2.1), for the time, is realized
in the equations deriving from (1.1) as the ¢-derivative
of Eq. (1.2).

We assume first that f is ignorable, then

_aa_i_’:() (2.4)
so that

d (3L

E?(E?):P":o’ (2.5)

and p, is a constant, given by Eqgs. (1.2) and (1.3) as
(- E). To derive Jacobi’s principle, one eliminates the
ignorable coordinate ¢ as follows: (i) Replace L with

Li(g,q)V=Lig,q',t") = t'py, (2.6)
where ¢’ is regarded as the function of ¢, ¢’
t'=t"(g, q"; ), 2.7

determined as the solution to the defining equation of
pt’

3 =
F(q, ‘I’:t’;Pt) =pt-57L(q) q': t')zo) (2~ 8)
(ii) replace A with

Ay = j;;z atLs(q,q'); (2.9
(iii) replace Eq. {2.3) with

8"A; =0, (2.10)

where the 5" variation is produced in Eq. (2.9) by in-
dependent fixed end point variations' of the ¢(v), with
[6",d/dT]=0 giving 6"¢’(T). To prove Eq. (2.10), one
normally invokes the following argument: Evaluate 5"A
by regarding g and ! as intermediate coordinates in Eq.
(2.9), using Eq. (2.3), which holds for arbitrary

(fixed end point) infinitesimal variations of ¢ and ¢ and
hence those restricted by Eq. (2.8) and by [6”, d/dT]t(T)
=0, % to get only an end point contribution,

oL T2 T2

0 A=—7 5":1 =987t . (2.11)
ot ITl T
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The right-hand side of Eq. (2.11) need not vanish be-
cause Eq. (2.7) or Eq. (2.8) may not be consistent
with the vanishing of 6"t at 7, and 7,. Equation (2, 10)
follows at once from Eq. (2. 11} if p, is independent of
t, for then we can write

pe0"t]7} = 8" e P dr E'pe. (2.12)
We suppose now that p; is not a constant but is allowed
to possess ¢t dependence,

P =p:(0). (2.13)

We assume that Eq. (2.13) is available to us in Eq.
(2.8), which now becomes
Flg,q", 6, p:®) =p: (D) - L(q, q,t,t)=0, (2.14)
where L now must have explicit ¢ dependence; for, from
Eq. (2.8), which defines p;,

2
pe=L~- q—Ii (2.15)
so that, using the equations of motion for the ¢(t), we
have

dpy _3L(g,q'/¢', .

2,
dt ot (2.19)

nonvanishing by Eq. (2.13), unless p; is constant. Solv-
ing Eq. (2.14) for ¢', we get the analog of Eq. (2.7),

t'=t'g, 4", t,p:@)=t"g,q’, 0). (2.17)
We now regard L; as having explicit ¢ dependence from
Eq. (2.6) via that of L, and Eqs. (2.13) and (2. 1.

Reasoning exactly as before leads again to Eq. (2.11).
We rewrite the new version of that equation to get

5"4A= ﬁ;z ar(p{6"t +p,(6"1)")

= [2dr® "(E'pe) + fry2dT(pi6"t—"6"py).  (2.18)
We use Eq. (2.13) to evaluate 8"p,
8"p, =0 ny 8t (2.19)

at’

so that the second integral in Eq. (2.18) vanishes and
Eq. (2.10) follows by transposing the first term from
the right side of Eq. (2.18)—but with a new meaning:

8"A, = (2.20)
where now
Ar= [2dTLs(g, 9, D). (2.21)

This needs some explaining because explicit {-depen-
dence still remains in Eq. (2.21)! Equation (2.17) is a
differential equation for #(7) when the ¢(7) are given,
and, as it is satisfied by the varied ¢ in Eq. (2.20),
variations of the ¢ lead to changes, 6”f, of £. The con~
tribution to 6”A; from this effect is

T 4
f zdrzél_(‘i!_q_’_tz 5"t. (2.22)
hy ot
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But by Eqs. (2.6), (2.13), (2.14), and (implicitly)
(2.17),

3L, a,4,t)
at
_aL(g, gt’, t, 1) +( 2L(g, gt t,t) p,(t))
4 dp; ;t) (2.23)
_y (aL(q, gt'/t', t) di;gt(t)) ) (2.24)

The N equations of the ¢(7) issuing formally from Eq.
(2. 20) when the contribution from Egq. (2.22) is ignored
involve the additional unknown function #{7). When these
represent the trajectories for the motions stemming
from 6A=0, where A is given by Eq. (1.1), Eq. (2.16)
provides the condition that selects the allowed class of
solutions from what results when #(7) is assumed arbi-
trary. To maintain the connection between the two for-
malisms, we assume Eq. (2.16) in Eq. (2.24), and this
makes the 6" variation of the action caused by induced
changes in ¢, namely Eq. (2.22), zero. So in computing
6"A; in Eq. (2.20), we may regard the ¢ dependence as
parametric and treat it passively.

With this interpretation of Egqs. (2.20) and (2. 21) we
find N Euler~Lagrange equations of the ¢, which in-
volve the additional unknown #(7). In fact, p.(¢) also is
unknown in general as this comes from the solution to
the Euler— Lagrange equations deriving from Eq. (1.1)!
But two additional equations already are available to us
to close the system and specify the problem for the
trajectory.

The first is the “inferpretation” of the function p.(f)
(or, inversely, of {) provided by Eq. (2.15), which
follows from its defining equation (2. 8), To secure this,
we assume that the function L(g, g, f) is given. ® The
second equation is implicit in the equations of the ¢
issuing from Eq. (2. 20) and is associated with the ar-
bitrariness of 7. We can obtain it as follows. From
Eqgs. (2.2), (2.6), and (2.14) it follows that Ly(g,q,1t)
is homogeneous of the first degree in the q as long as
Eq. (2.14) can be solved for t'. By Euler’s theorem on
homogeneous functions, the Hamiltonian resulting from
the usual Legendre transformation of L, vanishes iden~
tically, corresponding to which there must exist a re-
lation (constraint) among the variables of the canonical
formalism, *

K(g,p;t,pe) =0, (2.25)

where the wavy equals denotes weak equality in the
sense of Dirac.’ Here K is the total Hamiltonian on the
space of the ¢’s and p’s, and p is given as

p=aL,(q,q, /3 . (2. 26)

The consistency condition on the constraint [Eq. (2.25)]
is

dK
- 0. (2.27)
Evaluating the left side, we have
Robert G. Cawley 1715



(LK '+%p'>{3§£&+£‘ ’s0, (2. 28)

aq? " o, dt | ot )
Since the quantity in the first set of parentheses vanishes
by Hamilton’s equations, and since t'#O, we have
ap, _ 3K /8t
dt 3K /ap,’

and if we substitute Eq. (2.26) into the right-hand side
of the last equation, we obtain an equation of the form

b
dt

(2.29)

=K(g,q';t,p,). (2.30)
Equation (2. 30) is distinct from Eq. (2. 15) because the
equations of the g(7) (actually the canonical equations,
which are equivalent to these) were needed to derive it.
Equation (2. 30) has to be reducible to Eq. (2.16), al-
though we do not display this explicitly.

To summarize: The generalized Jacobi principle is
embodied in Egs. (2.20) and (2.21), where the 5" varia-~
tion is produced by independent fixed endpoint variations
of the ¢’s with ¢ treated passively. Two additional equa-
tions are available to close the system resulting from
this, the interpretation of p,(f), Eq. (2.15), provided by
L and assumed to be given, plus a consistency equation
to the equations of the ¢’s, i.e., Eq. {2.30), which fol-
lows from these, and which must be reducible to Eq.
(2.16). The complete system gives the function p,(¢), or
by Eqs. (1.2) and (1.3), E(¢), which we may regard as
classifying the trajectories.

It is worthwhile to examine the way these equations
are solved, especially as regards the time #=#(7), which
appears in the equations of the ¢(7) due to the explicit
t dependence L;. Equation (2.15) must be invoked to
deal with this since there are only N equations of the
¢’s. Once a parameter 7 is chosen, the equations deter-
mine #(7) in addition to the ¢(7) and p.(f). In practice it
is often, but not always, the case that Eqs. (2.15) and
(2. 30) reintroduce ¢’ into the equations of the ¢’s in the
combination ¢'/t'=4(¢), and the time history then may
be found as an intermediate stage in getting the trajec-
tory! Where this is not the case, the trajectory may
be found without determining the time history first.

We remark finally that if p, is constant, ¢ does not
appear in the equations of the ¢’s and Eq. (2.15) no
longer is needed to solve these. Instead, their solutions
determine #(7) by quadrature from Eq. (2.15). In the
ordinary Jacobi principle Eq. (2.15) is not regarded as
given, and so #(7) is never found.

3. EXAMPLE FROM MECHANICS

We consider a particle of mass » moving in a time-
varying potential field, taking

=imi? - V(r, 1), 3.1
so that
L=4mr'3' = V(x,)t', (3.2)
Py =—smr'2" 2~ V(r, ), (3.3
which gives
t'= ' [{@/m)[~ p - V(x, O]}/ (3.4)
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whence
LJ(r’ l", t) ={2mr’2[— Pt(t) - V(I‘, t)]}l /2- (3- 5)

The Euler—Lagrange equations for the variation con-
dition, Eq. (2.20), are as many as the dimensionality
of r,

%{[@[-p,m - Vi, t)]] ' /znrfrl}
=-m* |r’l[( —f;)[—m(t) - Vi, t)]] Ty

The equation of the interpretation of p,(f) is
oL(r, r,t)
or

(3.6)

—pt:'L(r’i‘,t)-*'i"

=zm¥®+ V(r, £). 3.7

To get the consistency condition, we formulate the
canonical constraint [Eq. (2.25)], which is

K=p; +(2m)p2 + V(r, 1),
so that Eq. (2.29) gives

dpy_ _3V(r,?)
dt ot

(3.8)

(3.9

already in the form of Eq. (2. 30). Equations (3. 6),
(3.7), and (3.9) form the closed system we want.

We consider the case of three-dimensional motion in
a potential V="V(p, ), where p=xx +vy, so that V is
independent of z. X and ¥ are unit vectors along the
chosen coordinate axes. Combining Eq. (3.4) with the
z component of Eq. (3.6) gives

(3.10)

where ¢ is a constant for any choice of 7. We exploit
this to obtain the equations of the trajectory, express-
ing this in the form p=p(z), by choosing

T= zZ, (3- 11)
50 that
t’: c'l. (3. 12)

With this choice the remaining components of Eq. (3.6)
can be written

dfdp\__ 1 a3V )
7 (cdz>—-m c o’ (3.13)

so that by choosing { =0 and z =0 to coincide and sub-
stituting the solution of Eq. (3.10), these become

d®p_ 3V(p, 2)
2 —_— ) .
= ap
And finally, manipulating Eq. (3.13) in the standard
fashion to secure a first integral, using Equation (3. 9)

along the way and Equations (3. 3) and (3. 10) to fix the
constant of integration, we find®

—pi(2) = ime? [1 +(g’z’)a]+ V(o 2).

4. EXAMPLE FROM STUECKELBERG MECHANICS :
A-DEPENDENT COUPLING TO A CONSTANT
VECTOR FIELD

We consider the Lagrangian

(3.14)

(3.15)
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Lg(x, dx/d)) =3 (dx/d))? +3 E(N)w(dx/dN), 4.1

where @ is a Minkowski® four-vector and E(}) is a pre-
scribed function whose properties we specify below.
The Stueckelberg action is

A= ﬁs dAX L (x(N), dx/dx, 2, (4.2)
and the fixed end point variation condition on A, results
in Euler— Langrange equations of the curves x* =x" (),

M <A< 2. In addition, we have the analogue to Eq.
(2.15),

52 = @/ s L,
=3 (dx/dN?= = 3m(N?, (4.3)
where the fact of A dependence follows from
‘f‘;’; —r=aM6 (4.4)
with the notation
A(Y JdEW 4.5)

dx

The generalized Jacobi principle gives equations of
the spacetime trajectories corresponding to x* =x*().
Introducing a parameter «, analogous to 7 in the pre-
vious section, we must express x* and X as functions of
a and solve the analog of Eq. (2.8), for A'(a)=d)\/da,
to obtain the trajectory Lagrangian Lg,(x,x’, ). The
equation giving ' is [cf. Eq. (4.3)]

A= x"2/m(N?, {4.86)

so the signs of — x'? and m())? must be correlated; more-
over, for a given correlation there are two solutions to
Eq. (4.6), corresponding to the two signs of the square
root. We want to be able to consider the case of curves
that remain everywhere timelike, so that —x'2>0, with
m()) real; then

(@) =z m(W)1~ x ()2} 3, 4.7
where here m(}) means the positive square root of
m(N?, and

Lss (6, 2", N =Fm(N(= ) 2+ 1EMG -« (4.8)

Defining an “observer” Lagrangian,® Lo =1 Lg;, we get

Lo(x, 5’ A== m(M) (=~ 22+ LE(N)e'F . x 4.9

with €=+1 for the upper sign and €"=— 1 for the lower.
Independently of the choice of @, €'is the sign of dx'/
dX, which is constant if dx* /dX is everywhere timelike.
Before elaborating the spacetime trajectory equations,
we want to explicate the basis of the formalism for this
example, namely the condition that dx* /dX be every-
where timelike; to do this, we must solve the
Stueckelberg equations first.

The equations of the curve, stemming from Lg, give
dpl-l»
=0 (4.10)

where

P =¢" +3E(N&", (4.11)
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with
q* =dx" /dx,

The functions x* (A) are gotten by a quadrature, which
gives us the curve when a set of end point values is
specified, such as {x*(})} or {x*()}.

We take E()) to be a smooth function (constant on dis-
joint segments containing ) and Ag) with

(4.12)

E(M)=-E(M)=1. (4.13)
Equations (4. 11) and (4.12) give
g(M=q(n) - 0,N)& (4.14a)
=q()) +O_(N®, (4. 14p)
where
0,V =z[1+EMN]. (4.15)
Also, from Eqs. (4.3) and (4. 4) we get
d;’; =2A0G d" (4. 16)
=28(NG- [P— zE(Na], (4.17)

with the aid of Eqs. (4.11) and (4. 12). Integrating Eq.
(4. 17) gives the solution in either of two forms,

m(W)2=m(N)?+2P - 30,(N) + dPe.(Ne.(N (4.18a)
=m(A)% = 2P - FO_(N) + &Po, (N e.(N. (4.18Db)
From Eq. (4.14),
a(y) = () =, (4.19)
and from Egs. (4.18),
m(M)E - m(A)P==2P.& (4. 20)

We re-express the content of Eqs. (4.14) and (4.18)—
(4. 20) with the help of a notation change, considering
two cases: (i) dx* /dX timelike with dx®/dx>0, at A=),
and (ii) dx* /d) timelike with dx’/dx<0, at A=2;. We
introduce the constants, m >0, m’, p,p’,u and ',
defining

m(y)=m, q()=p=mu case (1); (4.21a)
m(xg)=m’, q)=p'=m's’
in addition, we assume
mdg)=m, —q)=p=mu
m()«i)—m' a() =p' =m'u case (ii). (4.21b)
=m', - =p' =
Since m >0, u is a future pointing timelike vector. By
defining € = + in case (i) and € = - in case (ii), Egs.
(4. 14) become
PN =eqg(N)=p - 6,(N &, (4.22)

for both cases. In place of Eqs. (4.18) we write, again
for both cases,

m(N?2= = p% +2€P . G6,(2) + &6, (MO (N, (4. 23)

whence substituting a similarly recast version of Eq.
(4.11),

eP=p-33, (4.24)
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we get
m(N2=m?+2p - 3O, (N ~ &®6,(N)?
==[p-6,(N&].
Equation (4. 25) also can be gotten by squaring Eq.
(4.22), so that it also is a consequence of Eqs. (4. 3)
and (4.10). Finally, from Eqs. (4.19) or (4. 22) we have

(4.25)

p=p-aQ, (4.26a)

m'u' =mu— @, (4. 26b)
while from Eq. (4.25) or Eqs. (4.26), we have

M= (p— B2=m2+2p .0~ &2, (4.27)

The condition that dx* /dx=g¢" () be everywhere time-
like simply is that m())? be everywhere positive, which
assures also the constancy of the sign of dx%/dX and
allows € to be replaced by €° above. Equation {4.25)
shows that this condition is met only if €()) belongs to
a restricted class of functions depending on the end
point value p and on €°, The spacetime trajectory equa-
tions deriving from Egs. (4.8) or (4.9) will determine
the (e.g., time) evolution of m via that of A. Particle
and antiparticle solutions, corresponding to €"=+1 and
€’=-1, are obtained together, the example being that
of a smoothly varying mass and four-momentum, in
which the mass changes invariantly from m to m’, and
the four-momentum goes from p to p':p - d.

By choosing « to be the proper time, so that da=ds

=(—dx* dx’n,,)*’?, the Lagrangian (4. 9) gives the equa-
tions of the trajectory,

d

- (h)ﬁ#e“E(x)“‘ =0; (4.28)

as MWW gg T2 w )= )
the equation of the interpretation of m, Eq. (4.3), is

m(N2= - (dx/dN?=(dr/ds)2, m(}) >0, (4.29)
and the consistency condition, which comes from

K=[pg~ 3’ EMGE +m?, (4. 30)
with pg defined from L, is

dm?® _ 9K/

dx ~ ~ aK/am?

=280 m() 2, (4.31)

which we recognize as Eq. (4.16).

The special case of the improper “limit” that E(})
—€(A= ), N <A, <), is of some interest; here the
particle (or antiparticle) experiences a sudden change
of four-momentum and mass. The former is determined
as @by the equations of motion, but the latter is not
determined by Eq. (4.17) for dm/dX. In this “limit”
0,(0) ~ 8(x(x - X,)), where 0 is the Heaviside unit step
function, ! and A(A) ~ 6(x = 2;), where 6 is the Kirchoff—
Dirac 5 function.!’'! Thus dx/dX lacks a value at A=},
where the argument of the 6 function vanishes, and Eq.
(4.17) cannot be integrated. So this could signal a prob-
lem with the condition that dx“ /dx be everywhere time-
like. On the other hand, the equations of motion give
dx" /dx as constant on the segments (N, %) and (A, &),
so that Eqs. (4.26) are all that is needed to verify the
constancy of €. This requires p'° >0 and hence, by
Lorentz invariance 7> 0 which is a kind of threshold
condition,

-(p-@)2>0. (4.32)
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Note that if & is spacelike, Eq. (4.32) is enough to
assure the constancy of €’. In the present improper
“limit” the consistency condition, Eq. (4.31), no longer
is in force through A=,

5. CONCLUSION

We have shown that Jacobi’s principle holds for the
case of time-varying Hamiltonian, and we have given
the general interpretation of the meaning of the formal-
ism. We have illustrated the formalism with two simple
examples, one from the mechanics of point particles and
one from the mechanics of Stueckelberg, where the
spacetime trajectory equations result.
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IThere is a slight abus de langage in our presentation, for
there should be a part (iv) to the procedure, namely, choice
of a parameter r=T, some function of the ¢’s. So then there
are only N~ 1 independent degress of freedom, with an
Euler—Lagrange system of only N— 1 independent equations.
However, we can treat this system the way we did that of

the N ¢(t)’s, passing to an “extended space” where the param-
eter T is treated as a coordinate, with T and the N—1 ¢’s all
functions of an arbitrary parameter, which we may as well
just call r. So the prescription of the text is that of the Jacobi
principle if it is realized that it represents an “extended
(trajectory) space” formulation.

2This follows from Eq. (2.7), for, examining the solution to
that equation,

Hr)=tlr)+ [;] dr't (g(r'), ¢’ (7)), (a)
under ¢—q+8”q, q'—q'+ 8" q', we find that ¢—¢+ 6", where

67ty =o"t(r) + [T av 6"t'((r"), 4" (+')). (b)
On the other hand,

87H(r) = 67H(y) + ff: ar L oni(r), (c)
identically. Subtracting (c) from (b) and differentiating by
T gives the assertion of the text.

3Note that ¢, given by Eq. (2.17), is not needed here, al-
though 4 =¢’/#' must be used in Eq. (2.15) when the latter
is adjoined to the set deriving from Eq. (2.20).

See, for example, C. Lanczos, The Vaviational Principles
of Mechanics (University of Toronto Press, Toronto, 1957),
Chap. 6, Sec. 10.

Sp.A.M. Dirac, Can. J. Math. 2, 147 (1950).

STn Eqs. (3.14) and (3. 15) we ought strictly to have written
V(p, ct2) and p,(c"1z) rather than V(p, 2) and p,(2), as we have
done for simplicity.

'E. C.G. Stueckelberg, Helv. Phys. Acta 14, 588 (1941); 15,
23 (1942).

8We use the space-favoring metric, whose nonvanishing
Cartesian components are 74 =7y =1733=— TN ="+ 1, we put the
speed of light equal to one and we use the notation
asb=mn,,a*b",

%R.G. Cawley, Int. J, Theor. Phys. 3, 483 (1970); 7, 77
(1973) (E).

10Generalized function.

11This is commonly called the Dirac & function, but see also
G. Kirchoff, Vorlesungen iiber Mathematische Optik (Leipzig,
1891), 2te Vorlesung, ¥ 1 [By A. Sommerfeld, K. Akad. Wet.
Amsterdam, Proc. 8, 346 (1904)].
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On the solution of the phase retrieval problem*
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It is shown that the intensity in the image plane of a microscope determines uniquely the phase of the
corresponding image wavefunction up to an over-all phase. This result is obtained using the a priori
information that both the image wavefunction and the unperturbed wavefunction in the Fraunhofer plane
are band-limited and that we have some a priori knowledge about the intensity at the rim of the
diaphragm in the Fraunhofer plane. If we have no useful a priori information about the wavefunction in
the Fraunhofer plane, unique phase reconstruction is possible from two exposures, corresponding to two

different values of the defocusing.

INTRODUCTION

Since only the modulus of a wavefunction is usually a
measurable quantity rather than the wavefunction itself,
the phase of a wavefunction is, as a rule, lost during
measurement. The problem whether or not the phase
of a function can be unambiguously determined from
the values of its modulus is known as the phase retrieval
problem,

The loss of phase information leads to serious dif-
ficulties in the interpretation of measurements and also
to ambiguities. It is well known, for example, that the
structure of a crystal cannot in general be uniquely
determined from intensity measurements on the
scattered x rays.

Another example arises in the theory of partial co-
herence where it is known that in general, the complex
degree of coherence cannot be determined from its
modulus without additional information, Wolf,?!
Nussenzveig.? Another example of this type is provided
by the theory of image formation in microscopes, where
it is shown that several distributions in the Fraunhofer
plane might lead to the same intensity distribution in
the Gaussian image plane, Walther.3

However, most functions occurring in physics are
analytic, which implies that both phase and modulus are
connected by the Cauchy—Riemann equations which con-
siderably narrows the class of phase functions which
might be assigned to a given modulus. Much work has
been done to determine to which degree the phase of an
analytic function is determined by its modulus. For an
extensive survey see Mandel and Kohler. * From the
calculations of Wolf, ! Dialetis and Wolf, ® Walther, ® and
Nussenzveig? it became clear that in several cases of
physical interest the phase of an analytic function is not
uniquely determined by its modulus. It is the aim of this
paper to give an extension of the analysis of the phase
problem as developed by Walther® and to provide an
answer to the following phase problem occurring in the
theory of image formation in a microscope: Suppose that
an object is imaged through a microscope free of
aberrations and the intensity in the image plane is mea-
sured. We then investigate whether the intensity dis-
tribution determines the phase of the image wavefunction
unambiguously. As already shown by Walther, ® several
wavefunctions in the Fraunhofer plane might lead to the
same intensity distribution in the image plane. However,
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it should be stressed that this does nof prove that the
phase cannot be reconstructed. This comes from our a
priori knowledge that the unperturbed wavefunction g(y),
viz. the wavefunction just before the diaphragm in the
Fraunhofer plane, is band-limited, like the image wave-
function, i.e.,

g =/ ;l exp(ixgy) ¥(xo) A%, (Ia)

hix)= [ explixy) g(y) dy, ()

where Y(x,) is the distribution in the object plane, g(y)
the unperturbed distribution in the Fraunhofer plane,
and k(x) the distribution in the Gaussian image plane,
Born, Wolf. ® It might so happen that only one of the
various distributions in the Fraunhofer plane is con-
sistent with our a priori knowledge that it must be a
perturbed band-limited function, viz. a function which,
relying on Kirchoff’s boundary conditions is part of a
band-limited function on the transparent part of the
diaphragm and zero on the nontransparent part. This
would imply that due to this a priori knowledge arg h(x)
is uniquely determined by |2(x)!. However, unfortunate-
ly this conjecture is not true, e.g., the modulus of

the band-limited function 2% (z) = B*(2*)

B2 = [T explizy) g*(- y) dy,

is equal to the modulus of #(z) on the real axis. There-
fore the unperturbed wavefunction g*(-y) yields the
same intensity distribution in the image plane as g(y).
Moreover, it follows from Eq. (1a) that g*(-y) is a
band-limited function thus obtaining at least two un-
perturbed bandlimited distributions in the Fraunhofer
plane leading to the same intensity in the image plane,
In holography g(v) and g*(- ) would correspond to the
reconstructed object and its twin object, “twin images. ”

But, fortunately, uniqueness can be obtained by using
a little more a priori information, i.e., if we know a
priori that either the number of zeros of 4(z) is finite in
the upper half or the lower half of the complex plane,
uniqueness is obtained. The uniqueness is obtained by
showing that only one (the band-limited) unperturbed
wavefunction in the Fraunhofer plane decays if y tends
to plus or minus infinity whereas all the other possible
wavefunctions diverge. Moreover it will be shown how
to calculate all these possible unperturbed wavefunctions
from the intensity. The above mentioned a priovi
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knowledge concerning the distribution of the zeros of
h(z) is readily obtained in light—or electron microscopy
and, as will be shown in the section “application to
microscopy, ” boils down, to the a priori knowledge
whether |g(—1)] > |g(1)] or |g(-1)I < |g(1)]. This
knowledge can be obtained from experiment or a fortiori
by illuminating the object with a plane wave incident
with a certain angle with the optical axis of the micro-
scope. From now on it will be assumed that the number
of zeros of i(z) located in the upper half of the complex
plane is finite. A theory completely analogous to the

one developed in this paper can be derived if a finite
number of zeros are located in the lower half of the
complex plane. It would be interesting to find whether

a similar analysis also holds if the object is imaged into
the Fraunhofer plane by a microscope suffering from
aberrations. Tt might so happen that in that case also
only one wavefunction can be identified as the image in
the Fraunhofer plane of an object distribution. Although
the author regards this to be highly probable a proof of
this conjecture has not been constructed so far. There-
fore, let us suppose that in this case all the various
wavefunctions g(y) are admissible and hence that the
phase cannot be reconstructed unambiguously from the
modulus. In order to get rid of this ambiguity more in-
formation has to be put in. Recently, Gerchberg and
Saxton’ propose as one possible choice for such addi-
tional information the knowledge of the intensity distri-
bution in the Fraunhofer plane.

Another way of obtaining additional information is to
measure several intensity distributions in the image
plane corresponding to different values of parameters
which are at our disposal such as the location of the
focus, illumination, or the size of the aperture. Misell®
proposed a method of phase reconstruction for weak ob-
jects from two exposures, obtained by using two dia-
phragms, one which transmits only positive gpatial fre-
quencies, and one which transmits only negative spatial
frequencies.

Another idea will be investigated in more detail in this
paper. It will be shown that from two exposures, corre-~
sponding to two different values of the defocusing, the
phases of the two wavefunctions in the image plane can
be reconstructed unambiguously, up to a constant. To
prove this statement we shall derive in the next section
a dispersion relation between the phase and the modulus
of a2 bandlimited function. Moreover it will be shown that
all the wavefunctions g,(y) in the Fraunhofer plane
leading to the same intensity in the image plane are
related to the true wavefunction in the Fraunhofer plane
by a linear Volterra integral equation of the second kind.
Comparing the two sets of wavefunctions {gy)} and
{£®)(y)} which correspond to the two exposures it is
shown that only one wave function is consistent with both
intensity distributions. Hence, using (1) argh(x) can
be calculated.

A DISPERSION RELATION FOR BAND
LIMITED FUNCTIONS

In the introduction we already indicated the need for a
dispersion relation between phase and amplitude of a
band limited function. Such a dispersion relation may be
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obtained by means of the following lemma:

Lemma: Let the complex valued function g{y) be de-
fined in the interval — 1 <y <+ 1. Suppose g’(y)=(d/dy)
X g(y) exists everywhere in that interval and is of
bounded variation. Suppose that the entire function 4(z)
is band limited to the interval - 1<y <+1, i.e., it has
a representation of the form

h(z)= f; explizy) g(y) dy. (1)

Then, if the number of zeros a, (n'=1,2, ) of h(z) in
the upper half of the complex plane is finite, the phase
and the modulus of %(2) are related by the dispersion
relation

1 £ .1 ax
;i ln]h(x’)x\

,
X —-x

. x—ak
=—argh(x)-~arg xexp(ix) ] —*
" xX—=4a,
1
+ s 1+argg(-1), (2)

2

the integral on the left being interpreted as the Cauchy
principal value and both x and x’ are real numbers.

Pyoof: Repeated integration by parts yields

fl exp(izy) g(y) dy = —ex—l,’éfil’l 2(v) i _ explizy)

I

1
-1

ke f explizy) dg'y).  (3)

Introducing complex numbers « and 8 by the relations
explia)=g(1), exp(-iB)=g(-1), 4)
we may readily derive from (2) the asymptotic formula

n(z) = % exp(fz-(a -3)) sin[z + L(a +B)] (1 +o{%}>,

0 <argz <2m. (5)

Therefore the zeros a, of #(z) are distributed according
to the asymptotic formula (Titchmarsh®)

a,~nm - (a+B), (6a)
or Cartwright1©
N A /-1 1))
a,~nn+ 5 ln( 20 ) {8b)

Consider the contour integral

z=-a, Z=Xx

*
I{x,R)= %17 f ln(g 2= 9 p(z)z exp(iz)) dz_ | (7
¢

for large values of the parameter R defined below.

In Eq. (7) the contour C consists of the part of the
real axis between — R and + R, indented at z=x and at
the possible zeros of k(z) at the real axis with semi-
circles with radii e in the upper half of the complex
plane, and a semicircle in the upper half of the complex
plane of radius R and centre at the origin. Using Eq. (3)
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expi) [ expliey) g0y = T2 ~o{%},

0<argz<m. (8)

On using the asymptotic formula (8) we derive the
formula

*
i‘ ln(rl 2= Gn (2)z exp(iz)) dz
" Z-—a, Z2=x
semicircle
1 , 1 dz
=7 h‘(’g"l»w{;} Z-x
semticircle
R 1
=In ig(-1) + O{E—} . (9)

We inserted the asymptotic expansion (8) into the lhs of
(9) although (8) is not valid for real values of z. How-
ever, Eq. (3) shows that exp(iz)zhk(z) is bounded for all
values of argz in the closed interval [0, 7]. Hence, re-
calling that the number of zeros of k(z) in the upper half
of the complex plane is finite, which means using (6b)
that |g(~1)/g(1)1 <1, there exists a positive number M,
independent of R, such that for sufficiently large values
of R

zZ=R eXp(i 4))’

<M,

{ In (I';I z ~ Z": h(z)z exp(iz))

0<¢=<m. (10)

Using (10), we observe that the contributions to (9) from
those parts of the semicircle corresponding to values of
argz lying in the intervals

O<argz <6, w-5<argzs<m,

can be made arbitrarily small by choosing the positive
number § to be small enough. This proves that

1 2 - a*
lim — f In (n z
R-= M1 n 2=~ a".

semicircle

dz
Z

hz)z exp(iz))

=In(ig(-1)).

The argument of the logarithm of the integrand of (7) is
an analytic function which by construction has no zeros
in the upper half of the complex z-plane but possibly on
the real axis. Hence the logarithm is an analytic func-
tion within the domain with boundary C and Cauchy’s
theorem applied to (7), yields the result

(11)

lim I(x,R)=0. (12)
R=»

Letting the radii € of the semicircles tend to zero and
using the property that the possible zeros of (z) at the
real axis gives no contribution to the integral (7), Eqs.
(M, (11), and (12) leads to

: : 1 -
=U= - + — —
1;{1.1° I{(x, R} =0=1n(ig(- 1)) o f_; 1“(5.1 x'—a,
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’ X -

ay
- ln(I';I x_:a_:, h(x)x exp(ix)).

X h(x")x! exp(ix'))x‘,i’_c_ p
(13)

Equating the imaginary parts of Eq. (13) leads to the
desired dispersion relation

L - Mot dx’ _ i .’.C_:‘i:'_
- f.. In | A(x")x’ | periing =—argh(x) - arg(xe I a,

+ % +arg(g(-1)). (14)

RELATIONS BETWEEN POSSIBLE SOLUTIONS
OF THE PHASE RETRIEVAL PROBLEM

Equation (14) reveals that, knowing the location of the
zeros a, of k(2) in the upper half of the complex z-plane,
the phase of #(z) can be calculated from the values of its
modulus along the real axis up to an overall phase con-
stant. This result is similar to the well-known relation
between the modulus and phase of the complex degree
of coherence (Wolf!, Nussenzveig?). Hence the question
now arises whether or not the zeros a, are determined
from the knowledge of |2(x)| along the real axis.

To answer this question we consider the function
n(z)h*(z*). First we observe that if #(z) is an entire
function so is h*(z*), as follows immediately from the
Cauchy—Riemann equations. Hence h(z) 2*(z*) is the
analytical continuation of x(x)k*(x) into the whole com-
plex plane and can be calculated with any desired
tolerance from the values of |k(x)| at a sufficiently
large number of points.™ Let {a,} denote the set of
zeros of g(z) and {b,} denote the set of zeros of g*(z*).
Therefore the set of zeros of k(z) h*(z*) is the union
{a,tU{b,}, which can in principle, be determined from
the knowledge of |k(x)| at the real axis, !*+*2

In order to apply the dispersion relation (2) we should
be able to decide whether a particular zero in the upper
half of the complex plane belongs to the set {a,} of zeros
of h(z) or to the set {b,} of zeros of h*(z*). Unfortunate-
ly, as already observed by Walther, ® it is impossible
to make such a distinction. This can be seen by “flip-
ping” one of the zeros of h(z) about the real axis, which
is equivalent to multiplying it by a so-called Blaschke
factor (z - a¥)/(z - a,). We then obtain a new entire func-
tion, one zero of which has been replaced by its com-
plex conjugate and the value of its modulus along the
real axis has not changed because

x—ar

=1,
x-a,

x real.

Furthermore, it can be shown that multiplying a band
limited function 4(z) by a Blaschke factor transforms it
into another band limited function!® (Walthers). (A proof
different from Walther’s will be given in Theorem 1.)

Observing that the set {b,} of zeros of g(z) are the
complex conjugates of the set {a,} of zeros of g*(z*), it
is clear that multiplication of the original function 4(z)
with a suitable product of Blaschke factors yields a new
band limited function, the zeros of which may be any
finite number of combinations of all those elements of
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the union {a,}U{5,} lying in the upper half of the com-
plex plane. The reason that we allow only a finite num-
ber of combinations is due to our a priori knowledge that
only a finite number of zeros of h(z) are located in the
upper half of the complex plane as is discussed in the
introduction. Moreover, the moduli of all these func-
tions are the same along the real axis. Therefore any
combination of Blaschke factors, generated by all pos-
sible combinations of those elements of the union {a,}
U{bn} which lie in the lower half of the complex plane,
yields, after insertion of these factors into the dis-
persion relation (2), a possible solution for the phase
problem. All the possible band limited functions %,(z),
labeled by the index 1, having the same modulus along
the real axis, and a finite number of zeros in the upper
half of the complex plane, can be represented by the
formula

h(2)= [ explizy) g,(y) v, (15)
where

(e =1 Z—j—‘;— nz) (16)
and

n(z)= [I explizy)g(v)dy. (17)

The product in Eq. (16) is taken over any subset {x, }
containing a finite number of elements of the union
{a,}U{b,} in the lower half of the complex plane.

The following theorem will show that all the functions
g,(y) are related to g(y) by a linear Volterra integral
equation of the second kind.

Theorem 1: Let the function g(y) be defined on the in-
terval -~ 1 <y <+ 1 and suppose that g’(y) exists every-
where in this closed interval and is of bounded variation.
Suppose the complex numbers a, denote the zeros of
the function

W)= [ explizy)g(y) dy, (18)
and let
I(e)= I =25 k(a), (19)

where the index », labels all the finite number of pos-
sible combinations of Blaschke factors. Then the func-
tions k,(z) are band limited, !° i. e., there exist functions
g.(¥) e L? such that

(@)= [ explizy) &y dy, (20)

and g(y) and g,(v) are related by the following Volterra
integral equation of the second kind:

. « e - ar
g =g0)-i 2 (a, —ak) @ “—0
" {n} Gpr — @,
ny# n”
g ’ . Ay — ak
x | el gy dy' +i D (a,—ay) T 2t
-1 n (nl) an’ -0,

mEn
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1

elen @ gy dy'. (21)

<)

In Eq. (21) the index n” labels all the poles in the lower
half of the complex plane of the Blaschke products oc-
curring in (19). Similarly the index n’ labels all the
poles a, in the upper half of the complex plane.

Proof: Consider the two integrals

1 +c . x—a¥
Il(y,c)—gj_c exp(—mc)((lﬂ}] i-a,

y
xf exp(ix'r)g(r)d'r) dx if -1<y<+1,
-1

(22)

1 (¢ , x-ay
1(y, €)= 5= exp(~—iyx){ I -
27 -, (gt X=0

1
X f exp(ixT) g(7) d'r)dx if —1<y<+1,(23)

v

for large values of the real parameter ¢. On adding
Eqgs. (22) and (23) we obtain at once

Ly, c)+ Ly, c)= 51;[ exp(— iyx) hy(x) dx. (24)

Let us close the contour of /; by a semicircle C™ in the
lower half of the complex plane, with radius ¢, and
centered at the origin, and let us close the contour of
I, by a semicircle C* in the upper half of the complex
plane, with radius ¢ and centered at the origin.

Using the asymptotic expansions

fy expliz(-y + 7)) g(1)dT= g__(_y_) + O{L}, n<argz<2m,

iz 22
1

—1<y<+1, (25)

1
f exp[iz(—y+“r)]g(‘r)d-r=_g;ZL)+o§;12—}, O<argz<m,

¥y

—1<y<+1, (26)

that follows from (3), we obtain from (22) and (25), with
the help of the residue theorem, 3

- ¥
pe=af

I =—1 a.—a¥ 1
19,) ZZ':;( " ) () A —a,

.
n#¥n

X /-v explia.(-y + 1)) g(r)dr

-1
1 (&) 1
"o (ice‘o * O{_C_E-})

-1<y<+1,

Xcel®idep, (27

B.J. Hoenders 1722



and

ay ~ ax

—3 g%
Ly, c)=i "Z (a, —a¥) {1"'1[) a, —a,

m#n

x f explia -y + 7)] g(7)dr

y

y) 1 .
+f(—§(ce‘° +O{E§}) ciel®ddp, -1<y<+1,
*

(28)
Hence if ¢ tends to infinity we derive from (27) and (28)

Lim {£,(y, ) + L0y, )}

=gy)-i ;) (a,. ~a%)

. -k v
by Gne = O f explia,.(~y + 7)) g(r)dr
tm) G =, J

"1* n"

+i; (a, —a})

Ay —ar 1 .

X g —=—* explia (- + 7)) g(7) d,
{ny) Gy =8y
nl# n’ y

—1<y<+1, (29)

The relation (24) shows that the left-hand side of (29) is
the Fourier transform of the entire function #,(z). More-
over, defining g(7) to have the value zero if 17| >1 we
derive in a similar way the result

lci‘l'x.lu {11(3’, c)+ 1Ly, o)}

, an - a*
=-i(a, -at) 1 ————

n~ {m} Gup —a,
m*n”

1
x[ explia .(—y + 7)) g(T)d7=0 if y>1,
1

. . Ay —a#
=i (a.,-a*) I ——2

nz' T ) Gy —a,
m#En

1
f explia, (-y +7)]
-1
Xg(Tdr=0 if y<-1. (30)
Hence the Fourier transform of the function #,(2)
vanishes outside the interval |x| <+ 1. Therefore, the
entire function %,(2) can be represented on the real axis

and by, analytical continuation everywhere in the com-
plex plane, by the formula

hy(2)= [ explizy) g(y) dy, (31)
where
&= [ exp(~ixy) h(y)dy. (32)

Combination of (24), (29), and (32) yields
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. a, ~ax
&,¥)=gWy)-i2 (a,. —a}) 1 2—1
n" ()} Gpe — @,

ny#En”

X f explia,.(-y+ 1)) g(7)d7

-1

*
+i (ag —ap) [ T
" ny) @, —a,

m#a’

x f explia, (-y + 7)) g(r)dr. (33)

¥y

APPLICATION TO MICROSCOPY

The preceding calculations have shown that the phase
of a band limited function is not uniquely determined by
its modulus along the real axis. Hence a priori in-
formation has to be used in order to obtain an unam-
biguous relation between the modulus and phase. We
will now show that if we apply the preceding theorems
to microscopy we have such a required a priori informa-
tion, especially about the function g(y) of Eq. (1).

Let us consider image formation by a microscope,
free of aberrations, of a monochromatically illuminated
object.

We know from the preceding analysis that several
field distributions g(y) in the Fraunhofer plane lead to
the same intensity distribution |2(x)| in the Gaussian
image plane. However, we have the a priori information
that, according to (1a), g(y) is band limited and that the
number of zeros of 4(z) located in the upper half of the
complex plane is finite. The band limitation of the un-
perturbed wavefunction g(y) is due to the imaging prop-
erties of the microscope [Eqs. (1a) and (1b)] and is
therefore valid for any object imaged by a microscope
whereas in general the number of zeros of h(z) may be
finite or infinite in the upper half of the complex plane
[e.g. consider the example discussed in the introduc-
tion which shows that if a finite number of the zeros of
h(z) are located in the upper half of the complex plane,
the band limited function *(z*) having the same modulus
as h(z) on the real axis, has an infinite number of zeros
located in the upper half of the complex plane]. Recalling
Eq. (6b),

a,~nm +i In(-g(_—l)) s

2 2(1) (6b)

we deduce that the number of zeros of i(z) located in
the upper half of the complex plane is finite if

lg(-1)I < | g(1)|. Hence, in microscopy, just by mea-
suring the intensity in the end points of the Fraunhofer
plane we can decide whether the condition [g(-1)|

< |g(1)| is valid or not. If | g(~1)| > ig(1)|, we can
still apply the theory of this paper considering the func-
tion 7(- x) instead of 2{x), because using (1b)

H~x)= [ explixy) g(~y)dy.

It is even possible to ensure that the condition | g(-1)|

< | g(1)| is valid a fortiori if, as usual in electron
microscopy, we are dealing with weak objects, i.e., ob-
jects which only slightly perturbs the illuminating plane
wave. Because in this case we can choose the angle of
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incidence of the illuminating wave in such a way that the
maximum of the diffraction spot coincides with the rim
of the diaphragm. It will now be shown that only one
function out of set of all possible distributions in the
Fraunhofer plane is consistent with our a priori knowl-
edge and, moreover, can be easily determined.

According to (34), g(y) is an entire function. There-
fore the rhs of (33) is an entire function, which is equal
to the entire function g,(y) in the interval -1<y<+1.
Hence, by the principle of analytical continuation, Eq.
(33) holds everywhere in the complex plane. Recalling
that the numbers a, and a,. have nonzero imaginary
parts, it is apparent from (33) that in general g,(y)
diverges if y tends to either + « or - «, However, one
and only one of all the possible field distributions
[viz. g(y)] is bounded, as required by (34) and the as-
ymptotic expansion (3), if ¥ tends to either + = or — «.
Inspection of (33) shows that this will be the case if

£(»)=2gv).

Hence just by inspection of the asymptotic behavior of
all the possible field distributions in the Fraunhofer
plane and by using the a priori information of band
limitation and hence boundedness, we can uniquely
determine the field distribution in the Fraunhofer plane.
Inserting this uniquely determined function in (35) yields
the unique solution to the phase retrieval problem.

If a priovi information of g(y) is not available or at
least not in a form which can be treated analytically,
additional information could be obtained by making a
second exposure, for different defocusing. We will now
show that these two measurements are sufficient to
allow us to determine g(y) up to an overall phase. In
one dimension the relation between the image wavefunc-
tion A(x) and the wavefunction g(v) in the Fraunhofer
plane is

+1 2
hk(x)zf exp<ixy+A;§y )g(y)dy, k=1,2, (34)
-1

where Az, is the distance between the defocused ob-
servation plane and the Gaussian image plane.

Inserting all possible combinations of Blaschke fac-
tors into the dispersion relation (3) we obtain from both
measurements (k =1, 2) two sets of functions {r?(y)}
and {h1<2 XY} and by Fourier inversion two sets of func-
tions {g*%(x)} and {g®’(x)}. We know from (34) that only
those functions for which

(1) i

‘%ﬂ%—;— = exp -F (Az, = Az, )2, (35)

are consistent with our a priori knowledge that both ex-
posures are taken with two different values of the
defocusing.

Using (33), condition (35) yields

iAz Ay — a,F
g(y)exz)(—aL 2) -i>(a,.—a*) M ——n
f2 y ; ( n ” ("1’ a"” — a"

ny# n"

X[ly exp(ia,,"(—}“r )+ Z—?;J" Tz) g(r)dr
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+i ; (a, ~ak)

1
a,. —aj . Dz
X 22 explia, (= y +7)+i —5* 18} g(7)dT
p\ia, (- 3
(m) Qe =@y J f
ny i

i A
= (exp 7 (az, - Azz)yz) [g(y) exp(i 722-3 _v2>
b,.—b* Y
-iy (b~ b;‘,‘,,) nmn -z exp(ibn,,(— y+T)
w tm) bp=b, ),
n1¢n"

. Az , b, —b¥
+i G T T 0, = 0) 1 T
f " (n) by =0,

.
mEn

1
. A

Xf exp<zb,,,(—y+7)+tf—22272> g(T)dT], (36)

y
where the numbers a, and b,, denote the zeros of the
functions %,(2) and %,{z) in the upper half of the complex
plane, and the numbers a,. and b, the zeros of the
functions #,(z) and k,(z) in the lower half of the complex
plane.

Equation (36) is identically satisfied if none of the
summations appear, i.e., if g,(v) = g(»). Otherwise,
as in the discussion following Eq. (33), we derive from
Eq. (3) that if y tends to infinity the left-hand side of
Eq. (36) is O{exp(+ c,y)} if y—~ + =, or O{exp(+ c,»)} if
y —~ -, where ¢, =max{Ima,} and ¢,=max{Ima,. },
whereas the right-hand side of Eq. (36) is O{expi(az,
~ AzZ,)y? + ey} if 3 — 0 or O{exp(i(Az, — Az,)y% + )} if
y— -, where ¢, =max{Im(b,.)} and c,=max{Im(p,.)}.
Hence, Eq. (36) only can be satisfied if none of the
summations appear. Therefore, only g(y) satisfies con-
dition (35), and can be determined up to a constant by
the following procedure. Divide each function belonging
to the set of functions {g{*Xy)} by every function be-
longing to the set of functions {g{*’(y)} and test if con-
dition (35) is satisfied. Then one and only one pair of
functions will be found satisfying (37), and these are the
functions which determine the unknown function g(v).
Having determined g{y), which is the main goal of image
reconstruction, h(y) and argh(y) can be calculated. This
provides the required solution to the phase reconstruc-
tion problem.

DISCUSSION

The preceding calculations not only prove the uni-
queness of phase reconstruction of optical images but
also provides an explicit procedure for calculating the
phase. However, the question of stability is not con-
sidered and the procedure might be very sensitive to
noise and errors in measurements. Hence computer
simulated calculations should perhaps be employed to
indicate the feasibility of the procedure or the need of
another algorithm.

Uniqueness was obtained by using a priori informa-
tion about the unperturbed wavefunction g(y) in the
Fraunhofer plane, namely that this wavefunction is band
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limited and that we know that either |g(-1)| < |g(1) or

| g{~ 1)} > 1 g(1)|. Ancther a priori bit of information
which could be used would be the knowledge of the
quotient of two functions calculated from two images
corresponding to two different settings of the defocusing.
Gerchberg and Saxton’ suggested that knowledge of the
modulus of the wavefunction in the Fraunhofer plane
determines uniquely the phases of both this wavefunction
and of the image wavefunction. Computer simulated
calculations sustained their claim. The results of this
paper give additional support to their hypothesis.

Our theory is one dimensional. However, since
micrographs are essentially two dimensional, a two di-
mensional extension of our theory is required. Clearly
such a theory will be more complicated than the one

presented here. For example flipping of zeros expressed

by the use of Blaschke factors will then in general not
apply, as is obvious from Weierstrass’s preparation
theorem, Osgood. 4

These points will be discussed in a future publication.
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A simpler way of finding the Green’s function G(2p,0,0) for the body-centered and face-centered cubic
lattices as the square and product, respectively, of the pth derivatives of two complete elliptic integrals of
the first kind is pointed out. The key relations required for these results are the Clausen’s and Brafman’s
formulas for the body-centered and face-centered cubsic lattices, respectively.

The Green’s functions for the cubic lattices have been
the object of an extensive study for many years. As a
result of such a study it is known that the value of a
Green’s function at an arbitrary site can be expressed
in terms of the values of the function at less general
sites through the use of the recurrence formula for that
function.

Recently it has been shown by Inoue ’*? that an es-
sential role is played by G(2p,0, 0) [see Eq. (1) below]
in evaluating the value of the Green’s function at an ar-
bitrary site for the case of the face-centered cubic (fcc)
and body-centered cubic (bec) lattices. Based on this ob-
servation she has gone through the evaluation of
G(2p, 0,0) for these lattices with a considerable effort.
In the case of the fcc lattices the final result is ex-
pressed in a rather complicated triple sum which in-
volves the F, function of Appell, while that for the bcc
case is expressed in a form which is also fairly cumber-
some. For the fcc case it has been pointed out by the
present author? that the triple sum can be carried out
in closed form to give a simple form of being the product
of the pth derivatives of two complete elliptic integrals
of the first kind.

The purpose of this paper is to present a simpler
alternative procedure for obtaining the result found in
Ref. 3 for the fcc case and also to point out a method by
which the closed general formula for the bee case can
be obtained.

Let us begin with the relevant Green’s functions which
are defined by

catmn=35 [ [

COSx COSy C082

coslx cosmy cosnz dxydz
E_ié_w(xyyy Z)

3

for C =0,

w(x, v, 2) =< cosx cosy + cosy cosz + cosz cosx for C=f,
cosx + cosy + cosz for C=s,
1

where b, f, and s refer to the bee, fce, and sc (simple
cubic) lattices, respectively. In the discussion that
follows we will restrict ourselves to the regions E=1,
E =3, and E =3 for the bee, fce, and sc cases, respec-
tively, where the functions defined by Eq. (1) will all be
real.

When [ =m =n=0 holds, it is well known that G, with
E =1 can be represented as the square of a complete
elliptic integral of the first kind, while G, and G, with
E =3 as the product of two complete elliptic integrals
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of the first kind. In the cases of G, and G,, however,
they can also be reduced to the square of one such inte-
gral due to the degeneracy that results from the special
choice I =m =n=0 for these functions.

Focusing our attention to G(2p, 0, 0) for the reason
stated in the foregoing, we remind ourselves that the
function can be represented in the following form *:

Go(2p,0,0)= 'Wl_zf' dx cos2pxH (k,), (2)
2K(k,)/E, k,=cosx/E for C=b,
H(ke)= | 2K(k,)/(1+ E), Fk,=2(E+cos’x)*/?/(1+E) (3)
for C :f,

k K(k,), k,=2/(E ~ cosx)

where K(k) stands for the complete elliptic integral of
the first kind.

for C=s,

To evaluate the integral in Eq. (2), let us first work
with the bee case. It is readily seen that G,(2p, 0, 0) can
be represented by

1 1

1 & @z 1\n 1
Gy(2p,0,0)= = ,? (2) 2 ('E_?,) ;f dx cos2px cos?™,
0

'l n

(4)

as shown in Ref. 2. The well-known integral in Eq. (4)
can be evaluated as®

7 IT(1 + 2p) 5
2 N(1+n+p)T(1+n-p)’ (5)

and in view of the presence of the factor 1/I(1 +n - p)
in Eq. (5) it is important to realize that the summation
in Eq. (4) starts effectively from n=p. Moreover, the
factor I'(1 +2n) of Eq. (5) may be rewritten

by the use of the duplication formula as I(1 + 2r)
=22T(n+ 1)T(n+ )/¥7 . Then, upon introduction of a
new summation index by n — p —n and use of the identity
(@),.,=(a+p),(a), we see that

G,(20,0,0)= ml—,.—((—p})‘i) |
(6)

This result should be compared with Eq. (3.2) of Ref. 2.
If we combine Clausen’s formula ® with Eq. (10) on p. 111
of Ref. 5 we obtain

r [24,a+b, 22 ] F {Za, 2b;(1—\/1—z)/2]}2
"2 {g+b+3,2a+20f ¥ a+b+3 ’
("

L4p,3+p,1+0; 1/52]
1+p, 1+2p )
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which is, of course, equivalent to Eq. (2.10) of Ref. 2.

Then by applying the result of Eq. (7) for 2a=3+p=2b
to Eq. (5) we finally obtain
G,(2p,0,0)
1 (2)s¥ $+0, 3+ (1-V1-E?)/2|\?
=gwpt\p1 ) 25 1+p ’

If it is desired, one may rewrite the ,F, in Eq. (8) as
the pth derivative of ,F,(3, 3; 1; & 2)_(2/1r)K(ko) with
respect to 2 2=[1~(1- E-Z)I/Z]/z It should be noted that
the result in Eq. (8) is precisely identical to that ob-
tained by Joyce’ by a different method for his function
P(0, 2m, 2n), which coincides with our G,(2p, 0, 0) when
m=0, n=p, and z2=E"!, As already mentioned in Ref.
2, the results of Eq. (8) and Joyce’s for p=0,...,3
produces the same expressions as given in Egs. (3.9)-
(3.12) of Ref. 2. One observes from the expression for
P(0, 2m, 2n) found by Joyce given as the product of two
oF; functions that the degeneracy of the bcc lattice
Green’s function from the product for P(0, 2m, 2nr) to the
square for P(0, 0, 2p) of the ,F, functions takes place as
a direct consequence of our choice m =0,

Returning to the fcc lattice case we recall that the
necessary integration for G/2p, 0, 0) has already been
carried out in Ref. 1. However, we shall see shortly
that carrying the integration all the way through as it

was done in Ref. 1 complicates the matter unnecessarily.

In spite of the fact that the complicated final result ob-
tained in Ref. 1 can actually be summed in closed form
as shown in Ref. 3, it is advisable to cease the evalua-
tion of Ref. 1 at some appropriate stage in order to ob-
tain the desired result in a quicker way. Thus, we stop
our calculation at the stage where after evaluating the
integral in Eq. (2) in terms of Legendre polynomials

P *(£) we express them as multiples of Jacobi poly-
nomials P,_,**+#)(£). By doing so we obtain

12 = (4
G,(2p,0, 0)= 1 ili-E (&2 2’1)’ ;; gl;ﬂ P, (9,9)(5)
(2w ], o
where
t=(E+3)/[E(1 +E)]'/2. (10)

Since it can be shown here again that the summation in
Eq. (9) starts effectively from n=p by essentially the
same reason as for Eq. (4), we introduce a new sum-
mation index by n - p— n. In contrast to Eq. (6) for
G,(2p,0,0), this gives rise to the following expression
for G,(2p,0,0):

1[GV S GHoh(5+p),

<, on |(12g) ma+mre]”

Here we note the following formula due to Brafman®

(11)

(@n(1+a+B~q) P, (e

& (17 a),(1+8), ()"
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_,F, [q,1+a+s—q;(1-t-w)/2]

1+a
g,1+a+p-gq; (1+t—-w)/2]
sz‘[ 1+8 ’

where w = (1 = 2xt + ?)*/? and q.is arbitrary. If we set
x—=t=(E+%)/[E(1+E)}'/? and t={2/(1+ E)F[E(1 + E)]*/?,
we find that

3(1 n-m:%[w(ﬁ)z [EQ+E)]?

(12)

(E-)(1+E}/E - 3)1/2]
(1+Ey ’

(13)

which are identical to 2,2 of Ref. 1. By substituting the
result of Eq. (12) for a =f=p and g=3 + p with the above
values of (1 ¥¢-w)/2 into Eq. (11) we fmally obtain

1 (2)s) 2 3
a+eP\p1 ) 25
x F [%+p, %+p;k-2]

2+ 1 3

1+p
which coincides with the result that has been found
previously in Ref, 3. Naturally, we may express the
.F, functions as the pth derivatives with respect to the
respective variables of more basic ,F, functions, as was
done in Ref. 3.

+p, +p; kf]

(14)

Lastly, let us consider the sc case. Here the pro-
cedure analogous to the foregoing leads to

Cs(20,0,0=% 2 2, Ty (.t \&) (&

Xf dx cos2px cos"x. (15)
0

To evaluate the integral in Eq. (15), we split the range
of integration into [0, 7/2] and {7/2, 7]. The result for
the former follows directly from the same formula as
that used for the bce case. The latter, upon change of
variable x -7 - x, gives (- 1)" times the former, leading
to the result that only #=even contributes to the sum

in Eq. (15). With this in mind we introduce a new sum-
mation index by n— 2n which allows us to express
G(2p,0,0) as

T(m+ T (m+ ) T(2m + 2n+1)
m! T(m+ 1T (2m+ 1)1 +n+p)T(1+n-p)

&) )"

By replacing #n — p — n and rewriting the factors of the
form I'(2k + 1) which appear both in the numerator and
denominator we obtain

G,(2p,0,0)
1 ii m+2)1"(m+n+p+2)I‘(m+n+p+1)
TE? ot mlal [Dim+ DET(n+2p +1)

(16)

X(%Y'" &)
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We note that Eq. (16) above represents a generaliza-
tion of the result for G (0,0, 0) which was found earlier
by a different method. ® We observe also that the direct
rewriting of the right-hand side of Eq. (16) in terms of
the Pochhammer symbol does not identify it with any
one of the functions in the Horn’s list of functions in
two variables, °

It can readily be shown that Eq. (16) may be rewritten
as

12 3Gt P)e(1+ 8 ((2)
Gs(zpy 0, 0): 22PEZP'1 mZ:;O( )WE!(_;)’;)(I()"I—FP) (—E—)

m+s+p, m+1+p; (1/E)2}
A o @

1 G+p1+p), (L)z"
= 22pE2p¢1 ford n! (1 + Zp)" E

ES 1 . 2
x3F2[21n+2+p11 n]’.+1+p,(2/E)]. (18)

Unfortunately, however, neither the right-hand side of
Eq. (17) nor that of (18) seems to be summed up in a
closed form which represents a generalization of
G,(0,0,0) that can be represented by the product of two
K(k) <, F\ (3, £; 1; k?) functions [or the square of a K(k)
function], as was mentioned in the beginning. If the
right-hand side of Eq. (17) or (18) were equal to some
function, such as the F, function, i=1, 2, 3,4, of Appell,
for which there exists a known identity by which it can
be expressed as the type ,F, X,F;, then the situation
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would be rather interesting. However, it seems very
unlikely that such is the case.

Thus, we have to conclude at this stage that no
specially interesting representation for G,(2p, 0, 0) has
been found as yet.

Note added in proof: After completing the present
manuscript we succeeded in evaluating G(2py, 2p,, 2p)
for C=b and s (to be submitted for publication). Ac-
cording to the formula we found it is easy to check that
Eq. (16) for G4(2p,0,0) equals E*(2E) 2 F (3 +p,1 +p;
1+2p,1,1;E?2 E*? E-?), where F, stands for the Lauri-
cella’s function of three variables. [See. P. Appell and
J. Kampé de Fériet, Fonctions hypevgéométriques
et hypersphériques-polynomes d’Hermite (Gauthier-
Villars, Paris, 1926), Chap. VI |

M. Inoue, J. Math, Phys. 15, 704 (1974).

M. Inoue, J, Math, Phys. 16, 809 (1975),

’K. Mano, J. Math, Phys, 15, 2175 (1974).

“This follows, for example, from I. Mannari and C.
Kawabata, Department of Physics, Okayama University,
Research Notes, No, 15, 1964, quoted in T. Morita and T.
Horiguchi, J. Math, Phys, 12, 981 (1971).

See, for example, A. Erdélyi, Ed., Higher Transcendental
Functions McGraw-Hill, New York, 1953), Vol. I, p. 12.
fSee p. 185 of Ref. 5 with the correction that a +2b is to be
replaced by 2a +2b,

'G.S. Joyce, J. Phys. C 1, 1510 (1971).

8A. Erdélyi, Ed., Higher Transcendental Functions McGraw-
Hill, New York, 1955), Vol. I, p. 265.

%S, Katsura, S. Inawashiro, and Y. Abe, J. Math, Phys. 12,
895 (1971).

10page 224 of Ref. 5.

Koichi Mano 1728



Canonical transformations and path integrals

Robert Fanelli

Brooklyn College of the City University of New York, Brooklyn, New York 11210

(Received 5 February 1975)

A limited class of canonical transformations is introduced into the Lagrangian path integral method of
quantization. Path integral quantization in different representations is discussed and a simple example is

given.

I. INTRODUCTION

The path integral method of quantization introduced
by Feynman' has always seemed to suffer from two
limitations, first that it can only be implemented for
Lagrangians quadratic in the generalized velocity and
second that canonical transformations cannot naturally
be incorporated into the scheme. Although it is a simple
matter, for example, to formally introduce the momen-
tum representation by means of the Fourier transform,
justifying the identification of the argument of the trans-
formed wavefunction with the momentum is not so easy.

In this article we discuss how at least a limited class
of canonical transformations can be defined and carried
out in the context of path integral quantization. The
above-mentioned identification of the canonical momen-
tum is then easily done. Furthermore, path integral
quantization can then be carried out in representations
other than the coordinate representation. For
Lagrangians that are not quadratic in the velocities
this allows propagators to be found indirectly.

We restrict ourselves here to the Lagrangian path
integral method rather than the canonical approach in-
volving integration over paths in phase space.?

The “ordering” problem, that is, the reflection of the
operator ordering ambiguity of canonical quantization by
corresponding ambiguities in path integral quantization,
is not 2 major concern of this work although it has been
discussed in several recent papers. It will be mentioned
only briefly in the last section.

As a preliminary matter, the first section contains
a short discussion of the relafionship of classical canon-
ical transformations to Hamilton’s principle. In the
second section canonical transformations of the wave-
function are defined and interpreted by means of a ver-
sion of Dirac’s classical limit argument.3 Path integral
quantization in different representations is discussed in
the third section, and a simple example is presented.

2. CLASSICAL CANONICAL TRANSFORMATIONS

We wish to define canonical transformations directly
in terms of Hamilton’s principle for a classical system.
Thus given the variational principle

5>/;:fL(q’é’t)dt=0, (1)

where g refers to a set of m coordinates, we wish to
transform to new coordinates Q(g, ¢,f) with a variational
principle
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6 [, L'Q,Q,1)dt=0 @)

50 that both give the same extremum path. The varia-
tions about the extremum path are different since dif-
ferent generalized coordinates are held fixed at the end
points in each case. Thus L’ # L and we write

L'(Q;Q,t)zL(qséyt)_ﬂqa&,Q’é’t)- (3)

The new variation then yields

S-S {460 - )]

ag, ~dt \83,) " aq, dt \3g,
_[2f _ 4 (3f
[aQi dat (aQi)] 6Qi}dt
i__ai) ]’f=
+[(aé‘ %) 0a) =0, (2)

and a sufficient but not necessary condition (since the
64, are not independent of the 5@ ,) for the new variation
to give the same extremum path as the old is

oL _ 9F

=, 5
%, = 3, (5)

d
=3 Fa,Q.0,

By similarly considering the old variation we obtain

oL __ oF
20 20, ®

These conditions define the usual canonical trans~
formation with our F as the F, generating function, and
the new action integral is related to the old by

Liradna=[7 Q& 0at+[Fq,@0f . ()

If we are given F(q,@,1), we can deduce Q(g,q,t) from
(5) and the old Lagrangian in the standard fashion.

3. TRANSFORMATIONS OF THE PATH INTEGRAL

Since the change in the action integral due to a canon-
ical transformation is equal to the difference between
the end point values of the generating function, we
might, in quantum mechanics, represent the modifica~
tion of a Feynman path integral in a corresponding man-
ner, That is, if we represent the time evolution of a
wavefunction from ¢, to ¢, in the ¢ representation in
terms of the usual propagator

. ¢
w(q,,t,)=f exp(,ii [of Ldt) Dq(go, t,) d™qy, (8)
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where g, =g¢(t,) etc., then the time evolution in the @
representation would be given by

x(Q,,t,)=f exp (% [—F(qf,Q,,t,)+ftf Lig,q,t)at

to

+F(qo,Qo,to)]> Dqx(Qo, to) d_‘""{;?&

:/ eXp(%i F(q,,Qf,tf)) fem(%f Ldt) Da

3 dm m m
Xexp(% Flgq, Qoato)) X(Qo:to) _Aﬂ d_A_CZg 9

Ar
9
leading us to postulate
x(Q,t)=/ eXp(%l F(q,Q,t)) ¥lg, 1) d—;;g,
Wat= [ exo(F Fla@,n) x@n L2 . 10)
We must then have
z = ol arQ
f eXP(ﬁ F(q,Q,t)) exp( 7 Fla ,Q,t)> ia
=5'm (g - ¢’). (1)

We have restricted ourselves to coordinates having con-
tinuous ranges of possible values. Requirement (11) can
be satisfied if we restrict F(g,@,t) to be of the form

Fq,Q,1)
=a,9,9, +glg)+GQ), A=A’= [(27Th')"'/deta”]1/2°
12)

Just as the Lagrangian is restricted to forms quadratic
in the generalized velocity for the path integral formu-
lation, the generating functions must be restricted in
form for the incorporation of canonical transformations
into the method to be possible,

We can interpret the above in the spirit of the
Feynman approach in the following fashion. In classical
probability theory we can say that, if two variables x
and y are statistically related, the probability for y to
have the value y,, P(y,), can be written as

P(y) =1 Plx,) Po(yy, %), (13)
where P(x,) is the probability that x has the value x, and
P_(y,,x,) is the conditional probability that y has the
value y, if x has the value x,. In quantum mechanics we
must use amplitudes so that

P(y)= | A(yl)lz;

Aly) =27 Alx) A (31,%,). (14)

Thus we are postulating that the conditional probability
amplitude for @ to have the value @, if g has the value
q, is essentially

(1/A) expl(-i/%) Flq;,Q,,1)]. (15)

We now wish to establish the correspondence between
the quantum mechanical variables, Q;, defined by (10),
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and the classical transformed coordinates Q,(g,¢,?).
We will do this by transforming the Feynman propagator
by (10) and repeating Dirac’s well-known classical limit
argument to obtain (5). If the original propagator is

.t
K(q,,tf,qo,to):f exp(%f Ldt) Dq,
t

]

(16)

the transformed propagator is
1 i k%
K(nytf$Q0,to):Z exp % "F(qf’nytf)+ Lat
to

+F(qo, Qo,t0)>] Dq quf quo.
amn

We can express this as a new path integral Dg, where
the g, are varied at the end points as well as along the
path. So

K(Qs»ts, Qo t)
=(1/4) [ exp{ /M)~ Flq,,Q,,t,)+ [ Lat
+ Flgo, Qo ta) ]} Dgq. (18)

Now, if we let #Z become very small, we must get phase
cancellation of the integrand for all paths except those
in the neighborhood of the path that makes

[ LG, 4,0 dt = Flay, @, ) + Flgo, Qo o) (19)
an extremum, This means that
5[ [,7 Ldt-Flg, Q1)+ Flgy, @, )] =0, (20)

where the 6 variation includes variation of the g, at the
end points. The variation (20) leads immediately to (5)
at times {, and £, and to the usual Lagrange equations
for the ¢,. In a similar manner consideration of the in-
verse transformation of the propagator leads to (6).

Although the class of transformations we can treat in
the above manner is restricted, it does include two im-
portant cases, namely the transformation to the mo-
mentum representation and the infinitesimal time trans-
lation generated by the action Ldtf. The first is obvious
and corresponds to

oL

F(q’Q’t):qu,-y Qi:PiZET'- (21)
q;
The second is given by
_tr(9-g € Qj)
F(q,Q,t)—zL( - ,Q>+2L( —.q (22)

for Cartesian coordinates.* Equation (12) leads directly
to the condition that L be quadratic in the velocity.

4. PATH INTEGRALS IN DIFFERENT
REPRESENTATIONS

We now turn to another aspect of our discussion. It is
easy to find examples of canonical transformations of
the form (12) which connect Lagrangians which are not
quadratic in the velocity with Lagrangians simpler in
form. While the path integral quantization method can-
not be applied directly to the former, if a connecting
canonical transformation exists the simple Lagrangian
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can be used in the quantization procedure and the propa-
gator corresponding to the nonquadratic Lagrangian ob-
tained by use of the corresponding unitary transforma-
tion given by (10). One could thus obtain, in an indirect
fashion, propagators which are not of the Feynman form
{16) and which correspond to Lagrangians which are not
quadratic in the velocity.

We now give a simple illustration of this. Consider
a Lagrangian of the form

Lig,q,0=w(@ -V,

where W is an even but not quadratic function of the m
coordinates ¢,. This Lagrangian is simple enough to
avoid the ordering problem, which we will discuss
further on.

(23)

The canonical transformation which we consider is
that which gives the momentum representation, that is,

F(q,P,t)=q;Pp (24)
oW
pg = 5:?—; B (25)
The new Lagrangian is then
L'(p,p,q,t)==ladbi + T(p) + V(q)], (26)

T(p)=p,q4,-W.

We note that the ¢q; have been carried over as auxiliary
variables, characteristic of Lagrangians giving first
order equations of motion.

To better understand the role of the g, in the path
integral method, we consider the classical variational
principle in some detail. The variation of the classical
action is

T o) )
5§ =- " [(Pi““aqi 8q; + aP,-_qi op;| dt

- [%51’;]:{,- (27)

If we seek the classical trajectory between specified
initial and final momenta, the variation of the p, at the
end points must vanish. However, as we shall see, the
variation of the ¢, cannot vanish at the end points. Since
(27) contains no end point term involving &¢q,, we can
immediately write down the Lagrange equations which
are

28)

Specifying the p, at the end points determines the so-
lution to these equations including the ¢,(f). Thus the g,
cannot be independently specified at the end points and
the correct classical trajectory can only be obtained by
varying the ¢, at the end points as well as along the path.

When we define the propagator as a sum over classi-
cal histories, we thus consider it as the amplitude that
the system will go from an initial point to a final point
in the space of the p,’s only, including paths going from
all possible initial ¢,’s to all final ones. With that un~
derstanding, we write the propagator as
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K(pf’ tf’Po, to)
=[ exp{%i /::f la.b, +T(1>)+V(q)]dt} DqDp.
(29)

When we break the time interval into infinitesimal seg-
ments in the usual fashion to evaluate the propagator,
we cannot approximate the action by its classical value
for an arbitrary path because of (28). Instead, we write
the action in the following form

S[plt +e),t +e,p(t), ¢
= [ g, dp,+ T(p)at +V(g) dt]

=g, [p,t+e) =p, () +[T(p)+V(@)]e, (30)

where g, and T are some average values for the time
interval which we leave unspecified for the moment.
The propagator is then

K(psrts, 00 )
» N=1

=1 | ew(FEZ amippn-pe

€=0 ﬁ n=0

— N-1 mo{n) m
+€[T(p(nbl)’p(n))+v(a(n))]) I dmptm arq’” ii__‘ln,
=0 A A

1)

where pf =p,{t,),p{" =p,(t,), etc. It is sufficient for
our purposes to consider just the propagator for an in-
finitesimal time interval which is

K(p,t+e,p’,t)
= [ exp{-i/m)g,(p, - p}) +eT(p,p") +eV(@ ]} dg /A
= [ expl(- /1) q,p,] expi—-i/BT(p,p') + V(@]e}

x expl (i/7) q,p}]dg/A. (32)

Choosing T =3[T(p) + T(p’)] and noting that 7 is now a
dummy variable, we get

K(p,t+e,p’,t)
= exp[(~ie/2k) T(p)] [ expl(~i/m) G,p,) exp| - ie/m)V ()]
x expl(i/7) q,p}1(dg/ @nim] expl(=ie/2) T(p)],
(33)
where unitarity dictates that A= (2q%)".

Returning to the coordinate representation via (10),
which, of course, is now just the Fourier transform,
we obtain

K(g,t+e,q',1)
= [ expl (/) p,q,] expl(~ ie/2m) T(p)] expl (- i/m) p,7,]
X exp[(- ie/7) V(g)] expl(i/k) G p;) expl (- ie/27) T ("))
x expl(i/7) plq,]dmpd™p'd™g/ Q@uh)*™.
(34)

This propagator is not of the Feynman form and can
only be put in that form when T(p) is a quadratic func-
tion. In that case, the integrations in (34) can easily be
done, and the procedure is straightforward.
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We note here that since, in the above calculation,
the action for the infinitesimal time interval was not
approximated by its classical value (indeed, could not
be), the results (33) and (34) could be obtained even for
the free particle case, i.e., V(g) =0, where a classi-
cal action does not in general exist.® What is implied
here is that the notion of an integral over paths can be
implemented even in cases where there is no path that
makes the action an extremum. For such cases, resolu-
tion of the ordering ambiguity by postulating that the
action must be approximated by its classical value® is
impossible. The ambiguities that occur when the above
momentum space quantization procedure is applied to
Lagrangians more general than (23) correspond to those
characteristic of the canonical quantization procedure.
This can be seen by noting the formal resemblance of
the propagator (29) to the canonical phase space path
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integral which is often used.?'” The analysis of Cohen’
then essentially applies here also.
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A variational principle for the Boltzmann equation for hot

electrons in a semiconductor

W. A. Schlup
IBM Ziirich Research Laboratory, 8803 Riischlikon, Switzerland

(Received 10 September 1974; revised manuscript received 4 February 1975)

It is shown that the well-known Kohler variational principle for the small electric-field solution of the
Boltzmann equation can be extended to arbitrary fields, if a generalization of Hamilton’s principle proposed

by Djukic and Vujanovic is used.

Variational principles determine the solution of a
problem given by an equation by extremumizing an action
function S = f d§? / with certain conditions on the bound-
aries, which make partially integrated terms vanish.
The infinitesimal volume d2 goes over all independent
variables of the equation; in the general case considered
here it is dR =dtd®k d®x.

Kohler’s variational principle'~? deals with the first-
order solution ¢, of the Boltzmann equation for small
electric fields F,

g,‘:fdsk'(W“, Sr = Wi &), (1)

where g, =F(8h,/0k), h,=C exp(- E,/T) is the Maxwell—
Boltzmann distribution and the transition-rate product
Wy hy is symmetric. Extensions for a magnetic field
and for frequency-dependent conductivity - are known
(for a Lagrangian formulation see the Appendix). Upper
and lower bounds for the transport coefficients can be
found for Hermitian’ and non-Hermitian® collision
operators.

By using a power-series expansion with respect to the
electric field the variational solution of the Boltzmann
equation has been formulated® and discussed for the
lowest field-dependent term in the conductivity !° by
Adawi.

It is not possible to find a classical Lagrangian (CL)
for the hot-electron Boltzmann equation, since it is of
first order in 9/3¢ for the transient case and also in
3/9k for the stationary case. For first-order equations,
there exist no Lagrangians, or the calculus of variations
generates even-order equations only. !

There are limit Lagrangians (LL), which produce odd-
order equations, e.g., for x+x=0, no Cl exist, but
L, (x,%,t)=(ux?/2 + x2/2) - exp(- t/p) gives the upper
equation in the limit 1 — 0. It is highly probable that
there exists no LL, neither for the time-dependent nor
for the stationary hot-electron problem [see remark
after Eq. (14)].

Djukic and Vujanovic ' proposed a formal method,
which allows to find Lagrangians, hereafter shortly
named DV Lagrangians (DVL) for a much wider class of
equations. The method is especially adapted for first-
order equations, or second-order equations, which in-
clude (complicated) first-order terms (damping terms)
like the Navier—Stokes equations, for which no Cl or LL
is known.

The DVL for a hot-electron system is (a, =1, 2, 3)
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[~ 5 [wo(t METRES:

+ 2 Ve L) + [ e 1 - ws?)

(2)

2 b K\ F (2{()

The first derivatives are

oL

f
3(af/ot) h Jolts A) 572 3)
oL _1 of
Waary hy % el g 4)
3 1 ay
oA R e T 5)

The functional derivative neglecting all terms with f
derivatives 6(S,,.,)/6f (=3 / /of for Lagrangians without
integrals) is

5(S
(a Ji’”’) — ([ d% W fo -

If we assume ¢'1(k’ A)= {f/’u(kn XY, dalla, X}, diglks, )]
and analogously §,(x, 1) = [me(xp ), Pan(25, 1), YaglXg, )\)]s
their derivatives become in the limit

nS). (6)

lim el ) _ 5, lim Slaal®A) 5,5

A0 a A=0 Xg (7
since according to Djukic and Vujanovic the auxiliary
functions y have the properties

1)‘i‘xg) ez, A)=0, 11m ——(z A)=1. (8)
The second derivatives therefore become in the limit
A —=0:

d oL 1 3f

W 3Gran Tk o (%)
d 3 af

Lim - & 36~ F 3k (10)
d a[ 1 of

W & S —h e (11)

Finally, the Euler—Lagrange equation in the limit x —0
yields
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af +F gﬁ af = [ d°R' Wy fo - VoS,
where v=[dk’ Wx'x is the total relaxation frequency.
This is the hot-electron Boltzmann equation. A DV
Lagrangian for the space-independent equation is ob-
tained formally by putting ¢,(x,2)=0. A DVL for the
stationary solution is similarly found by putting #,(¢, *)
=0 and $,(x,1) =0, In the zero-field case F =0 a limit
Lagrangian can be constructed:

Eox  x  x A% A \2
=lexpl— + 2+ + =2 +=2)/2 = —
L [ p(:’j Y1 Y2 Y3 hk] [B<at) n Uu<ax1)
of \? f \?
+7e Uzt(axz) T vst(axs )

+ f A%k Wy fof e — kaz].

(12)

(13)

By standard differentiation the Euler—Lagrange equation
becomes

o of . of ol Cid 2y

=5 t -ty = v +y, 0. +y,v
Batz ot k ax 11kax2 22kaZ Sakaa

= [ A% Wy fo =S, (14)

which in the limit 8 —~ 0, ¥, v,, v,— 0 goes into the
Boltzmann equation (12) with F=0. This procedure is
not possible for F # 0, since an additional factor
exp(F *k/a) would be necessary in order to produce
F(of/0Kk) in the limit o — 0. But such a k-dependent
factor would destroy the symmetry of the W, /h, and
generate a field-dependent collision term in the corre-
sponding Euler—Lagrange equation.

It is easy to show that for a certain class of
Lagrangians the variational method of Djukic and
Vujanovic coincides with the classical calculus of varia-
tions. ! In other words, there are equations for which
it is possible to f1nd DVL’s and also LL’s (e.g., the
heat equation #="%) or even CL’s (e.g., the damped-
wave equation pii + i =u).

Other variational methods for transport problems have
been discussed by Cercignani!? for the linearized
Boltzmann equation in kinetic theory (no field) and by
Pomraning and Clark'® for the monoenergetic neutron-
transport equation. Lagrangians (LL’s for the transient
and CL’s for steady state) are also known for the dif-
fusion equation and the (formally equivalent) Fokker—
Planck equation. A very special variational method has
been developed by Biot!® for the heat-transport equation,
which does not make use of any limits p— 0 (LL’s) or
A —0 (DVL’s) in order to produce the first-order term
in time. I would be interesting to find out whether other
first-order transport equations can also be treated with
Biot’s method.

APPENDIX
In a magnetic field B the Boltzmann equation is
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of d ? ,
5-t-+(F+kaB)5£+v,5£=fd3k W fo —Wnf. (A1)

For a small periodically space- and time-dependent
electric field F «exp(igx — iwt) the solution f, =k, + ¢,
X exp(igx ~ iwt) follows from

)
fd“k’W Oy — vy + BV X ¢+z(w -qv,)o = F%}ll: .

(A2)
The Hermitian adjoint = ¢* follows from
oy Ohx
]dsk'W Pp ~ VP — By X Tk —i(w=-qu)y=F — K
(A3)

Equations (A2) and (A3)* are the Euler—Lagrange equa-
tions of the Lagrangian

1
L:K[QD:‘(] A%k Wy dp — vy ¢, + BV, X 4"‘

ok
Fa—kk(% +<p=;)]+ c.c. (A4)

Kohler's variational principle in Lagrangian form is:
Extremumize S with respect to the complex
functions ¢,, ¥;:

S= [ d% [ (¢y I1)s

8S= [ d%k ([ dxdby+ [¥ SUF)=0.

+iw= qvg)¢x )_

Then / , =0 implies Eq. (A2) and (/ ¢)*=0 implies
(A3).
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On Ursell’s combinatorial problem
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A combinatorial problem considered by H. D. Ursell in his seminal paper on cluster theory [Proc. Camb.
Phil. Soc. 23, 685 (1927)] is studied. Ursell’s analysis, which is not rigorous, is described by Fowler and
Guggenheim as being far from simple. In this paper we arrive at Ursell’s result using a method which is

straightforward, yet completely rigorous.

INTRODUCTION

In 1927, H.D. Ursell! wrote a paper which came to be
accepted as a seminal paper in cluster theoretic meth-
ods in statistical mechanics.?

In Ursell’s paper, combinatorial problems associated
with the evaluation of the phase integral are set up,
leading to polynomials of large degree (comparable with
Avogadro’s number) which are to be summed. The sim-
plest problem of this sort treated by Ursell (and for the
present we consider only this problem) was considered
earlier by others, notably Jeans® and Fowler.” These
earlier analyses are however described by Fowler and
Guggenheim® as being “fallacious,” and these latter
authors attribute the correct solution to Ursell.

Ursell’s method of summing the polynomial, or rather
of finding an appropriate asymptotic representation of
the sum, is to show first that the function represented
by the series satisfies a certain linear, second order
differential equation, and then to find an appropriate ap-
proximate solution of this differential equation.

Fowler and Guggenheim® describe Ursell’s as being
“far from simple.” This is probably due to the fact that
the analysis includes steps which are not justified. We
can identify some of these questionable steps by noting
that Ursell’s procedure is to treat the problem as a
perturbation problem in the small parameter e =1/N,
where N is the number of systems in the statistical
mechanical model. Now, when Ursell neglects certain
terms in the differential equation because 1/N is small,
one of the terms so eliminated is the second derivative,
This is one of the best known means of arriving at a
singular perturbation problem.® The usual circumstance
is that the original second order differential equation
involves two auxiliary conditions, usually boundary or
initial conditions, whereas the first order differential
equation can require only one auxiliary condition. Now,
Ursell’s differential equation has a singularity at the
origin, the nature of which is such that precisely one
solution is analytic and satisfies one initial condition;
any second initial condition is necessarily redundant.
Hence the omission of the second derivative in the pres-
ent problem does not seem to eliminate an auxiliary
condition. Nevertheless, the known complications that
arise in the usual case when the highest derivative is
dropped should move us to look for justification for
doing so in Ursell’s problem.

The referee of the present paper has shown very nice-
ly how the eikonal approximation can be used to clarify
the reason why Ursell’s original neglect of the second
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derivative term did not prevent his obtaining a correct
answer. This approach, although not completely rigor-
ous, clarifies Ursell’s derivation substantially.

Professor A. Erdélyi has kindly communicated to me
that Ursell’s polynomial, Eq. (1), can, after some
changes of variable, be expressed as a Hermite poly-
nomial, and known asymptotic representations can be
used to obtain rigorous justification for Ursell’s final
answer. This approach is perhaps less than satisfying
since it gives little insight into the fundamental nature
of Ursell’s equation, unless of course one feels such
insight can be gained by going through the extremely
intricate derivation of the asymptotic expansions
needed.?°

The advantages of the present analysis are that it
proceeds directly from Ursell’s differential equation,
it is short and straightforward, and yet it is completely
rigorous. In addition to these features, the fact that the
differential equation happens to be linear is not ex-
ploited. This suggests that our approach has wider ap-
plication for the study of differential equations. Indeed,
from a fundamental point of view, our method is more
in the spirit of some recent work on nonlinear
problems,!!

We return to the remarks from the referee and
Erdeélyi after our analysis, to which we now turn.

ANALYSIS
The polynomial obtained by Ursell!s® is
X2 N1

xr
Fyb)= 2 Srv—aon @

In Eq. (1), x is negative and, being related to the
volume of influence of a single system and to the density
of the assembly, is regarded as small. N is the number
of such systems in the assembly. Thus, for the statis-
tical mechanical application, one is interested in the be-
havior of F,(x) as N— e, with x small but fixed.

As mentioned in the Introduction, Jeans® and Fowler’
had earlier approximated Eq. (1). They did this by
keeping only the first two terms,

N1 x
FN(x)zl'F(]V—_z)-—!- ]T/'
=1+(N-1)x. 2)

If now N is large but is regarded as fixed, and x, in-
stead of being small but fixed is permitted to approach
zero, one obtains from (2) the asymptotic estimate
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(1/N)InFy(x)= 1/ N)(N=1) x
=x, (3)

However, as Ursell pointed out, the ratio of the
neglected third term to the second term retained in (2)
is

:(1-2/N)(N-3)x, )

which, for fixed x and N—= (i,e., for the physically
relevant case) forces one to admit that the third term
cannot be ignored. Ursell then proceeds to derive an
approximate solution of Eq. (1) which leads, surprising-
ly, to the same estimate, Eq. (3).

Our point of departure is the differential equa-
tion Ursell showed is satisfied by F,. It can be easily
verified that F, satisfies

xzt(li_xf“g(l\f+4Nx 6x) -N(N~1)F, x<0, (5)
with initial conditions

F(0)=1, (6)

ar =N-1, (7

ax | a0
As was stated in the Introduction, Eq. (7) can be re-

garded as redundant. Letting e =1/N, we arrive at

e lE Iy grbnd) - (-0 F, x<0, ()
F)=1, 9)
ar) - _l=¢ (10)
dx x=0 €
Ursell’s analysis leads to (see Fowler and
Guggenheim,® Eq. 703,11)
F(x,N)={1 +x + 0(*)}", (1)

whose behavior is very different from the approxima-
tion described by Eq. (2).

Our analysis, which we now begin, will show that
Ursell’s result (11) is correct in a sense to be made
precise.

We begin by letting F(x;e) denote the solution of Egs.
(8), (9), (10), and define g(x;e) as follows:

F(x;e) = expl(1 - e)x/e] [1 + glx;e)]. (12)

We find that g{x;e) must satisfy the following differ-
ential equation and boundary conditions:

sz 4x2€2<6£[1+x(4 6¢) - 8x2(1 —¢)]
+(_41; ) (1—6)[ax(4—66)—014x2(1-5)]>’ x<0,
(13)
g(0)=0, (14)
dg| _
as x-o_o’ (15)

where ¢ is an arbitrary constant exceeding unity. Its
purpose will be explained shortly.
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In what follows, we shall always assume N is an
integer at least as large as 2, and hence e =1/N will
be a number in the interval (0,3]. Eventually, of
course, we are interested in ¢ being small.

Proposition 1: For all sufficiently small | x|, depend-
ing on @ >1 but independent of e =1/N,
glese) 2 =1 + expl(1 - &x/ea], x<0. (16)

Proof: Choose |x,| small enough to ensure that
xe [x,,0) implies

1+x(4—6€)=8x%(1 —¢) >3, 17)
ax(4-6¢)~adx®(1 —€)> 3, (18)
and
1/16:2>1. (19)
Note that x, can be chosen independently of €.
For convenience, let
f,(x;e)=—1+exp[(1 -e)x/eal. (20)

Next, assume tentatively that there exists a point ¥,
x, €%, <0, where

g(%,;€) <—1+expl(l - e)x,/ca]
= fo((ia;e)‘

Without loss of generality, we can assume that, at

(21)

%,, & has a slope exceeding that of f,. That is,
d__g dfa (22)
dx ; dx ;Ol

This follows from the fact that the boundary conditions
on g together with (21) force the graph of g to cross that
of f,. One can then apply the mean value theorem to find

%,, and indeed such considerations allow us to assume
that
1+g(%,)>0. (23)
Combining (21) and (22), we have
dg dfa 1-¢
= + — |1+
e S R ANy (AT
(24)
Then, using (17), (18), (22), (23), we have, at ¥,
¢ Bl1+xi4-60) -8 -e)]
l+g) £ dg
+ — (1 -¢)ax(d—-6¢)—adx®(1 -¢)]> 3 @
_ (1 +g)(1 —G) (25)
40 :
By combining (25) with (24), and using (19), Eq. (13)
yields
d’g| 1 (edg| _edg )
de % 4€2Ez 2 dx 7 4 dx H
o o
1dg 26)
z € dx |z ¢

We now restrict ourselves to the interval to the right
of %,. Certainly (24) and continuity imply
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e 1N 1 gtn]>0

dx a @)

is valid on some interval to the right of ¥,. Further-
more, so long as (27) holds, we shall have

d’g 1dg 28
d ¢ dx (26)
and
dg
= 29
7. > 0. (29)
Let us therefore study the behavior of
dg (1-¢)
= . —=]1+ . 30
€ =g 1tel) (30)
So long as (30) is nonnegative, we shall have
dg 1-¢
€y~ o [L+aW]
(%] o[ %2 )
—(ed . ej; ae at
- 4 o
- — x dj
- (1+g(xa)+[?a at dg)
*1dg .. _1-¢ dg )
;(ej’;ae Ed& a Js, did£
+(ed+g -1——5[14- (,?)])
s, ~a 4EN
o—-1+¢ * dg
> = /5; dt dt
>0. (31)

[This last step uses (29) and o >1,]
Thus, so long as the weak inequality (27) holds, the
strict inequality

e _1fl14gt)>0 32)

dx
holds, which, of course, means (32) holds for all x to
the right of ¥, in particular at x=0. But the boundary
conditions (14) and (15) force (32) to fail at x=0, and we
then have the desired contradiction to our tentative as-
sumption. This completes the proof.

Proposition 2: For all sufficiently small | x|, depend-
ing on a >1 but independent of e=1/N,

glx;e)< 0. 33)

Proof: First choose x, as in Proposition 1. We then
assume tentatively that there exists a point, denoted

X, Such that x, <%, <0 and

g(x,;e) >0, (34)

In fact, because of the boundary condition g(0)=0,
we may in addition assume ¥, is chosen such that

a2l < 35
arls, = (35)
We then see that Eq. (13) yields
d’g
o | <0, (36)
1737 J. Math. Phys., Vol. 16, No. 9, September 1975

and clearly dg/dx will remain negative as x increases
to the right of x, at least so long as g=> —1. Hence
either x=0 is reached before g{x) reaches —1, in which
case the boundary condition (15) would be inconsistent
with (35), or else there is some x,, x, <%, <0, where
glx,)=-1, which is impossible because of Proposition
1. Hence (34) is an untenable assumption and our proof
is finished.

From (12), (16), (33), we have immediately

Proposition 3: For all sufficiently small | x| depend-
ing on o >1 but independent of e =1/N we have

{exp[l —€) x(1 +1/a)[}*/* < F(x;e) < {exp[l —€) x[}*/ <.
(37)
We discuss the application of (37) in the following
section.

DISCUSSION

We can now give a completely rigorous interpretation
of Ursell’s result, Eq. (11).

Proposition 4: F(x; N}/ ¥ =exp[(1 - 1/N)x]+ 0(x2),

uniformly in N. 38)
Proof: From (37) we find
| F(x;€)* - exp[(1 ~€) x]|
< exp[(1 - ) x1{L = exp[l —¢) x/a]} (39)
<-[(l-e)/alx=-[(1 -e)/aPa®—---, (40)
uniformly ine.
Dividing by x?, x#0, yields
lF(x;e)E - exp[(1 —€) x]
x?
< -1?_;‘- +(1—;§)2+o(|x|), uniformly in e, (41)

We note that the left side of (41) is independent of o ,
This suggests we attempt to make use of a which up
until now has been restricted only by @ >1. To do this,
we refer to (18), which, for |x| <1, will hold for some
fixed value of |ax|. And for such a fixed value of |ax]|,
we see that as | x| — 0, a increases without bound.

Using the above observations, we see that the right-
hand side of (41) is bounded as x — 0, and the bound can
be chosen independent of ¢. In the usual convention, this
says

F(x;e)* =exp[(l ~¢) x] + O(x?) uniformly ine. (42)
To obtain (38) of the proposition, we set e =1/N.
We now observe that (38) implies
Fle; NM¥=1+(1-=1/N)x+0(?) (43)
=1+4x-x/N+0(?, 44)

Because this result is uniformly valid in N, if x has
been chosen we may certainly choose N sufficiently
large to make x/N negligible, and, with this understand-
ing, write (44) as

Fle; N}/ ¥ =1 +x+0K?) (45)
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and, with the same understanding,
Flo; N ={l +x + 02}, (46)
This is our interpretation of Ursell’s result.

The statistical mechanical application requires an
estimate for 1/NInF, and can easily be obtained direct~
ly from (37). Thus, taking the logarithm of each mem-
ber of (37) yields

———(IG'E)x(1+al)s1nF(x;N)<(L_€—e)‘£- @7

Multiplying by e =1/N and substracting x yields

X X

x 1 L x —_— i
~ 2 F R s 7 R M - as - S = |5 48)
so that
’(I/N)lnF(x;N)—x <’ L'+ _1', (49)
x a N

Recalling that when x is small @ can be large, we
see that if x is small and N is large, the fractional
error will be small. That is, in the above sense,

(1/N)InF(x,N)=x, (50)

and (49) gives us precise knowledge of just how this
approximation depends on & and on N, and thereby, via
the dependence of @ on x, how the approximation de-
pends on x and N, the parameters of physical interest.

We return now to the suggestions from the referee
and from Professor Erdélyi. The former suggests mak-
ing the following eikonal-type substitution into Eq. (8):

F=exp[(l/e)A, +A, +ed, ++--]. (51)
Then

4x2(AL)2 ~ (1 +4x) A} +1=0. (52)
The appropriate root is

Al=(1+4x -VT+8x)/84%, (53)
leading to a solution which for small x is

Age x =242, (54)

This leads immediately to Ursell’s result.
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A further point made by the referee is that the ap-
propriate root of Eq. (52) is close to that obtained by
neglecting the (A%)? term, whose origin is the second
derivative of Eq. (8), and this to some extent at least
justifies Ursell’s omission of the second derivative.

Professor Erdélyi points out that Ursell’s solution
can be represented using a Hermite polynomial. Using
the notation of Olver, I he gives

Fylx)= (— ;‘—,)N/ZHN(% (— §>1/2>

- N \"¥/2 N1l -N
—(47) U(_E’Z’Tx)° (55)

Olver!® (on p. 403) gives an asymptotic form for
Hermite polynomials from which the behavior of F
should follow.

This is an interesting observation, for we see that
our direct approach to solving Ursell’s combinatorial
problem has incidentally provided a method for finding
an asymptotic representation for a Hermite polynomial
of large order, and indeed a method seems to be con-
siderably simpler and more direct than the standard
methods.
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Discrete space quantum mechanics
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The general problem of finding exactly soluble quantum systems is considered. It is argued that discrete
space quantum mechanics emerges in a natural way as an avenue of approach. Discrete space quantum
mechanics is formulated and applied to one-dimensional quantum systems with emphasis on single-channel
models. It is found that a large variety of systems are exactly soluble in the sense that they only require the
inversion of a finite-dimensional matrix. The interaction may in general be both nonlocal and non-time-
reversal-invariant. The analytic structure of the resolvent is worked out in detail for a simple class of
examples. It is shown that a slightly modified version of the usual continuous space Schrodinger equation
may in principle be solved exactly for any finite range local potential by writing the solution in terms of
corresponding discrete space solutions. It is also shown that from an algebraic viewpoint the models
constructed are realizations of generalized versions of the Weyl relations.

I. INTRODUCTION

One of the manifestations of the complexity of quantum
as opposed to classical mechanics is that there are very
few quantum systems that can be solved exactly. There
is a shortage of even highly idealized and simplified
systems which, while nontrivial, are nonetheless tract-
able enough to serve as useful “theoretical laboratories”
in which one may investigate within specific contexts
some of the many techniques, approximations, and
conjectures which have accrued over the years, and
perhaps also in which entirely new ideas may be deve-
loped. It is the purpose of this work to propose and
illustrate a general method which appears capable of
generating a very wide variety of such systems.

All quantum systems are represented by a vector
space S and a Hamiltonian H, which acts upon the ele-
ments of S. All aspects of the dynamics are known
when one has calculated the operator ¢##¢, The basic
goal of mechanics is to describe the motions of various
objects. To do this, the concepts of position and mo-
mentum have proved indispensable. It is well known,
however, that the canonical commutation relation [P, Q]
=i#i cannot be realized® if S is finite dimensional. Thus
it would appear that if one wishes to construct models
relevant to the motion of objects, S must be infinite
dimensional.? In addition, finite -dimensional systems
are limited in the sense that there can be only a finite
number of energy eigenvalues. This means that any
such system must be quasiperiodic, which precludes a
direct study of phenomena such as decay and scattering
processes, Initially, therefore, we consider systems
for which S is infinite dimensional; more specifically,

S is taken to be a separable Hilbert space. Let an
orthonormal basis be specified by
{|n>; n=0, 1, 12"'} (1.1)
(m|nmy=5_,. 1.2)

Mathematically, the simplest conceivable nontrivial
Hamiltonian is one that connects nearest-neighbor
states in a homogeneous fashion. We denote such a
Hamiltonian by 7’. Since 7’ must be Hermitian, we
have

T'n)y==|n+1)=|n-1), n=0, £1,-.-, (1.3)
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the minus sign being chosen for later convenience. Note
that

T|my= (1" +20) | )
== |n+1)+2|n}—|n—1),

where I is the identity operator, which has no physical
effect when added to a Hamiltonian. The bottom line of
(1.4) is the negative of the finite difference version of
a second derivative. This immediately suggests that
our model be interpreted as a discrete-space analog of
the usual formulation of single -particle quantum
mechanics in one dimension, with the correspondences

(1.4)

T — p*/2m (1.5)
and

| ) | ) (1.6)
where

x=ne 1.7

with ¢ some constant equal to the “lattice spacing.” In
conclusion, DSQM (discrete space quantum mechanics)
suggests itself almost as a matter of course if one
starts from first principles and seeks out the simplest
possible nontrivial quantum systems. The remainder
of this paper is largely an application of DSQM to
single -channel systems.

Mathematically, the present work is closely related
to the codiagonal bordering models considered by Stey
and Gibberd,® to some work of Case, and Case and Kac
on the inverse scattering problem,*® and to the work of
the author on the exponential decay problem.® Some
elementary versions of the models considered here have
also appeared in a text by Feynman, Leighton, and
Sands,”

In Sec. II the relevant operators are defined which act
upon our basis of position eigenkets. The general
method of solution is introduced in Sec. II and applied
in Sec. IV to a wide class of single-channel systems.

In Sec. V a very basic symmetry which gives some in-
sight into the spectral structure of DSQM is formulated
and discussed. A readily solved class of examples is
considered in some detail in Sec. VI. Section VII is
devoted to showing how a slightly modified version of the
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usual continuous space Schridinger equation may in
principle be solved exactly using solutions to corre-
sponding discrete systems, while in Sec. VIII DSQM is
considered from an algebraic point of view. Section IX
is given over to general remarks.

Il. BASIC OPERATORS

The position operator X is of course defined by

X|n>5n|n)a (2.1)
Consider now the continuous set defined by

|pr=tenyre 5 e ), (2.2)
with the normalization

(p|p" =08(p-p). (2.3)
Equation (2.2) may be inverted to yield

|n) = @u)™* /2 [ " dpei™|p). (2.4)
It follows immediately that

Ul py=e|p), @.5)

where & is an arbitrary integer and U, is the associated

space translation operator defined by
U, |my=|n+k. (2.6)

Hence P is the momentum operator, where P is defined
by

P|py=p|p)- 2.7)
It is easily shown that

~ 2 (1cos )

T_m62 I=-cos = ) (2.8)

mX =2 sin &€ 2.9)
€ r

. eP 1

sm—-h: ln):—z-;:-(ln'f-l)—- ‘n—l)), (2.10)

where the quantities 2m, ¢, and 7 had previously been
set equal to unity (as they will be for most of what
follows). Equations (2.8) through (2.10) indicate that
DSQM becomes equivalent to the conventional CSQM
(continuous space quantum mechanics) for small ¢, or
equivalently if one is dealing with momenta that are
small compared with 7%/e.

A unitary operator U(8) which performs translations
in momentum space may be defined by

ue)|py=|p+6). (2.11)
1t follows immediately from Eq. (2.4) that
U(0)|n)y=e""|n). (2.12)

Define the antiunitary time reversal operator 7 by

T (a|m)+B|m)) =a*|m) +*|n). (2.13)
The parity operator P is defined by
P\m)=|-m). 2.14)

It is trivial to verify all the usual relations, such as

PPPA=TPT*==P,
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TXT=-pxpr=X,
PE=T*=1

(2.15)

I11. THE LIPPMANN—SCHWINGER EQUATION:
FREE PARTICLE SOLUTION

If one knows the resolvent of a quantum system one
knows all aspects of the dynamics. Consider a Hamil-
tonian consisting of a term H,, whose resolvent is
known, plus some interaction V:

H=H,+V. 3.1)
Then
E-Hy=E-H+V, (3.2)

where E is any complex number. Multiply Eq. (3.2)
from the left by (E-Hy)™* and from the right by (E-H)™
to obtain

G=F+FVG, (3.3)
where
F=(E-H))' G=(E-H). (3.4)

Equation (3. 3) is the Lippmann~Schwinger equation.

In CSQM Eq. (3.3) is an integral equation, typically
insoluble in closed form. In DSQM Eq. (3. 3) becomes
an equation involving summations over discrete indices,
which often may be solved exactly.

An important example, the result of which we shall
require later, is furnished by the calculation of the re~
solvent of the kinetic energy operator T, defined in Eq.
(2.8). Setting Hy,=0and V=T, Eq. (3.3) requires

(m|(E=TY*|n)=E,,+ E*m| T(E-TY*|n). {3.5)
Let

F,_{E)={m|(E-T)*|n). 3.8)
From translational and parity invariance,

an(E)zplm-n I(E)’ (3"7)
Equation (3.5) therefore becomes

(BE-2)F 1 =8y = Fipper1= Fipy s - .8
Postulating a solution of the form

Fm:aflm-nl, (3°9)

one readily obtains

Fam{z)"" {2_Em+ e (3.10)

The precise meaning of VE{E—4) must now be specified.
For the F_(E) to be the matrix of a bounded linear
operator defined on the entire Hilbert space it is neces-
sary and sufficient that®

1|2-E+VEE-4) |<1. (3.11)
Note also that
i[2-E+ VE(E=D)][2-E-VE[E-D)] =1, (3.12)

so that for each value of E there is only one way the
square root can be evaluated which satisfies (3.11). Let
E and E-4 be written in the forms
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E=nrea, 0s<6,<2r, 7r=0,

=y gt
E- 4=17,e'%, 7,2 0.

Then it may be verified that (3.11) is satisfied if and
only if the square root in Eq. (3.10) is defined by

VETEA) =7, et 6193 /2, (3.13)

Thus in the complex E plane F, (E) is an analytic func-
tion on a two-sheeted Riemann surface having a square
root branch cut running along the real axis from E=0 to
E=4 (measured in units of #°/2me®). Relation (3.11) is
satisfied on the first (or physical) sheet, and violated on
the second sheet. Denoting by the superscripts I and I
this function as evaluated on the first and second sheets,
we have

0<6,<2m,

F,Im(E) =(%) Im-nl[z_E +m Im=nl (3. 142)
F:;(E):-(%)Imml [2_E_mg;) Im-nl. (3. 14b)

It is often convenient to work instead in the complex z-~
plane, where

E=2«z-271, (3.15)
Let

F @)=z (z=27"). (3.16)
Then it may readily be verified that

Fm@)=FL(E), |z|<1, (3.17a)

Fml@)=FR(E), |z|=1. (3.17)

Thus the entire first and second sheets of the complex
E plane are mapped respectively into the interior and

exterior of the unit circle in the complex z-plane, The
branch cut itself is mapped onto the unit circle.
IV. SINGLE CHANNEL SYSTEMS
Consider a single channel system. Then

H=T+V (4.1)

where
n? =
T=—m§nrzz,[ln)(n+1|—2|n)<n|+!n+1)<n|], 4.2)
N N
V=2 2 |BA,im]|. 4.3)

k=~N m==N

The matrix A must be Hermitian for H to be Hermitian,
In general, the interaction may be both nonlocal and
non-time -reversal invariant. The system is time-
reversal invariant if and only if A is symmetric. If A
is also diagonal, one has a local potential. It is as-
sumed that the interaction is of finite range, in the
sense that N is a finite integer.

The Lippman-~Schwinger equation becomes

N N
Gmn=an+ 2 2 FmbAkrGrn (4-4)
k=-N p==N
where F_, is defined in Eq. (3.14) and where
G p(E) = m | (E - H) |n). (4.5)
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Define the (2N + 1) X« matrix B and the (2N+1)X (2N +1)
matrix € by truncating sectors of the © X« matrix F ac-
cording to

B_=F

mn mn?

C =F

mn mn?

~Nsm <N, —o<p<w,

-N<nsN, -Ns<msN, 4.6)

It may readily be shown that, suppressing matrix in-
dices and denoting the transpose of B by B,

G=F+ B(I-AC)AB. @.7

Thus the system may be completely solved from a
knowledge of F and the inverse of the finite -dimensional
matrix I-AC.

In order to obtain the G, that is the matrix elements
of (E-H)™, one must of course use F! on the right-hand
sides of Eqs. (4.6) and (4.7); likewise the second sheet
continuations, the GII, are obtained by using FII.

Expressing the above results in terms of the complex
variable z defined in Sec. III, one obtains

G (2)=7(2) +B (2)I-AC (2)]*AB (2), (4.8)

where 7(z) is as defined in Eq. (3.16), while 8 and
are appropriate truncations of 7 completely analogous
to B and C. In analogy with Eq. (3.17) we have

G m?)=GL(E), |z|<1, (4.92)
G m2)=GL(E), |z|=1. (4.9b)

From Egs. (3.16) and (4.8) it is clear that G may be
written in the form

G wl2)=N,,(2)/D(z),

where N and D are finite order polynomials in z. Hence
in DSQM there exist a great variety of systems whose
resolvents have very simple analytic structures.

(4.10)

Once the resolvent is known, the S operator may
readily be calculated via the relation®

S=I—if_: dteiTtVeiTt _f”dtftdtlethVe-lH(t-t’) Ve iTt',
o (4.11)
After some manipulation, we obtain for the S-matrix

elements

<p|S |P') =5(p-p') —i6(E-E") 2 eimA i’

m,n (4.12)
-i8(E-E") 2 e'™A_ G, (E+inA, e,
m,n,k.r
where
n—0', E=2(1-cosp), E’'=2(1-cosp’).

V. REFLECTION SYMMETRY

Mathematically, DSQM is a formulation of quantum
mechanics in terms of the Hilbert space I2, In this sec-
tion we formulate and apply a general symmetry, which
we call reflection symmetry, that is exhibited by re-
volvents of operators in I%,

Let M be an arbitrary linear operator in /2, Then M
may be expressed as a function of two complex numbers
a and B as follows:
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- |
. L L] ® ] - L] [ ] _Y.
-5 -4 -3 ~2 -1 0 1 2 3
Me,f=a 3 L|m)ay[1-(=1)mn](n]
o< et 5.1)

+8 20 2 [m)b, [1+(=1)m ]G]
m=-% n=-w
Consider now the unitary operator U(9) defined in Equa-
tion (2.12) with ¢ =#. One immediately obtains

U mMla, B)U(r) = - M(a, -p). (5.2)
Define the resolvent

R, (a,B;E)=(m|[E-M(a, B)]* |m). (5.3)
Then Eq. (5.2) implies

R (a, -B;E)=(-1)™"R_ (a,B;-E). (5.4)

As an application of this symmetry, let the Hamilto-
nian of a system be given by

H=T+)\V, (5.5)

where 7 is given in Equation (4.2) and where V is a local
potential. Specializing to this particular Hamiltonian,
Eq. (5.4) implies for the resolvent of H the condition

G, (=X;E) = (~1)™™G_ (A;4-E). (5.6)

Therefore, in DSQM, the resolvent is essentially un-
changed when the sign of a local potential is reversed.
All that is involved is a reflection through the point E
=7?/me* in the complex E plane. Thus if an attractive
potential has a bound state pole at E <0, the correspond-
ing repulsive potential has a bound state at E > 2722/me?,

FIG. 1. The potential (6.1) for
N=3,

beyond the upper limit of the continuum. This is in
marked contrast to the situation in CSQM, where only
attractive local potentials can have bound states. As

€ —0, these repulsive potential bound states are
“chased” off to infinity by the lengthening branch cut.
For small momenta, which corresponds to E near the
origin, repulsive potential bound states should have
little effect, since they are “faraway” singularities.
The result (5.6) is of course independent of any restric-
tion to finite N as in Eq. (4.3).

VI. A SIMPLE EXAMPLE

We restrict ourselves to local potentials, that is to
situations where A is diagonal, The simplest possible
class of parity-conserving potentials occurs when there
are only two nonvanishing elements of A, given by

Ayy=A_y.y=n. 6.1)

Such potentials correspond to two lattice points being
“out of place,” as shown in Fig. 1.,

The N=0 case has been considered previously’ in a
pedagogical context. It is of interest because it speci-
fies the simplest possible interacting unbounded quantum
system. The N=1 case has also been treated®; it speci-
fies the simplest posssible quantum system to exhibit
exponential decay.

For the particularly simple potential of Eq. (6.1), it
is trivial to solve Eq. (4.4) directly. Taking advantage
of parity invariance, one obtains

FIG. 2. Trajectories of the poles ofg
for N=3 with respect to the unit circle
in the complex 2 plane as A varies from
0 to ©, The arrows denote directions
of increasing A, while solid and dashed
lines correspond respectively to trajec-
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tories of positive and negative parity
poles. All complex poles lie outside the
unit circle, as they must since they
correspond to second sheet poles in the
complex E plane. The dots represent
limit points as A becomes infinite.
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(z_z-l)g ::’: (z)=z""'"|iz lmen !

Az (g m-Nly g ImoNY) (el g N enly
AT _ 22z +1 :

6.2)

where
G B @R) =G pl@)2G ().

From Sec. V it follows that only the case A > 0 need be
considered.

6.3)

The poles of the resolvent thus correspond to the
roots of D*(z), where

D*(z) =22V =22 +az + 1, (6.4)

Except for the two roots at z=x1 of D", any given root
2, corresponds to a pole on the first or second sheet in
the complex E plane, according to whether z, lies inside
or outside the unit circle. For A> 0 it is not difficult to
establish that D" has one and only one real root in the
interval (-, 1]. This root z, must satisfy —1<z,<0; it
has multiplicity 1. If x is sufficiently small, there are
two more real roots, each of multiplicity 1 and each
greater than 1. As X increases they eventually coalesce
into a double root and go off the real axis, becoming a
conjugate pair., The remaining 2N-2 roots are all
complex and occur in conjugate pairs. The negative
parity polynomial D™ may be written as

D(R)=(1-2)A(z +25+ 25+ - +22¥ 1) +1], 6.5)

It follows from Eq. (6.2) that the roots of D" at z==zx1
are trivial in the sense that they do not produce poles

in the resolvent. From Eq. (6.5) it is apparent that D~
has one and only one nontrivial real root which is nega-
tive for x> 0 and which lies inside or outside the unit
circle according to whether X is larger or smaller than
1/N. The remaining 2N~ 2 nontrivial roots are all
complex and occur in conjugate pairs. The situation for
N=3 is shown graphically in Fig. 2.

For large values of A, the roots may be expanded in
powers of 1/x. To first order the positive parity roots
may be expressed as

zi==1/x
. 1/2)
_ +1/2)/N1 (1= i (& +1/2)
z=exp[mi(k+1/2)/N] (1 st
+--4), Rk=1,2,...,2N

while the negative parity poles are given by

Za:—l/l (6 7)
Z=e ﬂ}?(l—x—;\jsm%+---), k=1,2,...,2N.

Let E;, k=1,2,..., 2N denote the positive and negative
parity complex poles in the complex E plane in the limit
A— <, Then from (6,6) and (6.7)

N m(e+1/2 .

Ek= ;n——e—z-(l—-cos _——lv———)' , (6.8)
. wk

Ek——m€2<1-cos N)' (6.9)

The E; are easily shown to be the energy eigenvalues of
a particle confined to the 2N ~1 lattice points lying
between x = - (N-1)e and X=(N-1)e. Thus the E,,
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which populate the second sheet for finite A, simply re-
present virtual states corresponding to a particle in an
infinite well. Writing L =(2N = 1)e and taking the limits
of E as ¢~ 0 with L constant, one immediately obtains

lim E; =201%(k + 1/2)*/mL? (6.10)
e-0
lim E; =27°H*R? /mL?, (6.11)

€=0

which are the positive and negative parity energy levels
obtained in CSQM for an infinite well of width L.

Vil. CONTINUOUS SPACE QUANTUM MECHANICS
AS A COMPOSITION OF DISCRETE SOLUTIONS

As we have formulated it, CSQM differs in two essen-
tial respects from DSQM: The eigenvalues of the posi-
tion operator are discrete and the kinetic energy oper-
ator T is given by

T =I-coseP. (7.1)
In this section we remove the first of these differences,

letting space be continuous but retaining (7.1) as the
kinetic energy. It then follows that

T|x)= - oir [x=0+ 3 [2) = 53 |2 +0) (7.2)
where
(x|x"y=6{x ~x"). (7.3)

Let H=T+ V with the operator V signifying a local po-
tential so that

V|x)=0vx)|x). (7.4)

It follows from Equations (7.2) and (7.4) that the origi-
nal space may be decomposed info an uncountable sum
of subspaces, each of which is invariant with respect to
H. This decomposition is completely determined by
specifying that two basis kets ]x) and |x'> are members
of the same subspace if and only if x and x’ differ by an
integral number of ¢’ s, A given subspace may be de-
noted by S, where

O<sy<e (7.5)
and where |x)€ S, if and only if
x=7r+n (7.6)

with »n an integer. Let H as it operates within the sub-~
space S, be denoted by H_. Then, if v(x) is of finite
range, the results of Sec. IV may be used to obtain a
solution within each S, and the results combined to pro-
duce the solution for the entire problem. The result is

<x' x>=i) 5{x—=x’ + me = ne) <m'-—-1— n>,(7.7)

E-H,

where 7 and n are as specified in Eq. (7.6). Therefore,
given a kinetic energy of the form (7.2), one can in
principle solve the one-dimensional Schrddinger equa-~
tion for any finite range local potential. These results
can also trivially be extended to three dimensions, al-
though a kinetic energy which is a sum of three terms
similar to (7.2) suffers from the unappealing feature of
singling out a preferred set of axes in space {such ef-
fects should, however, disappear as ¢— 0).

E-H

m==%
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All that remains to recover the usual formulation of
CSQM is to take the limit e~ 0, The effect of taking
this limit is clearly to increase the complexity of the
analytic structure of the resolvents within their inva-
riant subspaces. Beyond a certain point, the increased
complexity occurs at such high energies as to be irre-

levant to nonrelativistic quantum mechanics, In this
regard it is amusing to note that by setting
e=V3n/mc (7.8)
one has
2 4 [
= - l—A + _L_ —_—e 7
T 2m  8m’c®  80mSc? (7.9)

which is identical with ¥Yp?c? +m?c* = mc? through fourth
order in p. Thus one could argue that at low enough
energies and for this value of ¢, a kinetic energy given
by Eq. (7.2) is actually an improvement over T =p%/2m.

Vi, ALGEBRAIC ASPECTS

In the introduction DSQM was motivated essentially on
the basis of mathematical simplicity. In this section we
outline a completely different approach which encom-~
passes DSQM and which gives some insight into its re-
lationships with other siructures.

All systems in nonrelativistic quantum mechanics
consist of realizations of the Weyl relations!® which for
a single pair of conjugate variables are given by
isQ

isQuitP (8 . 1)

eitfg 0 = gisty
where s and ¢ may be any real numbers. Let such sys-
tems be designated as Class I. Suppose that the Weyl
relations are weakened—that they are not required to
hold as s and ¢ are varied continnously. The natural
way to do this which preserves e and ¢**° a5 one-
parameter groups is to require that Eq. (8.1) need be
valid only if

Class II: ( is an integral multiple of some constant;
s may be any real number.

Class III: s and f are both integral multiples of Some
constant. We have of course

Class Ic Class IIc< Class III, 8.2)

It may be readily verified that the discrete space
systems which we have studied so far are examptes of
Class H systems** which are not Class 1,

It is not difficult to find systems which are uniquely
Class III. A basis may be obtained from Eq. (1.1)
simply by selecting a fixed integer M and requiring

!n+M)=|n) (8.3)
for all n. The orthonormality condition is still (m |n)
=5, except the Kranecker delta is now defined by

5,.,=1 if m=n(mod M)

=0 otherwise. (8.4)

In other words, the underlying Hilbert space is made
finite -dimensional. Let a complementary othonormal
basis set | %) be defined by
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tkn

1
B2y D e 2 |y, k=0, 21,52, (5.5
n=1

Note that for this set one also has |k + M)= | k). De-

fine the operators P and @ by
Q|my =nvZa/M |y, P\B)=rIw/H |B). (8.8)

It may then be verified that @ and P satisfy Eq. (§.1)
whenever s and ¢ are any integer multiples of v37/M .
Thus although canonical commutation relations cannot
be realized on a finite-dimensional vector space, a
rather natural modification of the Weyl relations can be.
These particular Class III systems have also been pro-
posed by Schwinger!? from the point of view of unitary
operator bases.

In spite of the limitations mentioned in the Introduc-
tion, there are evidently a number of model-building
possibilities utilizing these finite dimensional quantum
systems. If the kinetic energy is as defined in Eq.
(1.4), one has the picture of a particle hopping around
a ring consisting of M different sites, Equations (2.8}
through (2.190) are still valid. 1t is clearly possible io
take tensor products, hypothesize various interactions,
and form many -body systems in the usual way. As-
suming spinless fermions, for example, the solution to
an N particle system would consist of diagonalizing an
(#) < (¥) Hamiltonian matrix, It is also possible to sec~
ond quantize and allow terms in the Hamiltonian which
change the number of bare particles. This would per-
mit one to study very simple models of quantum field
theories in finite dimensional vector spaces, where
there is no possibility of divergence difficulties.

Thus we see that one may use the Weyl relations to
embed both DSQM and CSQM into a scheme which yields
in addition a third class of possibilities. A theorem of
von Neumann'® assures us that there is essentially only
one representation of the Weyl relations for Class 1
systems. It is not known by the author whether similar
results hold for Class II and Class III systems.,

IX. CONCLUSIONS

In this work we have attempted to indicate some of the
possibilities inherent in discrete space quantum me-
chanics. Qur main paoint is that discrete space quantum
mechanics produces a great simplification in mathe-
matical structure while at the same time retaining much
of the qualitative content of quantum mechanics as it is
usually formulated. This raises the possibility that
interesting models of increasingly sophisticated struc-
ture may be constructed and carried much further to-
ward complete solutions than their continuous space
counterparts, ¢
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The electromagnetic diffraction by two parallel plates of semi-infinite length is treated by ray
methods. Two special problems are considered: (i) calculation of the fields in the forward and
backward directions due to diffraction of a normally incident plane wave by two nonstaggered
parallel plates; (ii) calculation of the field due to a line source in the presence of two staggered
parallel plates when the source, the two edges, and the observation point are on a straight line. The
crucial step in the ray-optical analysis is the calculation of the interaction between the plates. This
calculation is performed by two methods, namely, the uniform asymptotic theory of edge diffraction
and the method of modified diffraction coefficient. The relative merits of the two methods are
discussed. The ray-optical solution of problem (i) agrees with the asymptotic expansion (plate

separation large compared to wavelength) of the exact solution.

PACS numbers: 42.10.H

. INTRODUCTION

This paper is concerned with the solution by ray
methods, of some eleciromagnetic diffraction problems
for a set of two perfectly conducting, parallel plates of
semi-infinite length, More specifically, the paper con-
sists of three parts dealing with:

(i) The calculation of the electromagnetic fields in the
forward and backward directions in the case of diffrac-
tion of a normally incident plane wave by two non-
staggered parallel plates (Sec. H). This calculation is
based on the uniform asymptotic theory of edge diffrac-
tion, =% and its extension as utilized in Refs. 4, 5.

(ii) The study of the same problem as in (i) by the
method of modified diffraction coefficient®’ (Sec. III).

(iii) The calculation of the electromagnetic field due
to a line source in the presence of two staggered paral-
lel plates when the source, the two edges and the ob-
servation point are on a straight line (Sec, IV). The
limiting case of plane wave excitation in a direction
parallel to the line through the edges is discussed as
well. The calculation is based on a combination of the
uniform asymptotic theory and the method of modified
diffraction coefficient.

The motivations and conclusions of our investigation
are stated below,

First, the physical problems themselves are of
interest as they relate to the wave propagation over
sharp ridges; see the introduction of Ref. 8 and the
literature quoted there.

QOur second, and main, motivation is to show that ray
methods provide an effective tool for the (high-frequen-
cy) asymptotic analysis of diffraction problems involv-
ing parallel-plate configurations. The analysis for such
configurations is by no means trivial, In order to ex-
plain the difficulties encountered, we present a brief
outline of the ray-optical approach to the diffraction
problems stated above. In both problems, the incident
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wave when hitting the first plate, generates a primary
diffracted field. The latter field is a cylindrical wave
centred at the diffracting edge and as such is deter-
mined by Keller’s geometrical theory of diffraction.
The primary diffracted field in turn acts as an incident
wave on the second plate and gives rise to secondary
diffraction. The secondary diffracted field will interact
again with the first plate thus leading to higher-order
diffractions, The actual calculation of the secondary
diffracted field is complicated by the fact that the sec-
ond edge lies on the geometrical-optics shadow bound-
ary of the incident wave, due to the first plate. In the
case of diffraction by two nonstaggered plates, an addi-
tional and similar difficulty comes up at the calculation
of the higher-order interaction fields. In the case of
multiple diffraction the backscattered direction coin-
cides with the shadow boundary of the specularly re-
flected wave or, in other words, each edge lies on the
ray-optical reflection boundary of the opposite plate.
Now, as is well known, Keller’s theory is not valid
along shadow boundaries.

9 10

In order to overcome this difficulty, three different
methods have been proposed in recent years, namely,
the method of Yee, Felsen, and Keller (YFK), ! the
method of modified diffraction coefficient (MDC), %7 and
the uniform asymptotic theory of edge diffraction
(UAT). '3 In the approach by YFK each interaction
field is approximated by the field of an equivalent set
of isotropic line sources, the source strengths being
such as to provide the correct interaction field in the
direction toward the opposite edge. Then the interac-
tion fields are determined recursively by means of a
special asymptotic formula for scattering of an iso-
tropic cylindrical wave by a half-plane, Originally,
YFK was devised in connection with a ray-optical
treatment of reflection in an open-ended parallel-plate
waveguide. In view of the approximate character of
YFK, it is not surprising that the final ray-optical
solution of the reflection problem fails to agree with the
asymptotic expansion (width of waveguide large com-
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pared to wavelength) of the exact solution. A corrected
ray-optical solution, based on UAT and in complete
agreement with the asymptotic form of the exact solu-
tion, was recently derived in Refs, 4, 5.

In the present paper, the successive diffracted fields
are calculated by means of MDC and UAT. The first
method, MDC, employs a modified diffraction coeffi-
cient for diffraction by a half-plane in the presence of
a second parallel half-plane. This modified coefficient,
which automatically includes the interaction between
the diffracting edge and the second half-plane, is
derived from the solution of a canonical problem. The
second method, UAT, is applicable to diffraction of an
arbitrary incident wave by a plane screen. UAT pro-
vides an asymptotic solution of the diffraction problem
that is uniformly valid near the edge and the shadow
boundaries. Away from these regions the solution re-
duces to an expansion for the diffracted field which
contains Keller’s result as its leading term. Higher-
order terms are obtained as well whereas Keller’s
theory is incapable of determining these terms.

In the ray-optical analysis of the parallel-plate dif-
fraction problems, both MDC and UAT turn out to be
effective methods, although not fo the same extent (see
the discussion below). For the case of nonstaggered
parallel plates, an exact solution to the diffraction
problem is obtainable by the Wiener—Hopf tech-
nique!®!3; see Appendix A for a brief discussion of this
exact solution, Our ray-optical solution given in (IL 68),
(1. 70) and based on UAT, agrees exactly with the
asymptotic expansion (plate separation large compared
to wavelength) of the exact solution, A second ray-opti-
cal solution, given in (IIL. 11), (OI. 12) and based on
MDC, precisely recovers the exact far field solution.
For the case of staggered parallel plates, a partial
solution ignoring interaction between the plates was
recently derived by Jones. ® Excluding interaction
terms, our ray-optical solution (IV.27), (IV.30) is
found to agree with Jones’ rigorous asymptotic result.

The ray-optical analysis of this paper also provides
a clear insight into the relative merits of MDC and
UAT, Our conclusions are: (i) As Keller’s theory, UAT
describes a general method which in principle can be
applies to all edge diffraction problems. On the other
hand, MDC is designed to attack diffraction by special
configurations involving two parallel plates, and those
only. For example, in the diffraction problem for two
staggered parallel plates (Sec. IV), the ray-optical
solution can be obtained by UAT alone, but not by MDC
alone. (ii) When both methods apply, MDC appears
simpler than UAT, as demonstrated by the example in
Secs. II and II1.

Finally we list some conventions to be used through-
out this paper: (i) The time factor is exp(~iw?) and is
suppressed. (ii) All problems are two-dimensgional
(no z variation), Both the TM case (nonzero field com-
ponents H,, E,, E,) and the TE case (nonzero field com-
ponents E,, H, H) are treated simultaneously, with the
help of two symbols # and 7 such that

for TM u=H, 71=4+1,
for TE u=E, 71=-1,
1747 J. Math. Phys., Vol. 16, No. 9, September 1975

1t is convenient to associate r with the reflection co~
efficient of the field « from a perfectly conducting plane.
(iii) The total field #' is the sum of the incident field z*
and the scattered field . Additional subscripts in #* and
u (e.g., uly, us, etc.) are employed to identify the
sequence of fields arising in the multiple interaction
between the parallel plates,

. NONSTAGGERED PARALLEL PLATES: SOLUTION
BY UNIFORM ASYMPTOTIC THEORY

A. Statement of problem and approach

The configuration of a pair of nonstaggered parallel
plates and our choice of coordinates are sketched in
Fig. 1. The polar coordinates {7,, ¢,}; m=0,+1,+2,: -+
have origins at {x=0, y =ma}. The angle ¢,, is mea-
sured in a counterclockwise sense when m is positive,
and clockwise when m =0 or m is negative; futhermore,
0< ¢, <27. Let the incident plane wave propagate in
the negative y direction and be given by

ut(x,y) = exp(- iky). (IL1)

The problem at hand is to derive a high-frequency ap-
proximation for the far field in the forward direction
{x=0, %y —~~ ) and the backward direction (x=0,

ky — =) of the incident plane wave.

Our approach is outlined below. The incident field
(IL 1) first reaches the upper plate x< 0, y=a, and
scattering produces a total field uf (74, ¢1) that is written
as

uf(r1, $1) = expl= iky) +2,(ry, ¢y), (1. 2)

where %, denotes the scattered field. The field 4} in
turn acts as an incident field on the lower plate x <0,

y =0, Scattering of u,’ at the lower plate gives rise to a
scattered field u,(r,, ¢,), which will interact again with
the upper plate and yield a scattered field u,(ry, ¢;). In
this manner there results a sequence of scattered
fields

ug(ry, $1), w3 (rg, do), u3(ry, By), uy(ry, o), -+ - (IL 3)

Note that u,(r,, ¢;) with » odd arises from a scattering
at the upper plate; whereas u,(r,, ¢,) with » even arises

"'}ﬁfﬁ f2 FIG. 1. Two
n nonstaggered

——— parallel

plates illu-

minated by a

normally in-

ry cident plane
wave,

r-2
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FIG. 2. A half-
plane illuminated
by a line source at
(x=—d cosf,

y=d cosQ).

from a scattering at the lower plate, A useful property
of the scattered fields is

un(rb ¢1) == mn(/rly 27— 4)1)’ n Odd’ (II- 4a)

(I1. 4b)

This symmetry relation is a consequence of the fact that
U, is the scattered field from a single plate, as if the
other plate were absent. For the sequence of scattered
fields in (II. 3) we will determine them recursively
instead of consecutively. A special form of «, is as-
sumed, and it is used to derive «,,4 by the uniform
asymptotic theory, which is summarized in Sec. II B,
Comparing the expression of u,,; thus obtained with the
assumed form of «, after replacing » by n+1 in the
latter, we obtain two recurrence relations in Sec. IIC.
Next we solve the recurrence relations in Sec. IID,
and present the final results for the scattered fields on
the shadow boundaries of the incident and reflected
fields in Sec., IIE.

u,,('ro, ¢0) == mn(’rO’ 27— ¢0)’ n even,

B. Summary of uniform asymptotic theory

The uniform asymptotic theory of edge diffraction was
developed in Refs. 1 and 3 for the scalar wave, and in
Ref. 2 for the vectorial wave, Here we summarize its
explicit formulas for a two-dimensional problem, and
they constitute a theoretical basis for our analysis in
Secs, II and IV of this paper.

Referring to Fig. 2, let the half-plane x <0, y=0 be
illuminated by a cylindrical wave due to a line source
located at x =—d cos§2, y=dsinQ, 0<Q <7, Polar
coordinates {r,, ¢,} with origin at the source point, and
{7y, ¢} with origin at the edge {x =0,y =0} will be em-
ployed. We assume the incident cylindrical wave is
given by the asymptotic representation:

ut(ry, by) ~explikr))z' (ry, ¢y), ko, (IL 5a)
= exp(ikr,) Eo (tR) ™zt (rq, 1), (IL 5b)

Then the total field #* is found to be
ut(ry, do)=Ulry, ¢o) + TU(r,, 47 ~ ¢y), (I1. 62)

where the double-valued function U is represented by a
uniform asymptotic expansion:

U(ry, dp) ~ UC(ry, do) + Ullry, dy), k=0, (11. 6b)
where
U° (ro, o) ~ explikero + )P 2ep) = Fe! 2682 (r, 1),

U7y, o) ~explik(ry + )™ /2 25 GR) ™D (ro, do)-

m=0

The various notations which appeared in (IL 6) are ex-
plained below, The Fresnel integral F(x) is defined by
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F(x) =11/ exp(~in/4) exp(~ ix?®) [ exp(it®)dt. (L7
Its asymptotic expansion for large x is
F(x)~exp(- ix®)H(x) + F(x), x— 1+, (IL 8)

Here H(x) is the unit step function, i.e., H(x)=1 for
x>0and H(x)=0 for x <0, and

)= & 2(;;/ 4) 20 T'(m + 3)(ia?)™, (IL 9)
where the Gamma function T'(m + 3) is given by

Tim+3) =Va(3)E)- - - (@m-1)/2). (1L 10)
The Taylor expansion of F(x) around x =0 is

Fr)=%+2 & (- iqn/4) o (. 11)

which is convergent for each x. The function £ in (IL. 6)
is defined by

g = (ry+d~7,)/* sgn[cos3(dy - Q)]
=[ddry/(ry +d +7)] /% cosi{d, - Q). (IL. 12)

Note that £ =0 along the shadow boundary ¢, =Q+7 of
the incident wave. The sign of £ is such that £&f >0

(¢F <0) when the observation point (v, ¢,) is in the
illuminated region (shadow region) of the incident wave.
Note that (£¥)? measures the excessive ray path trom
the source to the observation point via the edge of the
half-plane. The two leading coefficients of the series
in (IL 6) have been generally determined in Ref. 4 and
in the present case are given by

{)0 (1’0, ¢0) == %l Z(‘](’ri =d,p1=7-Q)

X752 secs(dy - ),

vy (ry, o) =~ ez (2(;’;,/ <) [zi(d, 7= Q52 sect (¢, - Q)

(I1. 13)

1/3 :
(et - D astlion-9
dza(d, m= Q) -
- . cos(¢py - )
i
. 1 9zy(d, m~ Q) sin(¢, ~ Q)) 1'51 2 5803§(¢o‘ Q)
d 3¢y

+izid, 7 - Qi sec’i(¢y - n)] . (1. 14)
There exists a recursive formula for the determination
of higher order 7,.% They are not needed here since
throughout this paper we are only interested in terms up
to the order of /2,

The expression in (II. 6) for the total field is uniform-
1y valid for all 0 <7, <« and 0 < ¢, < 27, It is convenient
to interpret the first term U(ry, ¢¢) in (IL 62) as a con-
tribution to the total field associated with the incident
tield, while the second term U(ry, 47 — ¢} as that as-
sociated with the reflected field. Let us concentrate
on Ur,, ¢,) given in (Il 6b), and consider the following
two cases:

(i) Away from the shadow boundary and the edge
|£1/2¢%| >>1: The use of (IL 8) into (IL 6b) leads to the
conclusion that U® recovers the classical geometrical
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optics field, and U? gives the edge-diffracted field with
its first term identical to Keller’s results, 1

(ii) In the immediate neighborhood of the shadow
boundary and/or edge k'/2t¥ —0: Both U® and U* be-
come infinite, but the singularities in F(2!/2£}) cancel
exactly those in {$,}. Consequently, U is continuous and
well defined across k!/%£¥ =0,

Between the above two extreme cases, U(r, ¢,) in
(IL 6a) provides a smooth transition and, therefore, is
called a uniform asymptotic expansion for large k.
Similar comments apply to U(r,, 47 - ¢,), the second
term in (IL 6a).

C. Multiple scattering between plates

In this section we consider the multiple scattering of
the incident field (I 1) between the two parallel plates
in Fig. 1 and derive recurrence relations for the mul-
tiply scattered fields.

First let us determine the total field «}(r;, ¢,) due to
the scattering of the incident field (II. 1) at the upper
plate. The solution of this Sommerfeld half-plane prob-
lem is well known, and can be written as (see Ref. 3)

witrs, 61) = explik(r - ) Fl- V2R, cos(@; + 4m)]
+ TF{- V27, cosi(¢, - 3m)]}.

The latter result can be also derived by means of the
uniform asymptotic theory. In the backward direction
of the incident field ¢, =37/2, we may replace the first
Fresnel integral in (IL 15) by its asymptotic expansion
(II, 8) and the second Fresnel integral becomes equal to
F(0)= 3. Retaining only the leading terms we have

ui(ry, 3n/2) =u' + explik(r, - a)]
x{57- [exp(in/4)/2V2Zale~1 2y /2 L O3 /%)),
(1. 16)

(II. 15)

Furthermore, in the interior region 0< ¢; <7, the use
of (IL 8) in the second Fresnel integral in (IL 15) leads
to

uf(ry, ¢1) = explik(r - ) F{- V37, cos(o, +3m)]
+[Texp(in/4)/2V2ukr; | secs(p — +7)

+O0E3M} 0<p <, (I 17)

The field %{ acts as an incident field on the lower plate,
and the resultant scattered field u,(r,, ¢,) is to be de-
termined by means of the uniform asymptotic theory.
However, the uniform theory cannot be immediately
applied because of the fact that the incident field uf

in (IL 17) is not locally a cylindrical wave in the direc-
tion of ¢; =7/2. To circumvent this difficulty, we fol-
low the method in Ref, 4: we replace the Fresnel in-
tegral F(x) by its Taylor expansion in (I 11), and

(IL 17) becomes

us(ry, ) = explik(r, - a)]{% GZ)O e—"%;}%’@ (- 1)°Q2kr,)* /2

T exp(in/4)
2V 3nk7,

+ O(k"“/z)}, 0< ¢y <m.

Xcos 5 (py +27) + secz(¢y - zm)
(IL. 18)
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The representation in (IL 18) comprises an infinite sum
of cylindrical waves centered at the upper edge 7; =0,
and is convergent throughout the interior region 0 < ¢,
<7, We now perform a term-by-term application of the
uniform theory. To each cylindrical-wave term in

(. 18) the uniform theory is applied, and the corre-
sponding scattered field constituent may be evaluated.
Collecting the latter constituents, we obtain the scat-
tered field u,(r;, ¢y). We do not perform this computa-
tion in detail, since later on we will derive a general
result for the scattered field «, which includes #, as a
special case,

Consider now the scattered field u,(ry, ¢;), » odd,
arising at the upper edge, and u,(»,, ¢,), n even, arising
at the lower edge. Uniform expansions for these fields
will be derived valid in the interior region 0< ¢y <,

0 < ¢y <m. Similar to the discussion in Sec. 7 of Ref. 4,
we introduce the following ansatz for the uniform
expansions:

Un(ry, ¢1) = 2 explik[ry + (n - 2)‘1]}('1230 exp(— iqm/4 s, o (7, 1)
in/4 - .
X (R1/2E)7 4 e_xp(#/) k172 qu exp(-ign/4)

X0y, o (71, b1) (B1/2E))° + O(k-*>) — bt

nodd, 0<¢;s7, (IL19)

a4y D) =é' exp{ik[?’o +(n~ 2)a]}<qz=)0 exp(— iqﬂ/4)u,,',,(’i’o, ®q)
x (k! /250)a + %:/4) p-1/2 :L:Io exp(- iqn/4)

XV (70, ‘150)(’31 /ZEO)G + O(k'i)) ,

neven, 0<¢,<m, (IL 20)

where 8,y=1ifn=1and 6,,=0if n#1, and £ and §, are
given by

g =y +a—7,) 2 sgn[cosi(py + 37)]

4ar 1/2
=(m) cos3(¢y +3m), (I1. 21)
gy =rg+a-7.1)!/? sgn[cosz (e, + m)]
4ar 1/2
:(—_—ro ey 1) cos (g +2m). (IL. 22)

The ansatz in (IL. 19) and (IL 20) describes the first and
second terms of a high-frequency expansion in inverse
powers of £, Each of these terms is represented by a
convergent Taylor series with coefficients {u,,. q} and
{v,w}, resgpectively, which are to be determined. It
should be emphasized that each of these Taylor series
is to be considered in its entirety and should not be
looked at as a series that can be truncated after several
terms. Once the scattered fields {«,} are determined in
the interior region from (II. 19) and (I 20), those in
the exterior region 7 < ¢; < 2m, 7< ¢, <27 follow im-
mediately from the symmetry relation in (II. 4).

For n=1, the expansion (IL 19) should agree with
(1. 2) and (IL 18), thus yielding
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(=1 (@71)*%cos*}(¢y +3m)
uy, 471, b1) = T@/2+1) £
(=1 (rl +a+7y )¢/2
T T(zg+1) 2a ’ (IL 23)
vy, o7y, B1) = 8y 77 F sECH(D4 - 27). (IL 24)

Scattering of the incident field %, at the upper or lower
plates gives rise to the scattered field u,,;. The field
U, can be determined by a term-by-term application
of the uniform asymptotic theory as summarized in
Sec. IIB. The result for #,,; thus obtained is to be com-
pared with the ansatz (II. 19) and (IL 20) with n re-
placed by (z+1), By equating corresponding terms we
are led to a set of recurrence relations for the co-
efficients #, , and v, ,. It is found that the recurrence
relations are exactly the same as those given in Refs.
4 and 5. Upon specializing to ¢,=¢,=7/2, the recur-
rence relations become

0

i umeta,1/2) (7 |
um'm(ro,ﬁ/Z)—zQ T(m/2~q/2+1) \7,+2a ?

(11, 25)
1 Vnq(?y+a, 7/2) %o /2
Onty (70, 1/2) = % @0 T(m/2-q/2+1) \r, +2a>
T -
-3 Omothn, o(@, 7/ 27t /2= 8, /2
y ik =01
alP(ry+a)l/2 o T(-¢q)
Otny24(%0 + 4, 7/2) [ 7o \°
X 99, vy +2a)’ (II. 26)

where m=0,1,2,--- and z=1,2,..-, provided that the
following “finiteness condition” is satisfied:

_anfrira\t? s “n,zc("’o+a,"/2)( ) )“
tn(a,7/2) =7 ( a) GZ)O T(z-q) \ry+2a/ "

(IL 27)

In Sec. IID, it will be shown that coefficients {u,,' q} do
indeed satisfy (IL 27). The recurrence relations (II. 25)
and (II, 26) are accompanied by the initial values:

(=10 (ry+a\?/?
ul.c(rO,”/2)=r(q72+1)(oa ) ’

1,q0y 1/2) = 80y T3t /2, (1L 28)

which are taken from (II. 23) and (. 24). Furthermore,
according to Ref. 4, the derivative du, /3¢, which
appeared in (IL 26), is determined by an additional re-
currence relation

aumi,m('ro’ 7T/2) - 1 7, = 1

2y 27,+a GZ% T(m/2-q/2+1)
aun,.,(ro+a,1r/2)( v, \/?
X 9, 7y +2a » (L. 29)

subject to the initial conditions
B, (79, 1/2) _ 0
d¢y o

which is obtained by differentiation of (IL 23). Hence all
derivatives {8u,, ,/8¢,} vanish and (IL 26) simplifies to

(1L 30)
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_1Q Uargta,m/2) [ vy \P
Vast, (70 7/2) = 2 ,Z% T(m/2-q/2+1) \r,+2a

= 5T Bpygth, ola, m/2)751 /2, (IL 31)

The latter recurrence relation holds for n=1,2,---,
m=0,1,-... By defining

uo,o(ay TT/2)=— 2, UO.Q(TO’”/Z):(); for ¢=0,1,2,---,

it is easily seen by comparing with (IL 28) that (I 31) is
also valid for n=0.
Let us summarize the results obtained so far. The

coefficients {u,,,q(ro, 7/2)} are determined by the recur-
rence relation and initial conditions

15 ”ma(7’0+“,7f/2) ¥ /2
oaanlry 7/ D=5 B T ()

n:]_’z’-..

, m=0,1,+--, (IL 32)

— 1) v. +da a/2

The coefficients {v,,' "o n/ 2)} are determined by the
recurrence relation and initial conditions:

18 vn (g +a,1/2) ry \?/?
v"’i""(ro’ﬂ/z)— 2§0 T(m/2-q/2+1) \ry+2a

- %Tém()un,o(a’ 77/2)7'61/2,
n,m:O,l,-.., (II.33)
Uo'q(’}’o,ﬂ/Z):O’ q:O,]"”'y ”0.0(0,71'/2)=—2.

The solution of the recurrence relations (11, 32) and
(IL. 33) will be given in Sec. IID.

Once the recurrence relations are solved, we may
calculate the desired field solutions as below. Setting
¢4=7/2 in (IL 19) and ¢, =7/2 in (IL 20), we have
un(ry, 7/2) =+ explik[r, + (- 2)alHu, o0y, 7/2)

+ [explin/8)/V2m Ve 20, o (ry, 7/2)

+ O™} = 6,4 explik(r; - a)], » odd,
w7, 7/2) = 57 expliklry + (= 2)alun, o (70, 7/2)

+ [exp(in/4)/ V2m Je™ o, o (ry, 7/2) + O™},
(IL 35)

(II. 34)

n even,

The total fields in the forward direction ¢ = 37/2 and
backward direction ¢, =37/2 of the incident field are
given by

Ut (ry, 6o =37/2) =uf(ry =7y +a, b1 =1/2) +us vy, o =37/2)
+ 2 [t (ry =70 + @, 4 =1/2) +Uugnlry, bo =31/2)],
(IL. 36)

ut(ry, ¢y =31/2) =ul(ry, o1 =31/2) +us(ry =71 +a, &g =7/2)

+ Z’; [u2"_1(1’1’ (b1 :377/2)

+ o (o =71 +@, Py =T/2)]. (1L 37)

Let us consider the first terms in (II, 36) and (IL 37) in
a little more detail. Since uf=u’+u,, it follows from
(IL. 34) with »=1 and the symmetry relation in (IL 4) that
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ullry=ry+a, ¢;=1/2)

= L expkrouy, oy +a,1/2) + [exp(in/4)/V2r et /2

Xy, o(ry +a,71/2) + O™}, (1. 38)

uj(ry, &4 =31/2)

= exp[— ik (ry +@)]+uy(ry, &1 =37/2)

= exp[= ik(ry +a)] = Tu (ry, ¢1=1/2)

= exp|— ik (r, +a)] + Texpik(r; - @)] - 27 explik(r; - a)]

x {uy, o (ry, 7/2) + [exp(in/4)/V2m Je™! 2,071, 7/2)

+ O™} (IL 39)

When (IL 4), (IL. 34), (IL 35), (IL 38), and (IL 39) are
used in (IL 36) and (II. 37), we have the expressions for
the total field in the forward and backward directions:

ut(ry, §o=31/2) .
=3 exp(ikr,) ’4?0 exp(i2nka){[Up,, o (o + @, 7/2)

= Ugnaz, o (70, 1/2)] + [exp(in/4)/Vor [ /2
X [Vanat, 0o + @, 1/2) = Vg ea, o (7, 7/2)]+ O™}, (I 40)

ullry, ¢1=31/2)
= exp[- ik(ry +a)] + Texp[ik(r; - a)]
- $7explik(ry - a){uy, o(ry, 1/2) + [exp(in/4)/V2r e~ /2
Xy o(ry, m/2)}+ 37 explik(ry - a)] é‘i exp(i2nka)

x{[thgp, o7y + @, 1/2) = tgnay, o (71, 7/2)]
+[exp(in/4)/ V21 et vy, o (ry +a, 7/2)

= Vgaat, o (%1, 7/2)]+ O} (IL. 41)
It is interesting to note that the total field in the forward
and backward directions depends on {u,,' o} and {‘U,,' o
only.

D. Solution of recurrence relations

Consider first the recurrence relation in (IL. 32). The
same recurrence relation, subject to a different initial
condition, was discussed in Ref. 4, Appendix C, where
it was solved by a generating-function technique.
Employing the same technique, we introduce the gen-
erating function

Fn("’o; z)= Q)uﬂ.q('rm 77/2)(i2)q, (I 42)
where z is a complex variable. Thus, it was shown in
Ref. 4, Appendix C, that (IL 32) can be reduced to a

recurrence relation for F, expressed in terms of F,_,,
namely,

F (TO)Z) -

- 1/2
i(—F_i(qq,m t( %o ) )dt
ey 0+2a
(IL 43)

where o <Imz. By repeated application of (IL. 43), F,
can be expressed in terms of Fy:
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nel f o+ioy w+ian 4 n-1
F,(ry;2) = (1) f f exp(—Z) tf,,)
27i, ovi ay osiay, mat
n-1 7+ (m = 2)a /27!
-1 0 J
- 2) ,,122 [t"‘ - t’"'1( ¥y +ma ]

1/2
x Fy [ro +{n-1a; tn-l(wro +n = 2)a) ]

7o +na

X (¢

XAt dty- + + dbyy, (IL. 44)

where &, <Imz, O, < 0,7+ m - 2)al'/*[r,+ma]*’?,
m=2,8,...,(n~1), From the initial condition in (II, 32)
and the definition of F; in (IL 42), we find

-1 2
Fy(ry;2) = E%(Y“a) (i2)

=2F [exp(— zvr/4)z(r° 2 )“2]

according to (II. 11), Using a well-known integral
representation for the Fresnel integral F, we have

o+ 2
1 exp (— £)
dt
Fi(ry;2) = i ,/_;,,,,,a t+z[(ry+a)/alt’?

where a < - ImzV(r, + @)/a, which is to be substituted in
(L. 44). After simplification in a manner similar to that
given in Ref. 4, Appendix C, we have the desired ex-
pression of F,:

1/2 - 172
F,(ry;2) = 2”-71/2(_?_) / . f exp [2 %z (’Vo; a)
0

’V()+a

(II. 45)

n=2
-2 E x+2 Z} KpXomet = 2x,,_1x,,—x3,]
)

Xdxydxe -« -+ dxp,. (IL 46)

The result in (IL. 46) can easily be expanded in a power
series of ({z), comparable to (II. 42). Then it is found
that the solution of u, (r,, 7/2) is given by

2q+1 1/2 o +a q/2
Un, (70, 7/2) = (;) —OT—) Ine70),
1\, 0
n=2,3,---, g=0,1,2,. (IL 47)
where J,, , is an n-fold integral defined by
wal?0) = 11"'/2/ f xiexp( °+ax
n=1
-2 27 x%+2 Z XXl = 2x,,_1x,,—x3,)
m=2 m=l
Xdxidxy -« dx,. (11, 48)

The result in (IL 47) and (II. 48) together with the initial
coefficient uy, ,(7,, 7/2) in (IL 32) constitutes the solu-
tion for the recurrence relation in (II. 32). It can be
shown that this solution satisfies the “finiteness condi-
tion” in (II, 27).

Next let us turn to the second recurrence relation in
(IO. 33). Except for the inhomogeneous term, this rela-
tion is identical to Eq. (C4) in Ref. 4, Hence, its solu-
tion can be derived in exactly the same manner with the
result

729 Yo+a@ e/2 n
Un, o (%05 q!m( 7e ) mZ=l\1 Ity 0 @O pom, o (70),
(1L. 49)
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where

Joo@==1, Jy@=3 I, )="5u, (I1. 50)
I,,'q(ro)zw""z/ f x‘i'exp(— ro;ax%
0 0 0
n n=1
-2 Z>2 xgn"'z Z%xmxmd-i)dxidxz" * dy,
ms= m=
n=1,2,---, g=0,1,2,--+, (IL, 51)

According to (IL 40) and (IL 41), the total field in the
directions ¢, =37/2 and o) =37/2 only depends on the
coefficients {un, o7y, 7/2)} and {v,, o, 7/2)}. Therefore,
we present the special results of (IL 47) and (IL 49):

Uy, oo, 1/2) =1 wy (7o, 1/2) = 2(a/F )2, (7)),

n=2,3,""-, (0. 52)
Un, 0{%0, n/2) =~ 7(1/7’0)”2 QJ,,,_LO(G)I,,_,,,' o(”0)s
n=1,2,---. (I 53)

For later use, we derive simple closed-form results
for u, o and vy, .. We evaluate the double integral

1 (" [ Yo+ a
Jo,0lro) == f; j; exp(— -—O—%—xg—inxz-x"z’)dxidxz

(I 54)

by introducing the new variables y, = (a/7,)!/x,,
Y9 =%1 +Xy; then, (IL 54) passes into

Joolrg) = (1/m)r/a) 2 [ [, exp(=yi-9}) dy,dy,,
(IL 55)

where S is a sector described by y;= 0, y,2 (ro/a)”zyi.
The sector S has an interior angle (7/2) - tan™!(v,/a)!/2.
Thus, we find easily

7o \!7? (2/2) - tan~(wo/a)t/*
J2,007) :(;“\) ik 5 o/ (L. 56)
and, consequently,
g, oy, 7/2) =% - (1/7) tan v/ a)! /2, (I1. 57)

The latter result has been checked by a direct computa-
tion based on (IL 32). The coefficient v, , in (IL. 49)
becomes

02.0(7’0; 77/2) == 7"'61 /Z[Jo.o(a)l1,o("'o) +J1'0(a)10'0(1’0)]

=31(ry+a) 2 - gt/ (IL 58)
which was also checked by a direct computation based

on (I, 33).

Furthermore, we need the values of J, ,(r,) and
Lo (o) as 7, —, and J;, 4(a). Their evaluations are
given in Ref, 14, Here we list the final results:

1
Tno()=orm=g > =23, (IL 59)
1
ln.o(°°)=;11“!‘—1‘-‘—(f?é-)2—), n=0,1,2,---, (IL. 60)
-1 I'n-3%
Jn.o(a)=-7;1——1—.,((—_-5—), n=0,1,2,---. (IL. 61)

A comparison of (I 58), (IL 61) with (II, 56) shows that
they agree for n=2,
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In summary, the solutions of the recurrence relations
in (IL 32) and (II 33) are given, respectively, in (II 47)
and (IL. 49). The explicit solutions for {u,, ,(r,, 7/2)} and
{1),,'0(7’0, 7/2)} as 7, —~ « are given in (IL 50), (IL 52),

(0. 53), and (IL 59)—(IL 61).

E. Far fields in the forward and backward directions

Consider first the total field u*(z,, 37/2) in the for-
ward direction ¢, =37/2, as given in (1. 40). On sub-
stitution of results in (IL. 52), (I 53), (II.57), and
(IL 58) for {u, o} and {v, }, we obtain

37 1 PALIA
tef, 37} _ ; l_l RIRY (4}
u (’ro, 2) exp(zk?fo){ rir tan (a) ]
= . J2n+1 (70 +a) Jone2, 0(7 ))
17z 9 0
rat 2y exp(zana)<-——lﬁa2—(’ro o)t - ——'172&70

L1 Texp(in/4)[ 1 L1
2V2n 2Vr +a 2V,

2n+1

- , -1
+ %‘1 exp(zana)( = Z_:,;J

m-1, 0 (a)

2n+2
XIgnetomyo (Yo +a) + T "Q Ine1,0(@)

xIZnoZ-m0(70)>] + O(k")}. (IL 82)

It has been verified that the first term in (II, 62), i.e.,

ut(y(]’ 377/2) Itirst term
= explikr,)[% + (1/21) tan™ (v,/a)! /%]

agrees with the result that is obtained by specialization
of a rigorous asymptotic expansion for the field due to
Jones. & Jones did not take into account the interaction
between the edges of the two plates, and hence did not
obtain the other terms in (II. 62). For large values of
¥y, (. 62} can be simplified, and we obtain the total far
field in the forward direction

¢ §1 _ . l L(E)ilz (l>1/2
“ (”’2)‘9"9(’”“){2 T\, T\n

x 23 exp(i20ka)[Jans, 0 (@) = Janat,0 ()]

(IL. 63)

. © 2n+1
. ’—;}‘1—%_1’7—/04—’[1 + 5 x5 Jy s @it

2n+2
* Z_"l Jm-l,o(a)lzmﬁ-m,q(“))] +O(k™) + 0(753/2)}.

(I1. 64)

The term of order k°1/2 in (IL-64) can be considerably
simplified, From (IL 60) and (IL 61) it follows that

p+ }d
- ;L:II Jm-i. o(a)I’,1_,,,'0(°°) =" Z{; Jm,o(a)lp-m- 0(°°)

4 Ton=Yr(p=m+})
“me0 mIT(=3)(p=-m)ITG)
(I1. 85)

where p=2n or p=2n+1, The latter sum in (II. 65) is
just the coefficient of # in the power-series expansion
of the product
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(}5 rg-3) (i; T(g+3)

® 1_t1/21_t)-1/2=1°
Z e A& i) )“ re

(11. 68)

Note that both series in (II. 66) are binomial series
which have been explicitly summed. Since the coeffi-
cient of # in (II. 66) is equal to 5,9, it follows im-
mediately that

P+l

- Z‘i Jm-l. O(a)Ip#l-m' 0 (°°) = 6,,0- (II. 67)
ms

The use of (I, 67) and (IL 59) in (II. 64} leads to the
final expression for the total far field in the forward
direction:

37 1 fa\'/? 1 [fa\/?
u <ro, g = 2) exp(zkro)[ 211_(7—0) +§;(7;)

/1 1 ) .
El(\fz'rf oo x) XPlnka)
Tetr/d

+O™) + 0(753/2)] , (IL 68)

+ et
2 VzTTk'ro
which agrees exactly with (A6) in Appendix A, which is
an asymptotic expansion of the exact solution derived
by the Wiener—Hopf technique,

Next consider the total field #* in the backward direc-
tion ¢, =37/2, as given by (IL 41). On substitution of the
results of (II. 52) and (IL 53) for the coefficients {u, o},
{vg, 0}, We obtain

u (1'1,:;) exp[— ik (r{ +a)] + exp(ik (r; = a)]

x [TE + Tat!? Zns)i exp(i2 nka)<J2n,0('r1 +a)

Vri+a
_ JZn:/l%(ri))] + e’épjit/4) k-1 /2 exp[ik(r, - a))

x [—- ri/2y Z}i exp(i2nka)
n=

2n
1
(s Bt
2n+

\/;’- Z; Jm-i.O(a)lzm-I-m, 0(7’1))] + O(k-i). (H. 69)

As ¥y, (II. 69) can be simplified in a similar manner
as the reduction of (II. 62). The final expression for the
total far field in the backward direction is given by

u (ri, 1= % =exp[—ik{r; +a)] + exp[ikh'1 - a)]

r 1/2» 1
x[2+§(7’1) = v2n F)

exp(in/4)

X exp(i2nka) - oo
¥y

L0ty + O 2)]
(11. 70)

which again agrees with the asymptotic expansion of the
exact solution given in (A3), Appendix A.

Let us now comment on several key steps in the
derivation of the final solution in (II, 68) and (II. 70):

{i) In the calculation of multiple scattering between
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edges, the term-by-term application of the uniform
asymptotic theory to the incident field in (II. 19) or

(IL 20) is a formal procedure. As other formal proce-
dures in ray-optical methods, its “justification” is its
correct final result,

(ii) The derivation of the recurrence relations in

(I1, 25) and (IL. 26) depends critically on the fact that the
qth constituent of the incident field in (II. 19) [or (IL 20)]
is proportional to £ (or £}), and £ is identically zero
at the observation point, the location of the lower edge.
Had the two plates been slightly staggered, simple re-
currence relations as those in (II, 25) and (IL. 26) could
not have been derived.

(iii) The evaluations of the integral J, ; in (Il. 48) and
I, , in {IL 51) are themselves interesting mathematical
problems. In Ref, 14, two methods are used for their
evaluations: one is elementary and involves transforma-
tion of variables in n-dimensional space and generating-
function techniques, while the other uses integral equa-
tions, Fourier transforms, and Wiener—Hopf technique.

(iv) In two occasions in our derivation, the argument
of analytical continuation was resorted to for extending
the domain of convergence of the series involved. One
occurs in the derivation of (IL 57) by a direct computa-

tion from (II. 32):
s 15”% uy,  (ro +a,m/2) ry \/?
20003/ 36 T Il-29) \7r+2a

_li (=1)° (1'0+2a)“/2< ) )"/2

T2 T1-2q)TA+i)\ a 7y +2a
1 had (_ 1)« Yo a+(1/2)

277 2q+1< ) ‘

(IL. 71)

Note that this series converges to the right-hand side
of (IL 57) only in the range 0 <7;<a, To show that
(I0. 57) also holds for 7;>a, one may invoke some
analytical continuation argument. The other similar
situation arises in the verifications of (II. 25) and

(IL 27) by a direct substitution from (II. 47), [Yet an-
other occurs later in the derivation of (IV. 19) in Sec,
IV, where three series converge only when Inl <1.]

Some numerical results calculated from (IL 68) will
be presented in Sec., IIC.

{Il. NONSTAGGERED PARALLEL PLATES: SOLUTION
BY MODIFIED DIFFRACTION COEFFICIENT

A. Outline of approach

In this part of the paper, the same problem sketched
in Fig. 1, namely, the diffraction of a normally incident
plane wave by two nonstaggered parallel plates is at-
tacked by a different ray method—the method of modi-
fied diffraction coefficient described in Refs. 6 and 7.
The solution so obtained turns out to be in complete
agreement with the exact far field solution given in
Appendix A.

First let us outline the general approach., From the
symmetry of the problem it follows (see pp. 137—38 of
Ref. 13) that the original problem sketched in Fig. 1 can
be replaced by two auxiliary ones: (i) a problem with a
perfect electric wall (where the tangential electric field
is zero) at y =a/2 (Fig. 3a), and (ii) a problem with a
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to (r;,¢p,)

Fui ¥
.&
_Iui‘/

¢ (b) magnetic wall

FIG. 3. Two auxiliary problems for the problem sketched in
Fig. 1.

magnetic wall (where the tangential magnetic field is
zero) at y =a/2 (Fig. 3b). Once these two auxiliary
problems are solved their solutions will be properly
superimposed to yield the solution of the original prob-
lem. For the convenience of applying the method of
modified diffraction coefficient, we generalize the prob-
lem by letting the incident field #* come from the direc-
tion ¢!, where (37/2) < ¢l <2n:

ut(ry, ¢,) = exp[~ ikry cos(¢; - ¢f)] exp(- ika), (I 1)

where {1’1, ¢4} are polar coordinates with origin at

{x=0, y =a} (Fig. 3a). The problem is to determine the
total field at an observation point (»y, ¢;), where kv —=
and 7 < ¢, < 27. After the field is derived, we will set
¢1=37— qbi, and let ¢! go to 37/2 in order to obtain the
desired field solutions in the forward and backward
directions,

Let us concentrate on the problem with an electric
wall (Fig. 3a). The incident field «’ in (1L 1) reaches
the upper edge x=0, y =a, and diffraction there pro-
duces a scattered field u(»y, ¢;). The field #; propagates
along diffracted rays emanating from the edge, Then
the field along the diffracted ray in the direction ¢,
=7/2 is specularly reflected from the electric wall at
y =a/ 2. The reflected field u, strikes the upper edge
again, and diffraction there produces a scattered field
us(ry, #¢). Such a diffraction and reflection sequence
continues. The total field at (4, ;) is then given by

1754 J. Math. Phys., Vol. 16, No. 9, September 1975

utry, ¢1) =ut (g, q) + (14 (1, Bg) + 4, (ry, 09)]
X[1 - H(x) exp(ika|sing, |)]. (III. 2)

Here u,,; is the contribution from the interaction be-
tween the upper edge and the electric wall

Uint (Y1, 1) = Q Uy (71, 1) (II. 3)
The term with the unit step function H(x) in (IIL 2) is to
account for the possible specular reflection at the elec-
tric wall of the outgoing diffracted rays emanating from
the upper edge. When the observation point (7, ¢;) has
a negative x coordinate, i.e., 37/2<¢, <27, H(x)=0
in agreement with the fact that there is no such a specu-
lar reflection, When x > 0, the same factor
exp(ékalsing,|) accounts for the contribution of the
specular reflection for both TM case (r=+1) and TE
case (T=-1), This independence of 7 is due to the com-
bination of the facts that (i) the scattered field u,
satisfies the symmetry relation in (IL 4) and (ii) the re-
flection coefficient of #, from the electric wall is T,

The central step is to determine #,,,. In the present
approach, instead of determining wu,, u3, -« - successive-
ly, we will introduce a diffraction coefficient for the
upper edge, a modified version of Keller’s diffraction
coefficient, and write down u,,, in a single step.

B. Far fields in the forward and backward directions

Let us consider u,(ry, ¢;), the scattered field from
the upper plate x <0, y=a due to an incident field (IIL 1)
(as if the electric wall at y =a/2 and lower plate x <0,
9y =0 were absent). Following Keller’s geometrical the-
ory of diffraction, *1° the far field solution of #, is the
sum of the usual geometrical optics field and a dif-
fracted field uf. The latter is

expli(kry +7/4)

ug('riy ¢1) ~ D(¢1’ ¢{)u‘ (’}’1 = 0); k’l’1 - oo’

2v2nky,

(IIL. 4)
where D(¢4, ¢!) is known as Keller’s diffraction
coefficient

i
D(py, p}) =~ <sec &1 5 1, rsec @) (I, 5)

The result in (IIL 4) and (III. 5) is not valid in the neigh-
borhood of shadow boundary of the incident field ¢,
=¢!— 7, or that of reflected field ¢, =37 — ¢i. In those
neighborhoods we may use the exact Sommerfeld half-
plane solution for the scattered field:

i
uy(ry, ¢q) =explikry) [_. F(.- V3E7, cos o1 ; ¢1)

1
+7F (\/2k1’1 cos‘pi—;q)—i)] ul(r,=0),

where F is the Fresnel integral defined in (IL 7). The
result in (I 6) can be also derived, of course, by the
uniform asymptotic theory described in Sec. IIB. When
¢1# ¢} =7 and ¢, #37— ¢, the Fresnel integral in (IIL. 6)
can be replaced by its asymptotic expansion according
to (IL 8) and (IL. 9). Retaining only the leading term, we
recover (IIL 4) and (IIL. 5), plus the usual geometrical
optics field.

(IIL 6)
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According to Ref, 6 and 7, the interaction term u,,;
in (IIL 2) can be written in a similar form as (1IL 4),
and is given by

~9§2}i(krg+1x/4)[ — b .
i (PP 81 = Doy, 4D

Xu‘(rl =0), kr;—w=,

Uynt (Tlv 4)1)
(1ML 7a)

where D(¢,, $1) is a modified diffraction coefficient and
is related to Keller’s diffraction coefficient in (IIL 5) by

D(¢y, $%) = Doy, oDAD o)), (1. 7b)

() =4 V/Culklcosgy]), n1/2<9,<31/2,
FB)=16 (k]cosdy|),  0<¢y<n/2, or 3n/2<p <2m.

(I, 7c¢)

The function G,(o) is described in Appendix B, Several
remarks about the formula in (IfI. 7) are in order:

(i) D is the exact diffraction coefficient for the edge
diffraction by a perfectly conducting half-plane in the
presence of a parallel, infinite electric wall at distance
a/2. It was derived from the rigorous solution of a
canonical problem.

(ii) In case that the infinite electric wall (Fig, 3a) is
replaced by an infinite magnetic wall (Fig. 3b), (IIL7)
remains valid after replacing G,(a) by G,(a). The func-
tion G,(a) is also described in Appendix B,

(iii} The formula (IIL, 7) is valid for both TM and TE
cases, The difference in these two cases enters through
D in (I11. 5),

(iv) Apparently, f(¢4) and hence D(¢1, ¢!) are not con-
tinuous across ¢, =31/2, since G,(0) =[1 - exp(ika)]l’?
+1. However, in (III. 2) this discontinuity is compensat-
ed by the term with unit step function H(x), and as a
result the total field #* is continuous across b= 371/ 2.

(v) In Refs. 6 and 7, «{ in (L 4) and u,,, in (IIL. 7) are
combined in a single term. For the present application
it is more convenient to separate out #§, which is the
component that becomes infinite on shadow boundaries
and should be replaced by #; in (I1. 6}.

Concerning the result in (I, 7), we are particularly
interested in the field exactly on the reflected shadow
boundary. Letting ¢, — (37 - ¢!) in (IIL 7), we obtain in
the limit

a1 (ry, By =37 = ¢})

. &xp[i(kry +1/4)) ( VL ,(k}cosgf
2V21Tk7’1 2TSIB¢§ G (klcos¢1l)> i(?’l‘())

(I 8)

where G;(c) means the derivative of G,(e) with respect
to a. Gi(a) is also discussed in Appendix B,

In summary, for the problem sketched in Fig. 3a
with an incident field in (III. 1), the total far field solu-
tion (kri — =) is given by (L. 2), (1L 6}, and (IIL, 7) when
In/2< ¢1 <2m, 7 <¢;<2n. For the special case ¢,
=37 - ¢{ and ¢{ —371/2, we obtain the total far field on
shadow boundary of the reflected field from (I 2),

(1. 6), and (III, 8), namely,

electric wall: u’(r,, ¢,=37/2)
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~ exp|— ik{7; +a)] + explik(r, - 0)]G(0)

T _ explin/4) £G1(0)
x[z 2V2nk7, (“27 G.(0)
Ry, —~ =, (It 9)

where G(@) =G,(a@)G,(— ) is defined in Appendix B and
we have written the factor [1 ~ exp(iza)] as G(0). In the
above derivation the case ¢} =37/2 is obtained as a
limit ¢§=31/2+6, 6—0+, It can be shown that the
identical result is obtained when the limit is approached
from the other side ¢{=37/2-06, 6—0+.

Following exactly the same procedure we can solve
the problem sketched in Fig. 3b. For the special case
¢, =37 ¢{ and ¢{ ~37/2, the total far field is found to
be
magnetic wall: u(r,, ¢, =3%/2)

~ exp(— ik(r; +a)] + explik(r, ~ a)]G(O0)

7 explin/4) £G1(0) ]
x[z oAk, (1 27*55) ,
(I11. 10)

Ry —o,
Note that (IIL 10) is identical to (I 9) except for the re-
placement of [G(0), G,(0), G2(0)] by {G(0), G.(0), G'(0)], as
discussed in (ii) following (I 7).

Now let us return to the original problem sketched
in Fig. 1, with incident field given in (II. 1). The
scattered far field in the forward direction ¢ =37/2 is
simply (7/2) times the difference of (III, 9) and (IIL 10)
after replacing (ry, ¢1) by (ry, ¢,). This is evident from
the sketch in Fig, 3. Including the incident field (Il 1),
we have the total far field in the forward direction:

"t("’o, b= %)"%exp(ik'ro) , explikry +7/4)

2W2nkv,
kG (0) kGJO)
7+ (1 - exp(- tka)] =27 + [1 +exp(— ika) :’
[ GO " ey G.(0)
kyy — oo, (IIL. 11)

The total far field in the backward direction ¢, =37/2 is
simply # times of the sum of (IIL 10) and (III. 11), and
the result is

u‘(rl, = 32—") ~ exp[— ik(r, +a)] + ST explikr, ~ )]

_ explik(r,— a) +i(n/4)]
2\/277k7’1

[1 + 71~ exp zka)]kg"((g))
+7[1 + explika)) = LIEH (0))], kry — oo, (II1.12)
0

+

The results in (IIL, 11) and (IIL 12) are in complete
agreement with the rigorous far field solutions given by
(A5} and (A2} in Appendix A. We emphasize that (1L 11)
and (T11, 12) are valid for arbitrary values of ka, When
ka is Iarge we may use the asymptotic formulas for
G.la), G (a), ete., in (IIL 11) and (IIL 12). Retaining the
leading terms up to O(a"), we recover (I 68) and

(IL. 70) exactly.
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Compared with the derivation given in Sec. II, we
arrive at the solution in (III. 11) and (III. 12) in fewer
steps. The key to this simplification is that the interac-
tion field u,,, is calculated from (IIL 7), instead of from
(1. 3). Looking from a different viewpoint, it is rather
satisfactory that the use of the uniform asymptotic the-
ory in Sec. I also recovered the exact asymptotic solu-
tion, This was done without introducing a new canonical
problem, with the interaction between two edges being
“built up” from the local consideration of a single edge.
In more general edge diffraction problems, formula
(ITL. 7) may not be applicable, while the uniform asymp-
totic theory can always be employed. One such example
is given in Sec. IV.

C. Numerical results and discussion

For the problem sketched in Fig. 1 with incident
field given in (II. 1), the solutions for the total far field
(kry —~ =, by —~ ) in the forward and backward directions
are given in (IIL 11) and (II. 12), respectively. When ka
is large, the solutions reduce to those in (IL 68) and
(II. 70). Some remarks concerning the numerical
evaluations of those results are in order.

First let us concenirate on (I1, 68), and normalize it
with respect to the incident field:

ut . _explr/4) 1 (a) 1/2[ (ka)]

P AT = ~ = 1-S{—I{,

U loy=3r/2 22nkr, 2m\7, 7

(111, 13)

where S{x) is a short notation for the infinite series

/1 1 .
Six) = g;i (—‘E_’: - m) exp(2nnx).

The latter series is slowly convergent. It is advantage-
ous to transform it into an integral:

(I 14)

Sx) = ——lﬁ ng exp(i2nix) ( /(; ) expl- 2n)t /2 dt

- / " expl- @0+ 1)E? dt)

0
__2_f“exp(izwx-2t2)u—exp(— )] 4
=/ ,

II. 15
1 - exp(i27x — 28%) ( )
which is rapidly convergent and can be easily evaluated
by numerical integration. The series S(x) is periodic
with period 1, and in fact a Fourier series. For later
use we examine the behavior of S(x) in the vicinity of
x =0, Referring to Section 1.11 in Ref. 15, S{x) can be
expressed in terms of Lerch’s transcendent &(z, s, v),
viz, ,

S(x) = 2172 exp(i2nx){®[exp(@2nx), 3, 1]

- 4)[(:"xp(i27m:)’ %) %]}- (IH. 16)

By means of formula 1.11(8) in Ref. 15, we obtain the
Taylor expansion of S(x), and its leading terms are

S(x) = 5(0) - 37w exp(—in/4)x/? + O(x), (O1.17)

valid around x =0, where x'/2=i|x|!/2 when x <0. The
initial constant term in (II. 17) is equal to

S(0) = (1/VD)[e(3) - £(3,$)1=0.395101 3566+ - -,
(111, 18)
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where £(s) and &(s,v) are, respectively, ordinary, and
generalized zeta functions, and the numerical values
were taken from a table in Ref, 16, Since S(x) is
periodic with period 1, the expansion in (IIL 17) is also
valid after replacing x by (x -~ m), where m is an
arbitrary integer. When this result is used in (IIL 13),
we have the normalized total field in the vicinity of
(ka/m)=m, m=1,2,3,--- (i.e., the width a between the
plates being a multiple of half wavelength):

ut

1
4 s5 xp(in/4) - 0, 605V2m

1
2V2nky, [e

172
- exp(~ iﬂ/4)mF;('§1% - 1) +O(;I;zfr_r - 1)}

(HI. 19)

D=3 /2

From (III. 13), (IIL 15), and (IIL, 19), it follows that
u'/u' is a smooth function of ka, except at ka=mm. At
the latter locations, the amplitude and phase plots of
u®/u’ vs ka exhibit vertical tangents.

‘ | J
‘ i
035 ———o \L, - — !— ;
I N
I ! I i
| | | 1 %
‘ , |
025 J | I } J
0 05 10 15 34 20 25
12° - -7 — ] o
3 | | \
‘:34 | ! |
o
g
80
AO
|
| | i
© ‘L L 1 )
0 05 10 15 a4 20 25

FIG. 4. Normalized total field on the incident shadow bound-
ary of two nonstaggered parallel plates (Fig. 1) for TM case.
The solid curves are caleulated from (If. 20), and the dashed
curves from (III. 13).
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FIG. 5. Normalized total field on the incident shadow bound-
ary of two nonstaggered parallel plates (Fig. 1) for TE case.
The solid curves are calculated from (IIIL 20), and the dashed
curves from (II.13),

Next consider (II., 11), which after normalization
becomes

u L1, explin/4) £G4(0)
Wl |opserz 2 2V3m7, (”[l'e"p("k”)]c(m
. RG0)
+[1 + exp(~ ika)] G*(O))' (101, 20)

The evaluation of the last two terms in (IIL 20) is most
easily done by numerical integration of the following
representations, cf. Appendix B,

G(0) egp(— ur/4) ra / exp(ika ~ kat?)
1-

G L(0) w2 exp(ika - kat?)
X 1+ .z_th)l 72 s (1. 21)
kGUO) __ exp(=in/4) , [~ _explika— kat’)
G.(0) e | . 1+explika-— kaf)
dt
x U+ iz (1. 22)
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Some caution should be taken when ka=mn, m
=1,2,8,-.., When m is even, the integral (III. 21) is
divergent; when m is odd, the integral in (IL 22) is
divergent. However, these divergent integrals are com-
pensated by the factors [1 ¥ exp(- ka)] in (III. 20) such
that their combined values become zero in the respec-
tive cases. It can be shown that the amplitude and phase
plots of «*/u’ vs ka, based on (I 20), exhibit the same
behavior at “resonance values” ka=mw as the previous
curves based on (IIL 13).

In Figs. 4 and 5, numerical results for the total far
field in the forward direction are presented as a func-
tion of the plate separation-to-wavelength ratio a/,
with the observation point at a fixed distance from the
lower edge 7, =2, "The solid curves are calculated from
(II. 20)—(I1I. 22), while the dashed curves stem from
(I. 13) and (I, 15). Note that these two sets of curves
are in good agreement even for a is about half
wavelength,

{V. STAGGERED PARALLEL PLATES
A. Statement of problem and approach

In this part of the paper, we consider the diffraction
by two perfectly conducting, parallel plates staggered
a length I. We assume [/ to be positive, finite, and not
close to zero. The separation of the plates is a/ 2,
which is written as b hereafter (Fig. 6). The incident
field is that from an isotropic line source:

ut(ry, ¢o) = (G/4)H (bry)

_ explilkrs +1/4)] , 2
Y= [1+(1/8ikry) + O],

The polar coordinates {r,, ¢o}, {71, ¢4}, and {r,, ¢,} have
origins at the lower edge, the upper edge, and the
source point, respectively. We are interested in the
case when the line source, the two edges, and the
observation point are exactly on a straight line (Fig. 6),
i.e.,

av.1)

line source: 7y=c+d, ¢,=% (IV. 2a)

(Iv. 2b)

Except for the special situations =0 or I =«, rigorous
analytical solution to this problem is not known. In

Ref. 6, two coupled Wiener—Hopf equations were form-
ulated and an approximate method for solving them
valid for large kI was presented. However, for the case
described in (IV. 2) (the most difficult one), no explicit
result was obtained. Recently Jones® studied the same
problem with a plane wave incidence (instead of in-
cidence from a line source). He first considered the

observation point: »,=%;, ¢,=7+Q,

——_ r FIG. 6. Two
& staggered
¢’2 N parallel
plates illumi-
nated by an

incident cyl-

]
i
/
/
;&/
Lt)/
5o \s
o

b indrical wave
_— l from a line
L__ X source at
[ — %3 =0.
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scattering of the incident plane wave at the upper plate
and obtained an exact result for the scattered field in
terms of Fresnel integrals. Then the diffraction of

this scattered field at the second (lower) plate is treat-
ed by the conventional Wiener—Hopf technique. The
final result thus obtained may be considered as the field
scaftered by two parallel plates when the interaction
between the plates is ignored. Jones’ analysis includes
the special case when the incident plane wave propagates
in a line through the edges of the two plates. It is this
special case that is comparable to our result to be
derived next. Excluding interaction terms, Jones’ re-
sult and our result are found in agreement.

To attack the problem sketched in Fig, 6 with in~
cident field in (IV. 1), we will use a combination of the
uniform asymptotic theory (cf. Sec. II) and the method
of modified diffraction coefficient (cf. Sec. II). Again
our solution is asymptotic for large 2, and contains
terms up to and including the order of k/2, The steps
of solution are described below. The incident field u}
in (IV. 1) reaches the upper plate x <—1, y=b, and
diffraction there produces a scattered field u,(ry, ¢).
The field «; on the diffracted ray traveling in the direc-
tion ¢, =7/2 is bounced back and forth between the low-
er plate and the upper edge. This multiple interaction
is accounted for by a single scattered field u,;,, (7, ¢;)
emanating from the upper edge, The calculation of u;
and u;,, follows a procedure similar to that used in
Sec. IIL For the diffraction at the lower edge x =0,
vy =0, the incident field is taken to be

ui(rh ¢1) :ui oty Uy :uiy +ulixo° (IV- 3)

In the neighborhood of the lower edge, %' is further
divided into two components: cyhndrlcal wave compo-
nent u' and noncylindrical component #{,, Their re-
spectwe diffractions give rise to ué, and u,fn, which are
calculated by the uniform asymptotic theory described
in Sec. IL. The further successive ditfraction of !, by
the upper edge results in u{, Successive diffraction of
uf,, by the upper edge gives rise to a field of order k'z,
and hence this contribution is ignored. The tfotal field
solution in the direction ¢, =7+, correct to the order
E™3/2) is then given by the sum of u’,,ul;, and u’,.

B. Far field solution in forward direction

The scattering of «! in (IV. 1) at the upper plate gives
rise to a scattered field u,(7y, ¢{). To derive an asymp-
totic expression of #; valid in the region 7/2 < ¢y <m,
we may use the uniform asymptotic theory summarized
in Sec. 1B, The result is

’ _ —explilkry +kc + Tr/4)]( 1 ) i
“1("1,¢1)~ 2m 1+8k F( k gik)
explz (ri+7/4)] explilkc +7/4)]
2v2mkry 2V2nkc
172 (9
XK%—?) (g1)" - sec L= 2T= &) (2217 9)
- TsecM%Q] + O, (1v. 4)

where F is the Fresnel integral defined in (IL 7) and
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=(ry+c—7,)1 "2 sgn (cos-qll————— (22” - Q))
_(4rc \'? 1~ @r-9)
- (1’1 P +1'2) cos D) . (Iv. 5)

For m/2< ¢y <7 and 71#0, u,(ry, ¢1) given in (IV. 4) is
finite and continuous everywhere.

The field u; on the diffracted ray traveling in the
direction ¢; =7/2 is bounced back and forth between the
upper edge and the lower plate, resulting in a scattered
field u,,;. Since ! is assumed to be positive and not
close to zero, this interaction is locally the same as
that discussed in Sec. I, Thus, using (III. 7), one
obtains

expli(kry +7/4)] explitkc +1/4)]
2V27k7, 2V2nke

X[D(¢y, 27 = Q) ~ Dy, 21 ~ Q)] + O(k™2), (IV. 6)

Uit (71, D1) =

In the region 7/2 < ¢, <1, wu,,, can be written more

explicitly

expli(krs + m/4)] explilkc +7/4)]
2v2rkyy 2V2nkc

X(l B G.[k cos(2m — Q)])

G, (klcosdl)

Uy (71, 1) =

X (sec $1= @r- Q)
2
+ Ok,

Assuming that @ or ¢, is not close to 7/2, we may use
the asymptotic expansion for G,(a) given in (B11), Ap~
pendix B (remembering a =2b), and (IV.7) passes into

exp[i(krs +71/4)] expli(kc +7/4)]

+ T7SsecC

¢1+(2ﬂ'—9)
e )

av.m

Uit (1, H1) =

2V2mkr 2V2nkc
><(exp(i‘ir/4) = exp(ianb))
2VIkE w1 nd/2

X[sec(2m - Q) +sece,] (sec?iﬁ-(—gl'_gl

¢1 + (g” ~ Q)) + O(k'2),

valid for 7/2 < ¢, <r, away from #,; =0, It should be re-
marked that the result in (IV. 8) can be also derived by
using the uniform asymptotic theory described in Sec.
II, Such a derivation, however, is quite involved,
whereas the use of (III. 7) enables us to write down
(IV. 8) readily as we did above.

+T8€ec (Iv. 8)

Next consider the diffraction at the lower edge x =0,
vy =0. The solutions of #; and u,,, having been found, the
incident fleld ut defined in (IV. 3) now can be written ex-
plicitly as 7 = +u,’w, which consists of a cylindrical
wave component uc, and a noncylindrical wave com-
ponent #,, From (IV.3), (IV.4), and (IV. 8) we find
the eylindrical wave component to be

expli(kry +m/4)] 2
Clry, O(k
9\ankr, 1, )+ O™,

ucy(yly ¢1)

1/2< ¢ <, (IV. 9)

S.W. Lee and J. Boersma 1758



where
_explitke +7/4) |[(2_1’1£) e _ o= @r=Q)
C(’ris ¢l) - 2‘/-2—77—,“? ¥y (Ef) sec 9
P+ (27 = Q)  fexp(in/4) <N exp(i2nkb)
Tsec—t 3 +( s 24 L) )

x[sec (27 = ) + sec,]
- -
(&M . ,secmgL_))]' (V. 10)
The noncylindrical wave component in (IV. 9) is found
to be

expli(kry + ke +1/4)]
2V21mkY,

1 1/2e%
<1+ 8ik1’2)F(k & ).

(Iv. 11)

The diffraction of uc,,ﬁ at the lower edge gives rise to
total field components u!,, ui,, respectively. Their cal-
culations are considered below.

2710(’}‘1, ¢1) =

For an incident cylindrical wave 172,, we can apply
formula (IL 6) directly. Retaining only the leading
terms, we have

expli(kry + kd +1/4)]

¢ - 1/2¢%
ucy("'o, ¢0) - 2W F(k 50 )C(’yi’ ¢1)
exg[z (ro +71/4)] expli(kd +7/4)]
2V2mky, 2V27kd
1/2 _
) "o (s
+ Tsecﬁzﬂ) cd, - Q)] +O(k™), (IV.12)

valid for 7 < ¢, < 27, away from the lower edge 7, =0.
The function £f was defined in (II. 12). Of particular
interest is the field in the forward direction ¢y=7+ Q.
In this direction, &F =0 and sec(¢, - 2)/2 becomes
infinite. However, the resultant singularities do cancel
and «!, remains finite as shown below. Let us assume
that ¢, deviates from (7 + Q) by a small number 5:

by = (m+Q) = 0. (IV. 13)

Then, it follows from simple geometry in Fig, 7 and the
definitions in (IL. 12) and (IV.5) that

FIG. 7. Limiting case when the observation point falls on the
line through the source point and two edges: 7, is fixed and
¢o—m+8 {or equivalently & —0).
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- - j_ 2 4 =d7’—d
o1=(m= Q)+ 75 o[1+A,8%+0(8%)], A, 6—<(7—0°+—d)§,

_ 2 4 o _rd
7=y +d)[1 +A;8°+ O(8Y)], A, 20, +d)
ra=(ry +dc){1+ 4,8+ O(6Y)], Ay== 2ldxC)

5= {7y 2 v 2 2(ry+d+c)’

(W +d) T eagt oY) As:%(m 1)

_s "0 (ry +d)c )1/2 2 1
51‘—670 +d (2(1’0 +d+c) [1+4,5°+0(59)],
a4l d d+c \_ 7h+2rd+4d
178 rdrc \rg+d T rgrd+c 3(ry +d)?
(Iv.14)

Substituting (IV. 13) and (IV. 14) into (IV. 10) and (IV.12)
and letting 5 — 0, we obtain

uct:y("'o, bg=m+8)

_explikry + kd +71/4)] expli(kc +m/4)]
© 2V2mk(r, +d) 2v2nkc

( T, exp(im/4) sin® & exp(i2nkd) )

2 sinQ 2«//1TEb cos’Q ni n3/

e)jp[z(kro +7/4)] expli(kd +7/4)] exp[i(kc +71/4)]
2V27ky, 2v2nkd 2V27ke

X/ C%q
2@y +d+c)?

LT cosfd
T oinie T vy +d sine

)+ O(k™%). (IV. 15)

We note also that the successive diffraction of u!, by the
upper edge (including interaction) leads to terms of
O(%?) for the field in the direction ¢, =7+ Q. Hence they
are ignored.

It remains to calculate «,, the total field component
due to the incidence of #,. Because of the rapid
variation of the Fresnel function across £f =0, @, can-
not be regarded as a cylindrical wave, and the uniform
asymptotic theory cannot be directly applied to calculate
its diffraction at the lower edge. Following the method
in Ref. 4, we expand the Fresnel integral in a Taylor
series around £f =0, viz,,

uhy(ry, B4) = exp(ikr,) (Z_;,‘O 29y, ¢1)k‘°'1’ /2

e

=0 (IV. 16)

-1 (q)(,}, ¢ )k(q-3)/2>

where z'? is determined from (II. 11) and is given by

expli(kc +7/4)] exp(—ign/4) (1)
4377, T'(g/2+1)

4=0,1,2,+--.

2y, ¢q) =

(Iv.1m)

Each term in (IV. 16) is now considered as a cylindrical
wave constituent, We apply the formula of uniform
asymptotic theory in (II. 6) to each constituent separate-
ly and then sum up the resultant fields to obtain uf,
namely,

ufm(”’o,%)
-exp[zk(md)][ (Feet e « EXR01/8) 73y
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[(g+1) /21

X 2

mal

I"(m + %)(ik)""(gf,“)'z")z(‘”(ri, ¢1)k(q-1)/2

1 i .
> é)o (F(k“zga“) + E’Epz(:r”_m Bt /2(gx)t

[ta=1)/21
x 2 Tm« %)(z'k)""(sa‘)'z'")r?z @y, ¢1)k‘"'3”2]
m=0
_ explikry +kd +1/4)]

' —a
Bz O o )
o, [ z29d, 7= Q) [sec 5

eh
+ TsecM) _ipsn L2 d,1-Q)
2 4 a4,

X (sin(¢0 - Q)sec? ¢°2_ e_ Tsin(¢, + Q) sec3~ﬂ2+—ﬂ)]

+ Ok, (IV. 18a)

where t¥ was defined in (IL 12), [(g+1)/2] is the largest
integer < (g+1)/2, and

2O, - )= expli(kc +7/4)]

4m s (IV. 18b)
02, 7~ Q) explikc) ved
Ay T 4r c+d ’ (IV. 18c)

In deriving (IV. 18a), we have made use of the fact that,
due to the factor (t})?, the incident field amplitude
29, ¢,) and its first (g - 1) derivatives vanish at the
lower edge 7y =d, ¢,=n-= Q. The result in (IV, 18) can
be simplified considerably. The steps follow exactly
those in Ref, 4, Sec. 6, except that terms of O(k=3/%)
in (IV.18a) were not present in Ref. 4. After simplifi-
cation, (IV.18a) becomes

expi(kry +kc +kd +1/4)]

uxtxo('rO’ ¢0) = 2\/§7r—k’;’; [F(ki/ZEE)k)F(ki/?gT)
+ 3PN+ 1)) - fexp(- ikEF)F(R!2EF)

exp(in/ 4)

+6 k60 (1+ 572 )+ (50"

4k
1

xy-2_T
g 9 1*’72}

expli(kry +/4)] exp[i(kc +kd +1/4)]

i
-m(-‘;’

2V2mkr, 2V2nk(C +d)
l ¢0 - 3 ¢0 + Q) exp[i(kzro + 77/4)]
g 2 (Sec g TTseeTT )T 2V2rky,
i explik(c +d)](c\/2 (o 39y=8
X 167k(c+d) \d sin(¢, - Q) sec 3
- TSin(¢0 + Q) sec3_%2+—g>
+0), (IV.19)

valid for 7 < ¢, < 27, away from the edge ,=0. In
(IV. 19), the following notations were used:

*
n=% , (Iv. 20)
&
e oy 2t2 n > 2t2
G, t) = XP(ZW”’ ) / exll’(fﬂ ) go. (Iv. 21)
0

On the shadow boundary ¢, =7+, £ =£F=0, and

sec (¢, — Q)/2 becomes infinity. As before, the resultant
singularities do cancel, and a finite «}, is obtained,
namely,
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"fm(ro, by =T+ Q)

_ expli(ery +kd + ke +7/4)] [l N Ltan“ ¥oC 1/2]
2V2k(r, +d +C) 4 27 (ro+d+c)d

1 1 expli(ery+ 7/ explilkc + kd+7/4)]

"(“EE 7, +d+c>+

227k, 2V2wk(c +d)
T, expli(kro +7/4)] explilkc +kd+7/2)] £>1/z
2sin 2v2rky, 8k (c +d) d
cosfl -
x(- T Sint +A5) +0(k), (Iv.22)
where
27oc(Ag = Ag) 1
- — A+ 14, 2NcAg=A5)) 1
A5 4(3A3 A4+2A2+(1’0+d)(c+d)) 6
1 (c+d)(i-cd=d)
T2 T 2+ rc R (tv. 28)

The previous expansions (IV. 14) were intermediate in
deriving these results. It remains to determine the
diffraction of u} by the upper edge. The field on the
diffracted ray of u!, traveling in the direction by=Q is

expli(kry +m/4)] explilkc +kd +m/4)] <1)
2V27ky 2V27k(c +d) 2
X (-1~ TsecR) +O0k™3/2), (IV, 24)
which was calculated from (I, 4) with «*(r,=0) re-
placed by #’,(d, 7 - ) as given by (IV.11), After diffrac-

tion at the upper edge, it gives rise to a field in the
direction ¢y =7~ Q:

explilkry +7/4)] expli(kd +7/4)] explilkc +kd+7/4)]
2V2nky, 2¥2nkd 2V2rk(c +d)

X(3)(~ 1 - T8ecQ)[-1- Tsec(r— Q)]+ 0E™),

(IV, 25)

which was calculated from (I 4) with «* equal to the
quantity in (IV. 24). Diffraction of the field in (IV.25) at
lower edge simply reduces the dominant term by a
half, Thus, the successive diffractions of «}, at the

upper and lower edges result in a contribution to the
total field in the direction ¢, =7 +Q:

”fm(”'o, P=T+Q)

_ explier +kd +7/4)] explikd +7/4)]

2V27k (¥, + d) 2v2rkd
expli(kc +kd +1/4)] ( tan29> 2
X - O(&™). IV. 26
2V21k(c +d) 4 +06™) ( )

Further interaction of ufm with the upper edge is of no
interest because it produces fields of O(k"”/ %) in the
direction ¢,=7+8Q.

Summing up (IV.15), (IV.22), and (IV. 26), we obtain
the desired total field in the direction ¢, =7+ due to
an incidence given in (IV. 1), viz.,

ut(’ro, Go=7+9Q) =k12p Lk 1Q + k-3 /2R + O(R™2),

(Iv. 27a)
where
P expli(kry +kd +kc +1/4)] [1 L1 tan'l( 7oC ) 1/2]
2V2r(r, +d +c) 4 27 (ry+d+c)d ’
(IV.27b)
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FIG. 8, Normalized total field on the incident shadow boundary
of two staggered parallel plates (Fig. 6) for TM case, «f is
calculated from Eq. (IV.27) with one, two, and three terms
(indicated by 1, 2, and 3, respectively, next to the curves);
ut = explikr, +in/4)/2V2nky, where v, =c +d+7y.

Qzexp[i(k'ro+kd+kc+n/ﬂ( 1 , 1 ) T
V7,

8r 0(c+d7'\/(‘ro +d)c/ 2sinQ
(EV. 27¢)
o explilkery +hd the + 31/4)] V2 sing
8(2m)*/* Vlr, +d)bc cos*Q
= exp{i2nkb) T 1 1
XE w37 T (ry+d +c)37? [4 "o
172
4 7e 1 c
*tan \(r, +d+c)d> ]+ Vrodc (- 2(c +d)
. cd . 1 . dryg=c) Tcosﬂ)
2(r, +d)ry+d +c) ~ sin?Q " (ry+d)(c+d) sin®Q

. 2
exp(i2kd) tan Q} , av. 27d)

TV, +d)d+cd 4

which is valid for @ not close to 7/2 (or 1#0). Some
numerical results calculated from (IV.27) are present-
ed in Figs, 8 and 9 pertaining to a configuration with
Q=7/4, c=d=2x.

From the result in (IV.27) we can also obtain the
total field «* {rg, &y =7 + Q) when the incident field is a

1761 J. Math. Phys., Vol, 16, No. 9, September 1975

plane wave coming from the direction ¢, =%. To this
end, let us multiply (IV.1) by the factor

2V2rkc exp[- ik(c +d) - i(n/4)). (Iv. 28)

In the limit ¢ — =, the incident field in (IV, 1) then be-
comes a plane wave given by

u} = exp[~ ik7, cos(p, — Q). {Iv.29)

Multiplying the final result (IV.27) by the same factor
(IV. 28) and letting ¢ = <, we obtain the total field on the
incident shadow boundary when the incident field is
given by (IV. 29), namely,

ut(ry, pg =1 +Q) =P +k1/2Q + kR + O(R™/?), (IV.302)
where
= , 1 1 sfr\ 2 30b
P=exp(zk’r(,)[‘—1 + 5, tan (d) ], (Iv. 30b)
- e:_:E|z'(k'ro+1r/4)|(1 1 ) T
= e -, Iv.30c
Q 2v2r «/170'+ Vr,+d/ 2sinQ ( )
R—_iexp(ikro) 7N . 1 _d 7cosQ +R
T 8nvrd 2(ry+d)  sin2Q  ry+d sin’Q tuts
(Iv, 30d)
n
=
'
LA 1
(=]
o 3
2
ST “ax
o N2\
TE . T,
c=d =2 ---‘$2£i‘\
Q= n/4 Jo
2 Y
.0 1.0 2.0 3.0 4.0
rolk
[ ]
©
[}
- 3
S o
BT
3
&
- o
2w
o -
3 [}
%
<
Arg (ut/ui) =0 for 1
(=]
o
o + — —+
0.0 1.0 2.0 3.0 y.g
rolx

FIG. 9. Normalized total field on the incident shadow boundary
of two staggered parallel plates (Fig. 6) for TE case, «! is
caleulated from Eq, (IV. 27) with one, two, and three terms
(indicated by 1, 2, and 3, respectively, next to the curves);

u' = explikr, +in/41/2/27kr,, where r,=c+d+7y.
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= exp(i2nkb)
2372

— 7 ; 1/2 s
Ry = &M[(g) sin ~ exp(i2kd)

8mry+d [\b c08%Q m1
2
« fan ﬂ]
4vd j°

The final result in (IV, 30) may be compared with the
rigorous solution derived by Jones in Ref. 8, Jones’
solution is a uniform asymptotic expansion for the total
field u*(ry, ¢,) in the forward region 7 < ¢, < 27; this
expansion contains terms up to O(t™) [term of O(k=3/%)
is not included]. In Ref. 17, Jones’ solution is special-
ized to the case ¢, =7+ (a step that involves some
tedious limit computations). It is found that the result
agrees precisely with (IV, 30), except that B,,, in

(IV. 30e) does not appear in Jones’ solution. The term
R,,, describes the interactions between the parallel
plates: (i) the first term in (IV. 30e) accounts for the
multiple reflections and diffractions along the shadow
boundary x=~1, 0 <y <b (Fig. 6), and (ii) the second
term results from the interaction between the edges
along their connecting line. Jones did not consider these
two types of interactions which explains the absence of
R, in his solution.

(IV. 30e)

It is also interesting to observe that the interaction
contribution described by R,,, is of order O(k}) pro-
vided that Q#7/2 and € is not close to 1r/2. When
Q=7/2 precisely, the interaction contribution is of
order O(k%), as can be seen by comparison of the re~-
sults in Sec. II and that of Jones, Thus, as Q —7/2,
the interaction contribution increases from O1) to
O(%"). It would be desirable to derive a result which is
uniform in §; however, such a derivation seems beyond
our means for the moment.

APPENDIX A: EXACT SOLUTION OF DIFFRACTION
BY TWO NONSTAGGERED PARALLEL PLATES

For diffraction of an incident plane wave by two non-
staggered parallel plates, the problem has been solved
exactly by the Wiener—Hopf technique (see Ref. 12, Sec
3.2, or Ref, 13, Sec. 3-12). The solution is given in
terms of an inverse Fourier transform, and it is exact.
We have evaluated the inverse Fourier transform and
obtained the far field solution. When the incident field
is given by (IL 1) (normal incidence), the total field
u® in the upper half-space (y > a), far away from the
edges, is found to be (Fig. 1)

~ ; 3
W (ryy dp) ~ (71, dp) + exp (- ila) SREETLZT/D)] ;(j;%;_f/ U by, 31/2)

>(<G+(k c08¢1)G.(k cos3n1/2) + CNh(k c0s,)G,(k cos3n/2)

2

- 1),
where u! is the (exact) total field due to the upper plate
when the lower plate is removed, and is given by

ut = explik(ry - a)] {F[V2kr;cosi (¢, - 31/2)]

+ TF[V2ky, cosi(¢, +371/2)].

Here the Fresnel integral F is defined in (IL 7), K~e11er’s
diffraction coefficient D in (IIL 5), and G,(a) and G, (o)

in Appendix B, The solution in (A1} is valid uniformly
for all ¢4, between 7 and 27, and for an arbitrary ka.

kri—», m1< ¢y <27, (Ala)

(Alb)
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In deriving (A1) from the said inverse Fourier trans-
form, we have used the following procedure: First, the
integrand of the inverse Fourier transform is decom-
posed into a term which exhibits a pole singularity and
a second term which has no such a pole singularity but
contains a branch singularity. Evaluation of the first
constituent yields the field «% in (Alb). Saddle point
integration of the second constituent yields the remaind-
er of (Ala).

We are interested particularly in the total field exact-
ly on the reflected shadow boundary ¢, = 3n/2. Setting
¢1=(37/2) - 6, where 56— 0 and making use of the
relations
D(¢y, 31/2) = (27/06)[1+ O(3)],
G, (k cosy) = G,(0) - 5kGL(0) + O(8%),
G.(0)=[GO]'"2,

we obtain

u(ry, ¢y =31/2)

~exp[=ik(ry +a)] + 3Texplik(r, - a)]

explik(ry - a) +°i(n/4)] _ - kGY0)
- 2\/21”1@71 (1”[1 exp(tka)1 =215y

k§£(0)>
G0/’

For large ka, formulas (B20) and (B21), Appendix B,
may be used in (A2); then «’ becomes

+ 11 + exp(ika)] kri—o. (A2)

u‘(afi, by= %)~exp[— ik(ry +a)] + exp[ik(r;~ a)]

y 1+L(9_>“2§'* (_1__L>
2 w\rn) = \Emei

. _ expin/ 4)]
Xexp(i2nka) o N

kv~ and ka— =, (A3)

Corresponding to (Al), the solution of u® in the lower
half-space (y <0), far away from the edges, is found to
be (Fig. 1)
ut (vy, do) ~ui (7, bg) ~ exp(= ika)—-l———lexP ilkry +7/4) D(dy, 7/2)

2V2nkr,
[G+{kcosd )G,k cosm/2) = G.(k cosd,)G.(k cosn/2)
\ 2
+ exp(ika)) , kry— o, T<¢y<2m, (Ada)

where u] is the (exact) total field due to the lower plate
when the upper plate is removed, and is given by

ul = exp ik | F{[V2kr, cos (¢, = 7/2)]
+ TF{ V27, cos3(p, +m/2)]}.

Exactly on the incident shadow boundary ¢, =31/2, we
obtain the total field #* from (A4), namely,

3m\ . , expli(kvy +7/4)
t LA P S b
u (ro, ol 5 ) z explikry) + T

(Adb)

x <7'+ {1 - exp(- ika)] k((;?:((o()))

y kf“;,’(O) ) ,
G.(0)

+[1 + exp(- tka)]

kyvy— o, (A5)
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For large ka, the use of (B20) and (B21) in (A5) leads to
37 . 1 1 fa\!? 1 (a)“2

t oM 1_tr (e {8

u ("’o, o= 2) exp (ik7y) [2 o (”o) *or 7,
x i (—1—- - ——1——) exp(i2nka)
mi\V3n V2n+1
exp(in/4)

+T-2§\I;-2——1r—;—%], kyy,—w and ka—«, (A6)

APPENDIX B: FUNCTIONS G, (o) AND G. (a)

We are interested here in the factorization of two
functions

G(a) =1 - exp|[- a(o? - k})!/?], (B1)

G(a) =1+ exp[~ a(a® - £%)!/?], (B2)
in the manner

G(a)=G,(a)G,(- a), (B3)

G(a)=G,(a)G (- @), (B4)

where G,() and G,{a) are regular in the upper half
complex a-plane (Ima > 0) and have algebraic behavior
at infinity, These two factorizations have been studied
extensively in the literature, Here we simply list
several useful final results.

(i) Infinite product forms® 1213

G,(a) =[2(1 + o/k) sin(ka/2)]'/? exp(~in/4)
X exp[ (¢ aa/27)(1 - C + In(dr/ka) + 31i))
x exp{(iay/2n) Inf(a = 1)/ ]} I1 (L + &/iy,)
xexp(iaa/2nr) , (B5)
G.(a)=[2 cos(ka/2)]/? exp[(i aa/27)(1 - C +In(n/ka) + 37i)]
xexp {(iay/2m) Inf(a - T)/k]}él A+ /ivnqs3)
xexp[iaa/(2n - 1)1], (B6)

where C=0.57721--- is Euler’s constant, y=(a?-k%)!/?
==i(E* - oD% and y, =[(2m7r/a)? - K*}1/?
= —i[E? ~ @mn/a)?]'/? with m =n or n - .

(ii) Relation to Weinstein’s functiongi® %

G,(a) =exp[U(a/k, ka)], (BT)
G, (o) =exp[T(a/k, ka)). (B8)
Here U(s, ka) denotes the exact Weinstein funection
1 ® ,
U(s,ka) = o /_; In[1 - exp(ika - kat?)]
-2 102141 /2
1 +i2)A + 5B (B9)

11+ BRYT- 217 5 oxplin/d) 0

and U(s, ka) is again given by (B9) after replacing
In[1 - exp(ika - kat?)] by In[1 + exp(ika ~ kat?)). In Ref.
18, an approximation for U(s, ka) was introduced,

U, ka) = 5% f mln[l - exp(ika - kat?)]

1
X T s explin /)Y (B10)

and various properties of U, (s, ka) were discussed. It
has been shown!? that the error of this approximation is
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O(t™1a"), uniformly in s.

(iii) Asymptotic expansion for large ka when a/k is
not close to zero!®1%;

6.(2)=1-SREA) £ 5 SR, op-tart), (1)

-~ y k fuid g n -nk -

G.(0)-1- SREHH £ 3 CLABIRD L opta
(B12)

which can be derived starting from either (B9) or (B10).

(iv) Logarithmic derivative at a =0:

kGi(0)_1 +@ [— C+1n(—41) +i—1-r]

G(0) 2 2 kal 2

tka 2\ f1 1
T 21(; - ——“—m—ﬂ,q) , (B13)
£Gi(0) _ ika (N .7

G0 2n [’C”“(ka)”z]

tka ( 1 1
“or mi\@m- 3 [(e- 32— (ka/2”)2]1/2> ’

(B14)

where [m? - (ka/27)2]1 /% = = i[(ka/27)* = m®]!/? with m =n
or n— 1. The derivations of (B13) and (B14) follow from
(B5) and (B6), respectively. An alternative representa-
tion of the derivatives reads

kG.(0)

DT\ L - 1)
G0 " ika ;@1 HY (nka), (B15)
kGUO) _ tka Z’: (~ 1)"H® (nka). (B16)

*

To establish (B15), let us start with the logarithmic
differentiation of (B7), viz.,

kGL0) _ 3
C.(0) " 75 Uls, ka) -
-1 /2 . ©
_2 ;:z (én/4) f In[1 ~ exp(ika - kat?)]
, (1 +388)(1 + 3it?)1/2 at
[t + 222~ 2 2s exp(in/8) P | o0

Integrating by parts, we find

RGL(0) (2-1/ % exp(in/4)
G.(0) ~ 2i

In[1 - exp(ika - kat®))
5 (=1) )
t1+ )T 9172 exp(iﬂ/4) 20

. 21 2expin/4) [~ exp(ika- kat?)
27¢ 1 - exp(ika - kat?)

-c0

% 2kat dt
H1 + L4RN/2 - 27172 s exp(in/4)” | o
_ exp(~in/4)ka ’/’“°
V2r e

at
TR

exp(ika — kat?)
1 - exp(ika — kat?)

(B17)

The integrand can be expanded in a geometric series
yielding
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kG!(0) exp(-in/4)ka & exp(= nkai?)
G.(0) T 7\ e (mka)[ Q.+ Lo dt,
(B18)

By applying the substitution > =2s, the integral in (B18)
becomes

/‘w exp(= nkat®) dt

(1 +zR2)1/72

- exp(~ in/a)VT f M

)1/2

exp(in/4) exp(~ i nka)H" (nka), (B19)

T
V2
according to Equation 4.3 (16) in Ref. 20. On substitu-
tion of (B19) into (B18) we obtain (B15). A similar proof
holds for (B16).

(v) Logarithmic derivative at a =0 for large ka:

i - R a3 SRR ot

(B20)

kG’(O) exp(-zn'/4) (ka )1/221 -1)" e)_(g(mka L0 -1/

G,(0) Var
(B21)

which are obtained from (B15) and (B16) after replacing
the Hankel functions by their asymptotic expansions.
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Gauge dependence of Green’s functions in quantum
electrodynamics from parallel translation
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The classical concept of parallel translation is extended to scalar quantum electrodynamics in order to give
a gauge-independent definition of differentiation. This is achieved by a suitable definition of time ordering
for operator products. However, due to some essentially nonlocal commutation relations, the differential
equations for the Green’s functions are still gauge-dependent. The gauge dependence of the commutators
can be removed by parallelism at large. Since this is not considered to be a physicaily reasonable concept,
the gauge dependence of the Green’s functions is discussed for general linear gauges in space-time.

1. INTRODUCTION

In classical field theory one is used to define the
gauge-covariant derivative of charged fields by means
of gauge fields or potentials. In scalar electrodynamics,
e.g., the gauge-covariant derivative Vv, of the charged

scalar field ¢(x) is defined by
V,$:=(9, ~ieA,)o, 1.1)

where A, is the electromagnetic potential and e is the
coupling constant. This quantity is clearly covariant
under the gauge transformation

¢ (%) ~ ¢ (x) explier(x)],
A, (x)-A, (x) +3,A(x)

(1. 2a)
(1.2b)

for any function A(x). The coupling with the electromag-
netic field strength F,, is provided by the relations

(V,V,=V,9,)¢=—ie(d,A,-03,4,)¢0=:—ieF,,o,
(1.3)

from which we obtain the homogeneous Maxwell
equations

3,F,, +2,F,, +3,F,, =0 (1.4)

by a further derivation V, and application of the Jacobi
identity. We further have the field equations

(v 9, +m*) ¢ =0, (1.5a)
F Fuy=ie(p(V,0)* = $*V,0) =1j, (1.5p)

where ¢* means the complex conjugate of ¢ and j, is
the electromagnetic current.

This simple setup can also be considered from a more
sophisticated point of view. Let us regard the value
¢(x) of the complex scalar field at x as the component
of a complex vector attached to x. By analogy with dif-
ferential geometry this suggests to introduce the con-
cept of parallel translation of vectors by the require-~
ment that the Hermitian scalar product of any two vec-
tors with components ¥(x) and ¢(x) is conserved under
parallel translation along a curve £(s) in space—time.
The condition

£ [N (E(s) =

implies that y(s) and ¢(s) obey linear homogeneous dif-
ferential equations along £(s),

(1.6)
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d¢ —ieA, ”ff"qs 0, (1.17a)
‘fl‘p* +ieA, dgu P* =0, (1. 7b)

where the coefficients A, are components of an arbitrary
but real Lorentz-vector field. The introduction of the
potential is now motivated by the requirement to give

a definition of physical equivalence for vectors at differ-
ent points in space—time. The answer is that vectors,
which can be mapped onto each other by parallel transla-
tion, are to be considered as physically equivalent.
Along a curve £(s) with £(0) =x such a mapping is pro-
vided by the solution of (1.7a):

o (x) = p(x) eXp(ie fiA(x+9 dg“) =: )T (x). (1.8)

Parellelism at large is of physical relevance only, if

‘it does not depend on the path choosen. This is not the

case in the presence of an electromagnetic field if we
relate the field strength F,, to the potential A, accord-
ing to (1. 3). Keeping the end point fixed, we obtain for
a variation 6%(s) of the path from (1. 8)

6, Ts(x) =~ie [JF,,(x+§ 6 de". (1.9

Locally, however, the notion of parallelism enables us
to define the gauge-covariant derivative unambiguously
in terms of the potential:

T (x)o(s) - o(x) _ _ [d&*
hm———s——— : <_d;V

s~0

) = —ieA, )00,

(1.10)

This is sufficient to give the field equations a gauge-
independent meaning because they involve only local
properties.

The quantum theory of gauge fields suffers from the
fact that quantization as we know it is a gauge-dependent
concept. Without adopting a particular gauge, we can
only derive commutation relations for gauge-independent
field variables from the gauge-invariant Lagrangian,
e.g., by the method of Peierls.! To circumvent this
difficulty, Mandelstam??® has introduced gauge-indepen-
dent field variables that depend on the path instead con-
necting the field point with infinity. In scalar electro-
dynamics the path-dependent scalar field &(x, P) is con-
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structed from the scalar field ¢(x) and the potential
A, (x) in an arbitrary gauge according to

&(x, P) : = ¢ (x) exp(-ie [, A, (£) d£*), 1.11)
or, as we would say, by parallel translation from x to
infinity. Such an approach, reminiscent of the early at-
tempts of Einstein® to introduce soniething like paral-
lelism at distance, cannot be considered physically sat-
isfactory as mentioned above. Instead of using parallel-
ism at large to eliminate the gauge-dependence, we sug-
gest transfering only the local implications of parallel-
ism to the quantized theory. This requires a local de-
finition of parallel translation for time-ordered products
of field operators by means of potential operators. In
Sec. 2 we shall derive the commutation relations for
field variables and potentials insofar as they are needed
for a local parallel translation of time-ordered products
of scalar field variables and electromagnetic field
strengths. By starting from the commutation relations
for gauge-independent variables, this can be done quite
generally without adopting a particular gauge. For cal-
culational purposes it is, however, advisable to re-
strict ourselves to linear gauges. Parallel translation
and gauge-covariant derivation of the Green’s functions
will be introduced in Sec. 3. In Sec. 4 we shall sum-
marize the corresponding field equations using the con-
densed notation introduced by Mandelstam.?® Their solu-
tion by perturbation theory yields the Green’s functions
in an arbitrary linear gauge. An extension of the meth-
od proposed in this paper to non-Abelian gauge theories
is in preparation.

2. COMMUTATION RELATIONS

The classical Poisson brackets for gauge-independent
field variables can be derived from the gauge-invariant
Lagrangian

L= 5F,,F*’ +(V,0)*V" ¢ — mip*¢ (2.1)

by the method of Peierls' if we relate the gauge-covari-
ant derivative and the fields strength to the potential
according to (1.1) and (1. 3). We first state the corre-
sponding commutation relations between two field-
strength operators,

[F()i(x’ xo), FOJ(YJ xo)]:(),
[Fij(xy %), Fkl(Y7x0)]:0,

(2.2a)
(2. 2b)

. d b}
[F(Ji(x; xo}, Fiuly, xo)} =t (‘5u a—‘y‘é -0 5;;}‘5(}(— y).

(2. 2¢)

Here and in the following we use Latin super- and sub-
scripts for the spatial components of Lorentz tensors.

The only nonvanishing commutators between two scalar
field operators are

{0z, x), (Voo ly, x))* 1=ib(x - y),
[¢*(X, xO); V0¢(Y’ xO)] = lé(x - y)'

Next we consider the commutation relations between
electromagnetic and scalar field operators. The com-
mutators between the spatial components F;, and scalar
field variables vanish because these variables are dy-

(2. 3a)
(2. 3b)
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namically independent. However, the commutators be-
tween the space—time components F\; and scalar vari-
ables must not vanish if we require that a suitable ver-
sion of the classical field equations holds in the quant-
ized theory. The O-component of (1.5b) is a condition
of constraint,

O F =y =1el¢(V@)* = ¢* V0. (2.4)

(We should, of course, use normal products of apera-
tors, but we shall not write them). The commutation
relations (2. 3a)—(2. 3b) imply, e.g.,

Uﬂ(xr x())’ ¢(Y, xo)]=€5(x—y)¢(y, xo)- (2.5)
This requires
[FO{(x!xO):¢(y’x0)]:eri(x’y)¢(Y:x0) (263-)

with
' (%, y) = - d(x-y).

The method of Peierls tells us that the commutator of
Fy; and ¢*¢ vanishes. Hence,

[FOi(x’ %), ¢*(y, xo)] =-ed*(y, xo) I, (x, V). (2. 6b)

The same argument leads to analogous commutation
relations between Fy; and V¢ or (Vyd)*. In general the
quantity T';(x, y) is an operator depending on the field
variables. A comparison of Eqs. (2.6a) and (2. 6b)
shows that it must be an Hermitian operator. Further-
more, the operator has to obey the conditions imposed
by the Jacobi identities.

To derive the commutation relations between Fy; and
the spatial covariant derivatives V;¢ of the scalar field,
we first determine the commutator of Fy; and the gauge-
invariant quantity ¢*V;¢ by the method of Peierls. The
result is

{FU{(X; Xo)y O*{Y, X9 V;6(y, %)}

=—eb,;6(x -y o*(y, X))oy, Xo). (2.7
We now observe (2. 6b) and obtain
[Foi (%, x0), V;6(3, x0)]

=—eb;;6(x~y) +el'(x, y)V;6(y, x0). (2.8)

Finally we express the covariant derivation in terms of
the potential,

Vip=(3; —ieA;)¢

and conclude from (2. 8) and (2. 6a)
R 0
[Foi(X, xy), AI(Y7 xo)]z -1 <6{j5(x_ y +5?'rf(x: Y)> .

(2.9

These commutation relations are consistent with Eq.
(2. 20) for

Fa= 04, - 3,4,
and with the condition of constraint (2. 4).
If I'; is a c-number, i.e., a real function, we see
from (2.9) and (2.7) that the operator
[ atgH Ay, vor;6", y)
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commutes with all the field variables. Hence we must
have

[ ary"A'(y, y0I, G, ) =By, v0), (2.10)

where B is also a c-number function. On the other hand,
any linear gauge condition that is consistent with the
commutation relations and does involve only the spatial
components of the potential can be written in the form
(2.10). A generalization to gauge conditions linear in
the four components of the potential will be given in Sec.
4. Taking into account the field equation

0pAs = 9 4g=Fy,
we obtain by means of (2.10)

Ay, y9 == [ ATy )Fu(y’, 30T (s', y) +3,B.  (2.11)
Together with (2.7) and (2.9), respectively (2. 6a) and
(2. 6b), we compute the commutators
[Aq(x, x0), A,(y, x0)]

=_i(r,(y, 0 -50 [dT(y')F'(y', 0T, y)) . (2.122)
[A4(x, %), ¢(y, %0)]

=—ef dr(y )Ty, 0T, (y', Yoy, %)), (2.12b)
[AO(X, xo), ¢*(Y, xo)]
=e [ ar(y)ri(y’, 0T,y y)o*(y, %). (2.12¢)

We emphasize that the commutation relations (2. 12a)—
(2.12¢) hold only for linear gauges which satisfy the
condition (2. 10). For the Coulomb gauge, e.g., we have

0 1
D&Y== 57 Ty (219

Another example is given by what might be called a
path gauge, defined by the condition that the integral
over a spatial path £(s) from the field point x to infinity
should vanish. If £(0) =0 and E(s) tends to infinity for

S = —°, we may write

0 d ]
./;dsd—iAi(x+ £ =o0. (2.14)
The function I'; is
Tx,y)=- [Ldsox-y+8). (2.15)

A special case is the axial gauge with &(s)=ns, Inl=1,
which has been used by Arnowitt and Fickler® and
Schwinger® in context with non-Abelian gauge fields.

3. GAUGE-COVARIANT DERIVATION OF TIME-
ORDERED PRODUCTS

In this section we shall give a definition of time order-
ing that is compatible with local parallel translation and
gauge-covariant derivation. We start with the time-

ordered products of scalar field and field strength
operators,

f(¢(x1)¢(xz) coe O¥(1)P*(Wy) - -« Fy (29) Foolzy) -+ ).

The time-~ordering T is the usual one for products of
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scalar variables alone. We shall denote the latter by
the symbol T, e.g.,

T(g (o)) : = T(H91))
=68(xo— 999 X)P () + 6(yo = x)p () P(x). (3.1)
On the other side it is well known that we have to define
T(F (20 F ,o(2)) : = T(F, (21 F,4(25))
+ z(gﬂgf, - gfgi)(gfgf, - guogi) 045 8(zy - 2p),
(3.2)

in order to get Lorentz-covariant field equations, It is
easily checked by means of the commutation relations
(2. 26) that the definition (3. 2) satisfies

o* f(Fup(Zl)Fpo(zz))

=T (3" F,,(21) F,4(25) +i(g:,0, = £3,)6(21 = 25), (3. 3a)

a[).f(Fuv](zl)Fpo(zz)) = T(a[hFuv](zl)Fpu(zz))s (3= 3b)

where the symbol [Auv] indicates cyclical permutation.
The time ordering T shall, therefore, include contribu-
tions in accordance with (3. 2) for any pairing of field
strength operators.

We next turn to the definition of T ordering for the
product of a potential and a field strength operator. Ob-
serving the commutation relations (2. 9), we can
compute

9, T(F,,(2)4,(2") = 3.T(F,,(2)4,(z")
=T(F,,(2)F,u(2) +i(g) g, - g78.) (8584 - £i8D)

x(éué(z—z') +£,;I‘i(z,z')6(z0—za)>. (3.4)
Hence the definition
T(F,,(2)A,(2") : = T(F,,(2)4,(z") +i(glgl - g'gl )8’
X[ (z,2")6(zy~ 2 (3.5)

secures that

8,T(F, ,(2)A,(2")) = 3. T(F,,(2)A,(2") = T(F, (2)F,,(z")).
(3.6)

This is sufficient to extend the T ordering to products
of field operators containing one potential operator, in
the sense that in addition to extra terms of type (3. 2)
we have to write an extra term of type (3.5) for each
pairing of the potential with a field strength operator.
We now define the gauge-covariant derivative of the T-
ordered product by

GoTP@) - Fooe) -+ +) := 3, T(d(x) + - - Frol2) - +-)
—eT(A, () p(x) « -+ Foolz) - - -).
8.7

Performing the differentiation, we see that the contri-
butions according to the commutation relation (2. 6a)
cancel against the extra terms according to (3. 5). Hence
we obtain

VoT((x) -+ Fol2) -+ *) = T((3, - ieh, ()))p(x) - -+ F,(2) - )
=T(9,0(0) -+ F(2)--+), (3.8)

Kurt Meetz 1767



where the symbol A » indicates that the extra terms ac-
cording to (3.5) have to be dropped.

Let us now consider second derivatives. There is no
problem if the first derivation is timelike and the second
is spacelike. In accordance with (3. 8) we define

€‘€0T~(¢>(x) e Fo(2) )= T(V‘G(@(x) e Fo(z) )
(3.9)

For the reversed order we refer to the definition (3.7)
and apply the commutation relations (2. 8),

VoV T(d(x) - - Fool2) -
ZBOi(V,¢(x) A ‘Fpa(‘z) s ')
- ief(Ao(x)V,q&('x) v ch(z) e )

= - e(grgl - £08) 0y, 0(x - T(- - +)
+T(VyVip () -+ - Fppla) - o) o (3.10)
In general we may write
(¥,9,-9,9)T(@®) - Foole) - - +)
= e(gh el - 20gh) (erel — 20gl) 6y 6(x = 2)T(- - )
ot TV, 9, = 9,9,)0() - Foplz) +++).  (3.11)

If we assume the field equation (1. 3) also in quantum
theory, the latter term should be

~ieT(F,, ()¢ ) - - Fpulz) - +-).

Thus we see that the extra terms required in accordance
with (3. 2) to include the operator F,,(x) into T ordering
are just supplied by the former terms of (3.11). The
field equation (1. 3) also holds for T-ordered products
without additional terms,

~ o~

(V,9,-9,9,)T(px) -

ieT(F, (o) -

Foo(2) ")

Fpo(z) . ) (3. 12)

The related homogeneous Maxwell equations (1.4) have
already been shown to be true for T-ordered products
[see (3.3b)].

It should be emphasized that the relations (3. 12) bave
been obtained without making any assumption on the
gauge defining operator I';. Formally this is due to the
fact that in order to derive (3.12) it is sufficient to de-
tine T-ordered products containing only one timelike
component of the potential. If we want to go further and
to transfer the field equations (1.5a) to quantum theory,
we have to introduce T ordering for products including
at least two timelike components of the potential. To do
so, we start from the relation

8, T(A,(x)A,) - 3, T(A, (x)A,(»)
=T(F,,()A,)) + (g0 g - g3gt ) gl A, (),
X 6(xg= o).

Ayp)]
(3.13)

The commutator involved can only be computed if we
make assumptions on the gauge. We shall adopt the lin-
ear gauge condition (2.10) and apply the commutation
relations (2. 12a). In order to be in agreement with Eq.
(3.5), we have to define
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T(A,(0)A,0): = T4, (x)A,0)) - ighgs [ dTly")
Xy, X0, (y', Polx— o). (3.14)

Thg definition of the second gauge-covariant derivative
¥y, is then straightforward. Observing (3.8), we are
led to write

VO T (p(x) -+ - p*(@) -+ Fy(2) -+ *)
=3,T(Vyp(x) -+ - 9*(y) - <+ F, (2) - - )
—ieT(A ) Vpp(x) -+ p*(3) -+ F,(2) --+).  (3.15)

This can be evaluated by means of the commutation re-
lations (2. 6a) with ¢ replaced by V¢ and (2. 3b). Again
the equal time contribution from (2. 6a) cancels against
the additional term included in the second expression
according to the definition (3. 5) of T ordering. We
obtain

G T(d(x) -+ - p*(y) - - Fypf2) -+ +)
= i0(xmy)T(---F, (2) -+ ) +
+ (0,0 (x) - - - * (@) -+ - F (3.16)

In the latter term both potential operators are excluded
from T ordering. The same relation holds for T-ordered
products with an arbitrary number of potential opera-
tors if we extend T ordering to products of more than
two potential operators by the agreement to add extra
terms in accordance with (3. 14) for each pairing of
potential operators. Bearing in mind that T ordering

is not affected by spacelike gauge-covarlant derivation,
we can now transfer the field equation (1.5a) to T-
ordered products of scalar field operators and potential
operators in a linear gauge:

uv(z) .. °)-

T, 0 T(p(x) -« *(3) + - - A(2) - - -)
=—ib(x—y) f(---A,,(z)---)%—
—mzf'(q)(x) .- .¢*(v) e A(R) ) (3.17)

Our final task is to extend the field equation (1.5b)
to T-ordered products. Together with (2. 9) and (2. 11)
we first derive from (3. 5)

*T(F,,(2)A4(z) = T(3" F, (2)A,(2")
+1 (guoé(z - Z,) - 32 ogzri(zy Z')
X 6(zy— zg)> (3.18)

For the general product we have also to take into ac-
count contributions according to (2. 6a) and (2. 6b):

< p*(y) ..

d
=1 (g,,,b(z -z —mg,fl‘;(z, z")6(zy - z6)>

* T(p(x) - - Fy (2)Ag2]) - - )

Xf(¢(x) ceed*(y) e ) oo egil(z, x)8(z0~ xy)

XT(p(x) - - p*(p) - - A2y )+~ egily(z, y)
X 6(zg=y) T(P(x) « + + @ *(p) + - - Agle) -+ o) +
+T(¢(x)...¢*@)...a“Fw(z)Ao(z’)...)_ (3.19)

For later reference we remark that the gauge function
appears only in the formation

(%, 9) : =g, (x, ¥)8(xg— 3y, (3.20)
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which is a particular solution of the differential
equation

AwT,(x, y) == 6(x-y). (3.21)
The field equation (1. 5b) requires
T(p(x) - -+ ¢*() -+ 0“ F, (2)A(2") - - )
=ieT(p(x) - - - 9* (D) (2)(T,8(2))* — d*(2)
X V,0(2)A(2") -+ -), (3.22)

where the symbol V, is to be understood as in (3.8). In
accordance with (3. 8) we can also write the rhs of
(3.22) as a gauge-covariant derivation of a T-ordered
product

f(¢(x) s pX(y) - 'jv(z')Ao(z ...
=ie(V¥ - V) T(p(0) ¢ (2) - - - 9*()
X¢*(w) « + + Ag(2")) | og- (3.23)

Finally we mention that we may also extend the gauge-
independent definition (1.10) of the covariant derivative
to T-ordered products by

lim3 1 ((a(p( ie f A+ dg“) ¢(s)—¢(x))

cep*(y)---A (z =9, T(p(x) - -
x¢*(v),,,Ap(z

d
(3.24)

because we have defined T ordering for products with
an arbitrary number of potential operators.

4. GREEN’'S FUNCTIONS

In this section we wish to derive the field equations
for the Green’s functions following from the field equa-
tions for T-ordered products we have obtained in the
last section. The Green’s functions are defined by

Gu.-..(x---y...z.,.):
:<0|i“(¢(x)"'¢*(y) '--Au(z) -..) (4. 1)

The general structure of the differential equations for
the Green’s functions is best displayed in terms of
Mandelstam’s condensed notation,® which we summar-
ize shortly.

Consider the set of functions

Fyoxgeeoyreeezye-e),

depending arbitrarily on the space—time variables
(xy+++yy+++2y+--). We may look upon these functions
as linear forms over a vector space V, i.e., special
bilinear forms over V*XV, where V* is the dual space.
This view is indicated by the notation

=iy ey o) | B,
(4.2)

The symbol ( | ) denotes the canonical bilinear form
over V*XV in the sense of linear algebra. F is any ele-
ment of V while the quantities ¢,...(x; <<y -+c2y+4+)
have to be considered as basis elements of V*. The
Green’s functions (4. 1) are obtained for a particular
vector F=GeV,

Fu-u(xl"'yl"'z],

Next we define linear operators ¢(x), ¢(y), and 4,(z)
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that act on the basis elements of the dual space as
follows:

eu-o-(xl"'yl"'zl"')5(’5):=eu---(x1"'x;yl"'zl"'):

(4. 3a)
I R R D L1 R (AR TRy PRy i SOy §
(4. 3p)
oty reozyen )AL D) =y Ky e Yy 2y e 2).
(4. 30¢)

The operators are denoted by a tilde in order to dis-
tinguish them from Hilbert space operators. The action
of the operators on elements of V is defined by trans-
position according to the rule

(e‘““(x1 ceePpeceZyee .)(;(xHF)
=:(ey ..ty ooy -eezy---) | B)F). (4.4)

A second set of operators 7(x), 7(x), and Z,(z) is need-
ed to produce the source terms of the field equations.
We define them by means of the commutation relations

[n(x), *(@)]=i6(x - y), [n(x), $x")]=

[n(x), A,(z)]=0, (4.5a)
(i), ¢ =id(x-y), [AB), *¢)]=0,

[7(x), A,(2)]=0, (4. 5b)
[z,(2), E,(z')] =- i(g,,,d(z -2z —5—2-;;[‘,, (2, z')) (4.5¢)
[2,(2), (x)]=- el ,(z, %) $ (x),

[2,(2), %)= €T, (2, y)$* (), (4.5d)

where I', is defined as in (3. 20). Furthermore, we
require

en(x) =0, eT(y)=0, eZ,(z)=0. (4.6

e, is the basis element of the one-dimensional subspace
of V,

(e P eC.

The action of the operators on elements of V* is then
completely determined and may be transferred to ele-
ments of V by transposition.

The field equations for the Green’s functions can
easily be formulated within this framework. Gauge-
covariant derivation of the basis elements is defined by

aveu(x...yl...z1...)::aveu(x...,yl...z‘...)

—dee,(x--y, z1);1;,(x),
4.7
or, equivalently, by the operator equation
9,800 =[2, - ie4, (016 (x). (4.8)

This is in agreement with the covariant derivation of
Green’s functions as determined by (3.7). The gauge-
independent field equations derived from (3.12) are re-
presented by the operator equation

(¥, 9, - V,9,)8 () =~ieF, ,(x)¢(x), (4.9)
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where
F, (@) =0,4,() - 3,4, (2).

Consequently, the field equations corresponding to the
homogeneous Maxwell equations (1. 4) are also repre-
sented by operator equations on V*,

(4.10)

The situation is different for the field equations that
follow from (3. 17) and (3. 19) for the Green’s functions.
The latter give rise to the following vector equations
for the Green’s vector G:

[V, 6(x) + m?(x) - n(x) ] G=0, (4.11a)
(79, $ON* +m2E*(y) = Tiy))G =0, (4.111)
[“F,,(z) =7,(2) - Z,(z)]G=0. (4.11c)

Here 5,‘(7; and F,, are defined by (4. 3) and (4.10) re-
spectively. The operator j, is given by

7, =1el$(V,0)* = $*V,41 (4.12)
in accordance with (3.23). To obtain the differential

equations for the Green’s functions from (4.11), one
has to multiply with the basis elements

21 '“)2605(951) - *(0) '°'Ku(z1) Ty
(4.13)

eu.“(xl ceepy e

where the multiplication is defined by the bilinear form
(! ), and to shift the operators n, 7, and Z,, respec-
tively, to the left by means of the commutation relations
(4. 52)—(4. 5d) until the conditions (4. 6) apply.

We now deduce from the commutation relations
(4. 52)— (4. 5d) that the operator

auZu + ie(ﬁtg- 776*)

commutes with &, d;'*, and A:,. Furthermore, we see
from (4. 6) that

ez, +ie(@d - ng*)]=0. (4.14)
These statements imply the operator equation

3z, +ie(fi¢p — np) =0 (4.15)
and show that the Ward identity

(8%, +2'2,)G=0 (4.16)

holds in consequence of the field equations because it
follows from (4.11a), (4.11b), and (4.12) that
(0], +ie(ng* - Tp) ]G =0. (4.17)

Next we introduce the operator ¢, (z) defined on V*
by the commutation relations

(6. (2), &,(2") = ig,,8(z - 2), [£.(2), 6(x)]=0,

[, (2), *(»)]=0 (4.18)
and the condition
eo8, (2)=0. (4.19)

The commutation relations (4. 5c¢) and (4. 5d) and the
operator equation (4. 15) show that Z, is to be expressed
in terms of £, as follows:

Z,(2)=¢.(2)+ fd'*wl"u (z, w)
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x{0”¢, (w) +ie[Mw) b (w) - 7(w)* () T}. (4.20)

If we insert the expression (4. 20) into the field equa-
tion (4.11¢), we can use (4.17) and obtain with (4. 10)

B4 (z) - 3,[3* A, (2) TG

= (iu(z) +7,(Z)—[d‘w—g%(z, w)[ £°(w) +7"(w)]>G.
(4.21)

To rewrite (4.21) in integral form, we use the particu-
lar solution under Feynman boundary conditions,

A:,(Z)G: fd*wDF(Z - w) (gupb(z - w) —%Z‘—;'(z’ w)>

X[£(w) + 7 (w)]G, (4.22)

where
ODp(z — w) = 6(z — w)

and add a gradient term, which can be determined from
the gauge condition (2. 10). Together with (3. 20) the
latter can be written as

J&y'46r,6",9)6=B6"G. (4.23)

Let us put B=0 for the sake of simplicity. We then
obtain

Af2)G= [d*2'D,(z,2' | DT (z) +7 ()]G, (4.24)
where
Dy (z,2)|I) = fd“w fd“w' (g‘,’;é(z -w) —STF:(Z, w))

are
XngDF(w - W,) (g{'-é(w' -z I) T (w', z'))

(4. 25)

is the propagation kernel for the gauge defined by (4. 23).
The integration of the scalar field equations (4.11a) and
(4.11b) is straightforward. Introducing the potential A,
in accordance with (4.8), Eq. (4.11a), e.g., can be
rewritten as

d(x)G= [ @t aplc — " n(x") + ieA* (x"3a?, é(x)
+ied} [A, (x)p(x)] + 24" (x VA, (NG ()G,
(4. 26)
where @O +m?)Aap(x—x")=56(x-x").

The solution of the integrated equations (4.24), (4.26)
and the corresponding equation for ¢*(y)G produces all
terms summarized by the usual Feynman rules with
(4. 25) as photon propagation kernel.

Hitherto we have assumed that the gauge function [,
has the particular structure given by (3.20), due to the
fact that we started from equal-time commutation re-
lations. But having obtained the field equations for the
Green’s functions, there is no reason not to admit any
solution of the differential equation (3.21). This is just
the class of gauges considered by ngino” by means of
functional techniques. The equation (3. 21) is Lorentz-
invariant, but the solution generally is not. The only
covariant solution
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r,(x, =—a-DF(x—y)

57 (4.27)

leads to the Landau gauge, which is, however, not de-
termined uniquely. Noncovariant examples are given
by a generalization of the spatial path gauge (2. 15) to
space—time,

L) = [ldeb(x—-y+8), (4.28)

or the generalized Coulomb gauge.’

In conclusion we emphasize that it is not possible to
eliminate the gauge function I', from the field equations
for the Green’s functions in quantum theory. This is in
contrast to the classical field equations, where the con-
cept of gauge-covariant derivation is sufficient to re-
move any reference to a particular gauge. We could
have used field strength operators F,, instead of the
potential operators Eu . But this device only eliminates
the gauge function from the commutation relations

1771 J. Math. Phys., Vol. 16, No. 9, September 1975

(4.5c). We are still left with (4. 5d), where the gauge
function appears due to the quantum mechanical com-
mutators (2. 6a) and (2. 6b). These commutators are es-
sentially nonlocal. Hence, it is not possible to remove
their gauge-dependence by local concepts such as gauge-
covariant derivation. This can only be achieved by pa-
rallelism at large as in Mandelstam’s treatment, which

in our opinion is not a physically reasonable concept.
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Statistical theory of effective electrical, thermal, and
magnetic properties of random heterogeneous materials. VI.
Comment on the notion of a cell material

Motoo Hori

Department of Applied Physics, Tokyo Institute of Technology, Meguroku, Tokyo 152, Japan
(Received 21 February 1975; revised manuscript received 26 March 1975)

The concept of a cell material introduced by Miller is reinvestigated in connection with Brown’s assertion
that an asymmetric cell material is not self-consistent [J. Math. Phys. 15, 1516 (1974)]. We construct a
simple example of the asymmetric cell material which is in fact self-consistent. The misleading
interpretation of the asymmetric cell material is due to Miller rather than to Brown.

In previous papers!™ we dealt with the effective per-
mittivity of random heterogeneous media such as cell
materials or completely random materials. The con-
cept of a cell material was first introduced by Milter, &7
who defined symmetric and asymmetric cell materials.
A completely random material may be regarded as a
limiting case of a symmetric cell material.® Recently,
however, Brown® has claimed that while the symmetric
cell material is self-consistent, the asymmetric cell
materials or complete random materials. The con- -
tion would require some modification. The aim of this
note is to check the validity of Brown’s arguments and
to decide definitely whether or not the asymmetric cell
material is inconsistent.

According to Miller, " a cell material is defined as a
random multiphase material that fulfills the following
requirements:

(i) The space is completely covered by nonoveriapping
cells within which the material property is constant;

(i) cells are distributed in a manner such that the
material is statistically homogeneous and isotropic;

(iii) the material property of a cell is statistically in-
dependent of that of any other cell.

Of course, the assumption of statistical isotropy in

(ii) should be omitted when we treat statistically aniso-
tropic materials.! Furthermore, cell materials are
classified as symmetric or asymmetric, according as
the following additional requirement is satisfied or not:

(iv) The conditional probabilities of » points being
and »’ points not being in the same cell of a particular
material, given that one point is in a cell of that mate-
rial, are the same for each material.

Henceforth we shall confine ourselves to a cell mate-
rial composed of two phases A and B. By way of illustra-
tion consider two-point probabilities associated with
points r, and r,. Then the independence hypothesis (iii)
leads to:

(iii") The event of a cell containing material A or B
is statistically independent of the event of another cell
containing A or B.

As a substitute for (iii'), let us tentatively adopt a
plausible assumption:

(v) Under the condition that points ry and r, are in
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different cells, the event of point r; being in phase 4
or B is statistically independent of the event of point r,
being in A or B.

For phase A, this statement is expressed by

Prob{r,c ANr,c Alry, r; ¢S.C.}
=Prob{r,c A|ry, r,&S.C.}Prob{r,c A|r,, ra¢S.C.}.
(1
Here, for instance, the left-hand member denotes the
conditional probability that points r; and r; belong to
phase A, given that they are not in the same cell. An
alternative form of Eq. (1) is
Prob{r,cAlr,e Anry, r,és.C.}
:PTOb{r1€A|I‘1, rzdS.Ce}. (2)
In the process of calculation of three-point probabili-
ties, Miller substantially supposed®
Prob{rye Anr,e Anr, r,dS.C.}
= Prob{r, € A} Prob{r, c A} Prob{r,, r, ¢S.C.}. (3
Brown pointed out that Miller had implicitly interpreted
the independence requirement (iii") as follows®:

(vi) The conditional probability that point r, is in A
or B, given that point r; is not in the same cell with it,
is independent of which phase point r; is in, and is
equal to the absolute probability that point ry is in A or
B.

We remark that this interpretation is equivalent to
postulating not only Eq. (2) but also the relation®

Prob{r,c A|ry, ry&S.C.} = Probfr, € A}. (4)
Indeed, combination of Eqs. (2) and (4) yields

Prob{r;e Anr,e AN, r,dS.C.}
=Prob{r,c Alr,e ANy, r,&S.C.}
XProb{r,c A|ry, 12 &S.C.}Prob{r, r,¢s.C.}
= Prob{r; € A}Prob{r, c AtProb{r,, r,&8.C.}, (5)

which is nothing but Eq. (3).
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On the other hand, it is obvious that a symmetric cell
material obeys the condition

Probfry, r,eS.C. |y cAl= Prob{ry, r,eS.C. lr1 < B},
(6)

whence
Prob{r,, r, e S.C. lrleA}=Prob{r1, r;eS.C.}h (n
Namely, the symmetry condition (iv) is rewritten as:

(iv") The event of point r, being in A or B is statis-
tically independent of the event of points r, and r, being
in the same cell.

In Ref. 8, Brown showed that Eq. (6) necessarily fol-
lows from the assumptions (ii) and (vi), and concluded
that the concept of the asymmetric cell material is not
self-consistent. However, Eq. (6) or (7) can be derived
without assuming the statistical homogeneity and iso-
tropy of the medium. After some manipulation of Eq.
(4) we have

Prob{r;cAnr, r,&S.C.}

=Prob{r, € A}Prob{r,, r,¢S.C.}, (8)
so that

Prob{r,, r,&8.C. |r, € A} =Prob{r;, r,&s.C.},  (9)
which reduces to Eq. (6).

A serious question arises as to the above reasoning
by Miller and Brown: Does the independence hypothesis
(iii") really imply the statement (v) or (vi)? In (iii) we
speak of properties of cells, while in (v) and (vi) we
speak of properties of points.® Therefore, it is natural
to expect that (iii"), (v), and (vi) are not always equi-~
valent to one another.

As the simplest couterexample consider a one-dimen-
sional cell material on the x axis where cells of lengths
a and b are arranged at random. Here the term “random
arrangement” means that the process of placing cells
on the x axis is an independent trial and the probability
of choosing cells of each length has 2 common value
1/2. Denote a cell of length a by C, and that of length &
by C,. Moreover, phase A or B is independently as-
signed to C, cells with probability p, or g,=1~-p,, and

to C, cells with probability p, or g, =1~ p,, respectively.

The one-dimensional two-phase material thus defined
is clearly a kind of cell material, because it satisfies
the requirements (i)—(iii). Especially for one-point
probabilities, we easily obtain

Prob{r, e C}=a/(a+b), (10)
Prob{r; € C,t=b/(a+b) (11
and
a b
Prob{r; € A} =i th g (12)
b
Prob{r; e B}=qaai—b+qu, (13)

which are constant in conformity with the postulate of
statistical homogeneity in (ii).

For convenience let us suppose that a <b and p, #p,.
Proceeding in the same way as we did in Sec. 3B of
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Ref. 1, we can evaluate two-point conditional probabili-
ties as

Prob{ry, r,¢S.C. |r,e Cg}

{ |x12|/a for |x1z|$‘1

U for |xla]> a, (14)
Prob{ry, r;&S.C. |ry€ Cp}
{lxlzl/b for |x;,|<d

BLES Sy PHETS 19

where x;,=%,— x;. Multiplication of Eq. (14) or (15) by
Eq. (10) or (11) gives

Prob{r;, r,@S.C. N1y € C}
{|x12|/(a+b) for |x,|<a

a/(a+Db) (16)

for |x12| = a,

PrOb{rn r,@S.C.Nry e Gy}
[x15/(a+b) for [x,[<b
={b/(aer)
whence
Prob{r,, r,¢S.C.}
lem‘/(a+b)

= (a+|x12|)/(a+b) for aS|x12|Sb

for |x12]> b, a7

for |x,|<a
(18)

1 for |xy,|>b.

Straightforward calculation shows
Prob{r,, r,&S.C. Nr, € A}
(o +po) | 112]/(a+0)] for
=ipa/(a+8)]+pyl|x1,| /(a+8)] for
pla/(a+v)]+p,[b/(a+b)] for

|x5] <@
a$|x12‘sb

|le|2 b’ (19)

Prob{r,, r,&S.C. Nr, € B}
(@ +a:) | x12| /(a+ )] for
=(q la/(a+b)]+q,[ lxxz l /(a+b)] for

|x15] < a

as<|x,|<b

ada/la+b)]+q[b/(a+b)]  for |x,|=5, (20)
which lead to
Prob{r,, r, &S.C. | r, c A}
(PR lxlal /(paa+pyb) for |x12| sa
=C0aa+0y | 12])/ Poa+p4b) for a<|xy,|<b (21)
1 for |x,]> 0,
Prob{r,, r,&S.C. |r, c Bt
(a9 | 12| /lgaa +4,0)  for |m,l<a
= (Qaa+qb|xlzl)/(qaa+be) for a$|x12|<b (22)
1 for |xy,|> 0.
From Egs. (18)—(20) we find
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Prob{r,c Alr, r,¢S.C.}
(pa +pb)/2
=4pala/a+|x, D] +py[ %z |/a+ |x15])] for a<|xy,]<b

pda/la+b)]+p,b/(a+b)]

for \xlzISa

for [x1,]> b,
(23)
Prob{r; € B|ry, r; ¢8.C.}
(9. +a5)/2
=qaua/a+|x, )]+ gyl [x12| fa+|x12])] for a<|x,|<b
dila/(a+0)]+qy[b/(a+b)]

for |x,l<a

for |x,]>b.
(24)

Notice that joint and conditional two-point probabili-
ties calculated above do not depend upon the absolute
positions x; and x,, but instead depend only upon the
relative distance |x;,1. Needless to say, this is a direct
consequence of the statistical homogeneity and isotropy
postulated in (ii). Since Eqs. (21) and (22) contradict Eq.
(6), our model material belongs to the category of an
asymmetric cell material. In other words, there exists
an example of the asymmetric cell material which is in
fact self-consistent. Thus we arrive at the conclusion
that the asymmetric cell material is self-consistent
as well as the symmetric cell material. The cause of
the error made by Miller (and Brown) lies in the mis-
interpretation of the independence hypothesis (iii). Their
assumption (vi) substituted for (iii’) turns out to include
an unnecessary statement that should rather be regard-
ed as an equivalent for the symmetry condition (iv’).
Actually, Egs. (21)—(24) indicate that neither Eq. (4)
nor (6) holds for the present model.

Next we will show that the cell material under con-
sideration does not meet the requirement (v). The
proof described below was suggested by Brown.® For
simplicity we restrict ourselves to the case where
a<xy5,<b<2q. Assume that point ry is in C,; then point
r, is in a different cell. Let a random variable £ rep-
resent the distance from point r, to the right end of
its cell; obviously 0< £ <a. The event of £ <x,, —a oc-
curs with probability (x;,- @)/a. Then point r, is in the
second cell to the right if the first is a C, cell, and in
the first if it is a C, cell. The probability that point r;
is in C, is therefore -3 +3-0=%. When x;,~a<£<a
{with probability (2a - x,,)/a], point r, is in the first
cell and has probability 1/2 of being in C,. Thus,

Prob{r,e C,N 1y, 1,¢8.C. |1, € C.t

_1xp-a 12a-x%, _3a-x,

4 a 2 a 4a (25)

Combining Eq. (25) with Eq. (10), we get

Prob{r,e C,Nryc C,Nry, ry @8. C. =(3a=x,) /4(a +b).

(26)
Similarly,
Prob{r;e C,nryc Cyniry, 1, € 8. C.F = (@+ x,)/4la+ b)),
(27)
Probir, € C,Nrye C,N 1y, 1, &S, C.}=(a+xy,)/4(a + ),
(28)
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Prob{ry € C,Nrye CyNry, 1, &S.C.} = (3%, — a)/4(a +b).

(29)
It follows from Eqgs. (26)—(29) that
Prob{ryec Anr,e ANy, r,&S.C.}
=pa2———22’a‘+";§ +2p 0, 4?a++",;§ +y? 2’(‘;2; ot (30)
Prob{r,c ANr,cAlr, r;¢8.C.}
:Pa2(3a = %13) + 2p py(a +%15) +,%(3%,— @) . (31)

4(a +xy5)

It is readily seen that Egs. (23) and (31) are incompa-
tible with Eq. (1).

Now we reconsider the meaning of the independence
assumptions. Miller’s definition (iii’) can be interpret-
ed as follows:

(vii) Let the subdivision of the material space into
cells be fixed; under the condition that points r; and r,
are in different cells, then, the event of point r; being
in phase A or B is statistically independent of the event
of point r, being in A or B.

If we use (vii) instead of (v), Eq. (1) is replaced by
Prob{r,c Anr,cAlr, r,&s.C. N o}
=Prob{r,c Alry, r,&S.C. N a}Prob{r,c Alry, 1y

#s.C.N a}, (32)
or, equivalently,
Prob{r,e ANr,c ANy, 1,&S.C. | a}
=Prob{r,c Alry, r,&8.C. N a}Prob{r,c A
nry, 1, &S.C. | al, (33)

where a refers to a particular pattern of the subdivi-
sion into cells. Hence we obtain'’

Prob{r,e ANr,e ANy, r,&S.C.}
=) Prob{a}Prob{r,c AN r,c ANy, r,&dS.C. | a}
«
=2 Prob{a}Prob{r,c A|r, r,&S.C. N o}
o

XProb{rze AN ry, ry&S.C. | o}, (34)

which does not necessarily imply Eq. (1).

As asserted by Brown, ®® the most practical proce-
dure for guaranteeing the independence property is that
we first divide the space by some random procedure
into statistically equivalent cells and then allot each
cell independently to material A or B. His method of
constructing cell materials is characterized by the rule:

(viii) The process of assigning phase A or B to each
cell is statistically independent of the subdivision of
the space into cells.

This statement is stronger than Miller’s symmetry con-
dition (iv'); for it implies
Prob{r;c A|ry, r,&8.C. N a}

=Prob{r; € A|ry, r; &S.C.} = Prob{r, ¢ A}. (35)
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In such a case, Eq. (34) is transformed into
Prob{ryc ANr,c ANy, r;&@S.C.}
=Prob{r, cA|ry, r;&8.C.}Prob{r,c ANy, r;&S.C.},
(36)

which can be reduced to Eq. (1). To sum up, Miller’s
definition (iii) implies our independence requirement
(v), provided that Brown’ s symmetry condition (viii) is
fulfilled. Unfortunately, we have not yet produced any
asymmetric model that satisfies both of the two indepen-
dence criteria (iii") and (v).

Finally we wish to correct some expressions for the
effective permittivity of asymmetric cell materials de-
rived in Refs. 1 and 2. Let the permittivity (r) be €,
in phase A and €5 in phase B. Denote ensemble averag-
ing by angular brackets and put €(r) =€(r) - {¢). Then the
two-point moment (¢ (r,)¢’ (r,)) becomes

(€'(r)e' (r)) =€’ FProbfr,c Anr,, r,e8.C. }

+eProb{r,e BNr,,r,e8.C. }
+eZProb{r,cAnr,c Anr,1,&S.C. }
+eyeyProb{r,c ANr,e BN, 1,¢8.C.}
+eyexProb{r,e Bnr,e Anr, r,&S.C.}

(37)

where €, =¢, - {¢) and ¢ =¢5 — {¢). For a symmetric cell
material satisfying (viii), substitution of Eqs. (3) and
(8) into Eq. (37) yields

G (r1)5' (ry)
={¢’>Probir,, r,c 8. C. } + (¢')?*Probir,, r,&S.C. }
={¢’>Probir,, r,c S.C. }.

+eProb{r,c Bnr,e Br,r,dS.C.},

(38)
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This is equivalent to Eq. (3.5) in Ref. 1, so that pre-
vious results need no revision. In the asymmetric case,
nevertheless, Eq. (37) does not ensure the validity of
simple averaging formulas such as Eq. (3.3) of Ref. 1,
because the last four terms on the right-hand side of
Eq. (37) can give nonzero contributions. Similarly,
Egs. (5.18) and (5.19) in Ref. 2 do not hold true. In
general, it is difficult to compute two- or more-point
moments for asymmetric cell materials.
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Operator algebra of dual resonance models
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Properties of a set of operators introduced by Baker, Coon, and Yu are discussed. The operators involve
generalizations of harmonic oscillator operators and facilitate the construction of a family of dual resonance
models which includes the Veneziano model as a limiting case. Matrix representations of the operators are
constructed, and it is shown that the operators have finite norm in contrast with the unboundedness of

creation and annihilation operators of the Veneziano model.

I. INTRODUCTION

Recently, Baker, Coon, and Yu' (hereafter referred
to as I) introduced an operator formulation of a one-
parameter family of dual resonance models?~* which
includes the Veneziano model as a limiting case. The
operator formulation (I) is similar to the operator
formulation of the Veneziano model which was found by
Fubini, Gordon, and Veneziano® and Nambu, ¢ An in-
teresting difference is that, in I, a finite number of
operators “replace” the infinite number of operators of
the Veneziano model formulations. 5® This gain is only
partially offset by the fact that the new operators are
not quite as simple as harmonic oscillator operators
because they have additional advantage over the corre-
sponding Veneziano model operators in that they are
bounded. There is apparently a highly nontrivial element
involved here since there seems to be no simple way to
re-express the new operators in terms of harmonic
oscillator operators even apart from the fact that re-
expressing bounded operators in terms of unbounded
operators is not advantageous. From the point of view
of construction of dual models it is clear that the new
operators represent a considerable mathematical im-
provement since a class of models which is wider than
the Veneziano model can be expressed in terms of a
smaller (finite rather than infinite) number of operators
with better properties.

To our knowledge, the new operators have not pre-
viously appeared in the literature. The purpose of this
paper is to provide some mathematical information
about the operators themselves and to point out some of
their interesting properties. Apart from their useful-
ness in formulating dual resonance theories, the new
operators may have some significance from a purely
mathematical point of view, The parameter which
characterizes the operators and the associated dual
resonance models?~* is directly related to the parameter
which occurs in elliptic theta functions.’*® There are
also connections with number theory® and the permuta-
tion group. *

In Sec. II, the equations satisfied by the operators of
I are given and explicit infinite matrix representations
of the operators are constructed. The set of creation
and annihilation operators is not closed under a com-
mutation relation. The infinite algebra generated by
these operators is analyzed in Sec. III, and it is shown
that all elements of the algebra have finite norm. We
refer to the algebra as a g-algebra since it is charac-
terized by a parameter g with 0 <g<1, In the limit ¢ — 1,
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the creation and annihilation operators of the g-algebra
become the usual unbounded harmonic oscillator
operators.

1I. REPRESENTATIONS OF THE OPERATORS

The creation operators a'™ and the annihilation
operators g, satisfy the relation:

a,d'*=qa"™a, +6), with p,v=1,2,3,...,D (1)
and'® 0<g<1. The inverse Hamiltonian satisfies
a,H'=gHa,, H=H' (2)
and the vacuum |0) with (010)=1 satisfies
a,|0)=0
and
H{0y= |0). (3)

For each integer I/, the “I-particle” states and the con-
jugate states are defined by

I“'I‘J‘Z.” ul>EaT“[a7“1-l cee a"“'].‘o),

(4)
(Mg wee “‘1' =0 [aulauz Oy
There are D? linearly independent I-particle states.
1t follows from (2), (3), and (4) that
L [T TINE S L VTP T (5)
and from (1) and (3) that
KHikg oo
Wiy, ’#1“2 Y ENullv:--- v, x
with
“1“2..-u1_ T “1 “a . M,l
Nvlvz'"vz = %} q 5,{1 6”2 5,{1, (6)

where the summation is over all permutations (i, **-¢,)
of (1,2--+1) and T is the minimum number of adjacent
transpositions needed to generate the permutation. At
this point we introduce the notation

A=)

for brevity and define the inverse N-! of the tensor N by !
- - Migde L. s}
NUNY = NNy =06,152 «= 61

We define

(v |=N* (u| (summation over p’s)
and

|my =N ).
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It then follows that
~~ 'y
(Vg v Vo |y o ul>=5:115::...6y:5”, (7
and

—~ " ! y 42 .. 841 8
(wyoee vy |H |“1... uy=q 5,,'5"1 Ovz e Gv'. (8)

We take these relations as the starting point for our in-
finite matrix representation.

We first identify the states |u, «°+ ;) with infinite
component column vectors:

(==
OO0

IO)E . , By =

* OO

with 1 as the nth component where n=p, + Dy, + -+
+D¥!yu,. The remaining components are all zero. Simi-
larly, we identify the conjugate tilde states (v, 7, |
with infinite component row vectors (vy-= 7,1

=(00 --- 010 --+) with 1 as the nth component with n=y,
+Dvy,++++D"'y,. The scalar product as defined by (7),
instead of (6), becomes matrix multiplication.

To construct the infinite matrix representation of
operators, it is most convenient to write an infinite
matrix A as a supermatrix consisting of submatrices in
the following block form. The matrix A is written as

Qoo Qg

_ _ Qi Oy 77
A=(a )= .

where a, is a D*X D’ submatrix for i,j=0, 1,2, ---. With
this convention, it follows from (8) that

H = (k) with Bjj=g',(&']), (9)

where I is the DXD unit matrix and @I is the direct
product of I with itself j times. Note that H™ is diagonal:

1 0 0 .-
-1___0q0"‘
=Yoo g0 - |

- g

where each block stands for the appropriate submatrix
so that ¢! represents ¢* times the D!x D! unit matrix.

The matrices a™ are determined by [see (4)]
A ITITRRTRTI S [ TR TRORE TN
and they are seen to be of the form
a™ =(a}}), where a¥} is nonzero only for i=j+1,

a;:‘].,j =& Ie y¥*, (10)
where §* is DX 1 column with 1 in the uth place and
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zeros everywhere else. The direct product notation is
such that |y, - p)—~ "1 @@ ¢ ' and

oA by A
byoA by A

sen vae

A® B=

The general form of the matrices q, is fixed by mani-
pulating the commutation relation (2)

a“H'l = qH'lau .
By using Eq. (9),
? (a,)ish5e= ‘1? hi(ay)e
yvields
(@) pd*=q4'(a,) =q"Ya,),,
and 0< ¢g<1 implies (a,),,=0 unless k=7 +1.

To find the form of the submatrix (a,),,,,,, We use the
commutation relations

a,av=qa"a, +5% (1)
which gives

i
(a,)4,41001,i= 907 11(a,) 1y H 80 (01D).

To simplify the notation, we define
a,;=(a,)y,01 and aP=(a"),, ;.
Then
a,@Y=qaa, .+ AC)

and substituting al’ =I®y* [Eq. (10)] into this relation
yields

a, (@) =q(@" oy )a, ., +54(a).

Multiplying both sides from the left by ®®y, (where 9,
is the transpose of ¢*) and summing over v, we get

a, =q(&" 1o, . (& I2y,) +RIY,.

This equation can be iterated to solve for a,, solely in
terms of direct products of I and 9, :

Buo=1y,
a,, = qw"l%([@wlx) +1ey,
=g, @8 +IeY,,

4up= 23 (@ DOV Yy 8 @ B @ Uy

+e" @Y,
or
hn= 23 0@ NP, @YY, 8V 1,8 - 0™ Y, @Y, .

(11)
This completes the construction of matrix representa-
tions of ¢, and a%, which are given by Egs. (11) and (10).

ill. STRUCTURE OF THE ¢-ALGEBRA
Let 3 be the set of all double finite (possibly empty)
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sequences of integers between 1 and N (inclusively). We
associate

e
al

with

e gtn
a’ta, - a,

(Byy o v ey By ¥y e e ey V) €5, (12)

and let 4 be the set of all formal linear combinations
of a finite number of elements of 4 over a field 7:

(13)

where ¢;€ 7 and o, 3. (For the family of dual reso-
nance models 7 is the field of complex numbers.) Thus
the product of an element of 4 with an element of 7 is
naturally defined in 4. Also, under addition 4 is an
Abelian group. The zero element 0 is the empty linear
combination, and the additive inverse of Ac 4 is (- 1)A,
Therefore, 4 is a vector space over 7 and £ is a basis

of 4.

Let $ be the empty sequence and denote the element
(#; &) of 4 by L. Multiplication in 4 is defined by

Gyt ot e,a, €4,

(1) (a}; {80 (&5 {vh =({a}; {8}, {v}, (14)
(i1) {ab; B) (v {8D =({a}, {v}; {8, (15)
(1i1) (A3 0) (w5 F) =q(u;2) + 55 1, (16)
(iv) multiplication is associative,

(v) multiplication is distributive,

{aA + bB) (cC) = (ac)AC) + (bc) (BC),

(cC){(aA +bB)=(ca) (CA) + (cb) (CB) (17)

fora,b,cc 7 and A,B,Cc 4.

Here {a}, {8}, and {v} are possibly empty sequences
of integers, {a}, {B}={a, @B, **B.}, 5% is the
Kronecker delta in 7, and g is a fixed element of 7.
(For the family of dual resonance models g is real and
0<g<1.) The 4 becomes an associative algebra, and
we will call a g-algebra. The identity of multiplication
is 1.

It follows from the definition of multiplication that

(VS;V)(Ul,--~,lJ-";§75)

n
= - q"IG:‘(Ml,..., RN T ---’P",,;¢)

+q Mgy e ey by3¥) (18)
Natural representation of A
We define a linear projection operator P on 4 by

P(({a}; BN =({a}; A,
and

P({a}; {8H=0 , (19)
for any nonempty sequence {8}. Let

Hi=PA. (20)

P A is a basis of #,.

We now restrict 7 to the field of complex numbers.
For any ({a}; {8) € 4, define an operator [{a}; {8}] on
Hiby
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(i) [{a};{8}] is linear on #,,
(i) [Heh{8H{r} @) =P(({a}; {8 {1} 8 e #,

(21)
for any ({u}; #) in PA.
For any A=c,({a,}; {8, ) + - +¢,({a,}; {8B,) e 4, de-
fine a linear operator ()(A) on //, by

O(A)E é c,[{a‘}; {ﬁg}]'

Thus the operators () (A) acting on the space //, form a
representation of 4 via the mapping (). It is easy to
show that

(22)

0A)Y()(B)= O(AB) (23)
for A, Be 4.
Let us define a scalar product [in the spirit of Eq.
(18)] in 4/, by
A (kyreeey B3y ene, v =0878,0 00 57, (24)
(ii) (2;@)=1, (25)
and

(iii) (aA,bB)=a*b(A,B) fora,bc 7 and A, Bc /,,

(26)
where we have used the shorthand notation
(Byyeees )=y enes s @) (2m
for a basis vector of 4/, and
¢ =(g, P). (28)

The Hilbert space // obtained by the completion of 4/,
with respect to this scalar product is also a representa-
tion of 4. An element of // is an infinite series
A= {Z)} Ay ({ub, (29)
H

where the series 3 (,,14,,, i is Cauchy convergent. The
scalar product of the above A with another element

B= (Z); B, ({V})

of 4/ is induced by the scalar product in 4,:

(A,B)= (E Atyy Bruy- (30)
w)

The norm of A is

lAll= 2 |4y, )% (31)

()]
which converges for every A c //.
Bound of operators
For all A in /4 as given by Eq. (31)
[7\; d]A: (Z:) A(u)(h,{l-'-})y (32)
s

s glAli=11All;
hence

s plll=1. (33)
Similarly
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N{u}; plI=1, (39)
for a possibly empty sequence {i}.
To find the bound of [ ;2], let

Az E 14"‘1_““"(‘_‘.1 ...p,")

syeecnp

be a vector in that subspace of 4 spanned by basis vec-
tors of n integers. Then, by Eq. (18),

[¢;X]A(")= iy .Z)“ X (é: tIHA(u,,)) (u),
where

(W) =(Hikg " Bpey)
and

A(u.()EA“l"

. “{-1“‘"” Byy”

The square of its norm is

;A JAmIE= 2

n 2
2, a7 A,

(w} | d=1
T3 gl A

= q - .
oy 4 (B, ) (8,0

On the other hand,
JAmE= ,Aﬂx"‘ u,,l z 2 by IA(u.i)lz’

By eeepty, Byeee By

so that for ¢ =0

n
(1+g+-- +qn)2 ”A(n)llzalZu;) 'Z)d th-Z IA(“")IB.

Therefore,
(1+g+--+gPI AWIE - {524
n
+J= *
23 2 2 At A - AT A

_A(u.i)A’(ku:J )]

n
=3 E) 4.¥1 a""?|Aw, - Aw,pl?20.
Thus,
NZ;AJAD | <@+ g+ -+ gAY,

Any vector A € // has the form

(35)

AS A
n=0

Since ([#;A]A™, [F;2]JA ™) =0 for nzm,

N[ A LAl = i [ ; A ]

Sgg (14 +gNA™I? <[1/(1 - g1 1Al

Therefore, for 0 <¢<1
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Ng;aJan<[1/(1-g)]lAll
for any vector A € //, from which we conclude
g Al <1/(1-g).
Let B'™ ¢ // be given by
B"=(,...,})

(36)

(37

where there are n \’s. Then
1B =1
and

@B IB@ =1+ g+ +q™. (38)

Given any €> 0, we can always find an integer n, such
that

[1/(1-q)=(1+--+g™")|<e, for n<m, 0<g<l.
Therefore, combining this with (37) and (38), we have

g lll=1/(1-9q). (39)
Thus we have proven

M{ekay 2 <1/(1-q)

and it is easy to show that actually equality holds. Since
the g-algebra consists of all finite linear combination of
[{u}, {1}, all the elements of the g-algebra have finite
norm.
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The equation of geodesic deviation is solved in conformally flat space-time in a covariant manner. The
solution is given as an integral equation for general geodesics. The solution is then used to evaluate second
derivatives of the world function and derivatives of the parallel propagator, which need to be known in
order to find the Green’s function for wave equations in curved space-time. A method of null geodesic
limits of two-point functions is discussed, and used to find the scalar Green’s function as an iterative series.

PACS numbers: 04.20.C, 02.40.H

1. INTRODUCTION

The equation of geodesic deviation is fundamental in
the operational definition of the curvature of space—~time
in a coordinate independent manner.! Although this def-
inition depends only on the local deviation of geodesics,
one many wish to find the deviation of geodesics after
a finite change in the affine parameter, given suitable
initial conditions. For example, a study of null geodesic
deviation, applicable to photon trajectories, would de-
scribe much of the optical phenomena associated with
curved space—time. A knowledge of geodesic deviation
is also needed to evaluate, or simplify, the first and
higher derivatives of two-point geometrical quantities,
e.g., the world function? (or geodetic interval®), the
parallel propaga.tor2 (or parallel displacement bivector®),
and other geometric quantities related to these. Since
these geometrical quantities exist independent of a co-
ordinate system, it would be desirable if such deriva-
tives could be expressed in a coordinate independent
manner, i.e., in terms of other geometrical quantities.
The particular application envisioned here is to the
study of Green’s functions for perturbation equations
(scalar, electromagnetic, and gravitational) in selected
space—times. For this study it suffices to solve the equa-
tion of geodesic deviation only for null or near null
geodesics.

If one can solve the geodesic equation in some coor-
dinate system, one can compute directly the geodesic
deviation for particular initial values. The deviation
vector will not, of course, be expressed in coordinate
independent geometrical quantities, and the procedure
may be poor for numerical computations, since one
would need to evaluate small differences in numerically
evaluated quantities. A more direct approach has been
discussed by Synge.? Here one defines an orthogonal
tetrad at one space—time point and establishes the tetrad
at other space~time points by parallel transport along
geodesics. By considering tetrad components of the de-
viation vector and Riemann tensor, the equation of geo-
desic deviation can be written as an integral equation
with specified end values of the deviation vector. For a
general space—time this can be solved only by iteration,
giving, in effect, an expansion of the solution in powers
of the Riemann tensor. This solution is applied by
Synge? to the evaluation of covariant derivatives of geo-
metrical quantities, given as a similar expansion. For
weak gravitational fields such an expansion has been
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useful in consideration of Green’s functions for pertur-
bation fields.*

The tetrad method does not take advantage of possible
symmetries in the Riemann tensor for particular geome-
tries, since although the original tetrad may be chosen
to exhibit these symmetries, the parallel propagated
tetrad, in general, will not. We consider a covariant
method of solution of the equation of geodesic deviation
which is useful when the Riemann tensor can be simply
expressed in terms of geometrically defined, lower
rank tensor fields. The deviation vector, in effect, is
resolved in terms of field projections rather than co-
ordinate components or tetrad components. A trial solu-
tion of the deviation vector is constructed out of the vec-
tor and its projections, using available geometrical
fields. Substitution of the trial solution into the equation
of geodesic deviation leads to a series of differential
equations for the coefficients of the various terms,
which can then be solved by standard techniques. The
solution can then be applied to the calculations of co-
variant derivatives of the two-point geometrical quanti-
ties, following Synge.

In this paper we illustrate the method by applying the
formalism to any conformally flat space—time. The
most reasonable physical geometries of this type are
the Friedmann cosmological models; we will, however,
keep our solution general, expressing quantities in
terms of the geometric scalar field that relates the con-
formally flat metric to a flat metric by a conformal
transformation. > We will illustrate some of the applica-
tions of this method by calculating covariant derivatives
of selected geometrical quantities, which would other-
wise be given as a series expansion in powers of the
Riemann tensor, and by constructing the scalar Green’s
function for the scalar wave equation in this geometry.

2. GEODESIC DEVIATION

Consider a family of geodesics with special param-
eter # emanating from a fixed point x; (with #=wu,) and
terminating at a variable point x,(v) (with #=u,) on an
arbitrary curve C(r). This defines a two-space x* (¢, v)
with tangent vectors to the geodesics U* = 3x* /du and
deviation vector V* =23x" /9v. The equation of geodesic
deviation is then®

&2v*

—GEE-‘FR”M,,U“VBU":O, (2. 1)
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We wish to solve (2.1) for specified end values of the
deviation vector V*; here we choose V*1=V*{u) =0

and V*?=V"*(u,), which is an arbitrary vector at x,.

The solution for V*1# 0 can be obtained by a superposi-
tion of the solution generated here and this solution with
u, and %, interchanged.

One integral along the geodesic of (2.1) is immediate-
ly found by multiplying (2.1) by U, and using the fact
that 6U* /5u=0, since U* is the tangent vector along
the geodesic. This gives the result that 5*(U, V*)/8u*
=0, which can be integrated with the assigned end val-
ues to give

U, V¥ = U, V¥ 2= 1)/ (1, — 1) - 2.2

For the case of a general Riemann tensor no other such
integrals are found.

We now specialize to the case of a conformally flat
space—time for which geometry the Weyl tensor C,,,s
=0 everywhere. For such a metric there is a scalar
function ¥ which relates the conformally flat metric to
a flat space—time metric by a conformal transformation

g‘w:e"‘gfvEngfw. (2.3
In terms of ¥ the Riemann tensor can be written as

R* gy =~ G“YPO‘B+5“BPM+gMP"B_gaBPH,” (2.4
where P,, is defined in terms of § as

PuV:%w;u:v'%d);uw;v*-%guuw;ad);a (2' 5)

and where covariant differentiation in (2.5) is carried
out with respect to the conformally flat metric g,,.

Substitution of (2.4) and (2. 5) into (2.1) yields the
equation of geodesic deviation for a conformally flat
space—time

82V U“(bG.,, V¢ &G
=zt 5 )W‘?W"Fu’ (2.6

where G(u) =G(x(x)) is defined by (2.3) and F* is given
by

F =Qua[Uu(UBVB) - VQ(UBUB)] 2.7
with
Qlwzpuv +%guu¢;u¢;a- (2.8)

Given the fiducial geodesic x* (u)(v =0), G(x), ¥**, and
¥**,, are all known functions of . The only unknown is
V* (). Note that from (2. 2) the first term of (2.7) is a
known function of # and thus its contribution in (2. 6) can
be treated as an inhomogeneous term in the differential
equation. If the fiducial geodesic is null, even though
the test geodesics may be nonnull, the second term of
(2.7) vanishes. If the fiducial geodesic is nearly null,
we can consider, to first order in U, U, the second
term in (2.7) to be known, since one can use for V* the
solution derived for the null case.

Consider the equation (2.6) with F* =0, which we call
the homogeneous equation. The solution of the homo-
geneous equation is given as a superposition of two vec-
tors g*,,V*2 and U* with coefficients which are func-~
tions of #. With F* #0, we add a term which we call the
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inhomogeneous solution V¥, which is assumed to be de-
termined from F*, The solution of (2. 6) can then be
given as

[ %ed =g(u)g"sz"?- +h@)U* + V5,

where g(u) and h(x) are the scalar coefficients subject
to the boundary conditions g(u,) = A(u) = k() =0, glu,)
=1; g%, is the parallel propagator, which parallel
transports the deviation vector at x, to the point x(x)
along the geodesic; and the boundary conditions of the
inhomogeneous solution V¢ are chosen so that Vj!=Vj2
=0. Substituting (2. 9) into (2. 6) and requiring that the
coefficients of like vectors vanish gives the series of
differential equations for g, h, and Vj:

(2.9)

&g &G g _

@@ e =Y (2.10
d&n _ 1(5G,,

=T _._ﬁu)rr, (2.11)
8*vy &G Vi _

@ e (2.12)

where
T =g(u)g's,V*2+ V}. (2.13)

In deriving these differential equations we have made
use of the fact that 6g",,/6u=0.

The two independent solution of (2.10) are G(u) and
G(u) [“du’ /G*(u). Imposing the boundary conditions glu,)
=0, g(u,) =1 gives the solution of (2.10)

2(u) = Gu)A(u)/GpA,, (2.14)
where
Al = [ du' /G (2.15)

and G, =G(u,), A, =A(u,). The same solutions of the
homogeneous equation are used to generate the solution
of (2. 12) subject to the boundary conditions V}*=V} (i)
=0 and V§2=V}(u,) =0:

V() = G)[H* (u) - Alw)g* , H*2/A,), (2.16)
where
Hu.(u) :[14 du’ u’ du”G(u”)g“ Faa (2 17)
u G (u ) w o :

and H*2=H"(4,). Given g(») from (2. 14) and V§ from
(2.16), we then known 7™ and thus the right side of
(2.11). Subject to the boundary conditions A{u,) = h(u,)
=0, this gives the expression for h(u):

U=U
Up~ Uy

hlu) = - Klu) + K, (2.18)

where

. ’ u’ n 1 GG. L »
— il a T

The sum of the three terms in (2. 9), using our solutions
(2.14), (2.16), and (2.18), define the deviation vector
over the range u, € u<u,. If we multiply (2. 9) by U,,

it can be shown directly that our solution satisfies

(2.2).

(2.19)
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If the fiducial geodesic is null, then our solution gives
the deviation vector once the end value V*2 is specified.
If the fiducial geodesic is not null, then the deviation
vector V* appears in F*, which is needed to generate
Vi, giving an integral equation for V*. Since the term
with V* appears multiplied by the factor U,U*, we can
generate a series solution for V* in powers of the pa-
rameter U,U%. This is unlike the expansion of Synge, %
since our result is exact for null fiducial geodesics. We
note also the fact that the solution for g(x) does not de-

pend on such an expansion in powers of the parameter
u,U*,

For our later use it is desirable to have V¥ explicitly
in terms of the end point deviation V*2, Define the two-
point tensor $*,, by

V=8, V2, (2. 20)
Then S“,,z has the explicit form
S, = lwg",, + Cw) (wu - “A(“’i:zwz) v,
o (sz(m —u—__%sz(m)
-0, (J(u) - ;‘z'_l;llJz)
-, [G(u) (M“ _Mg’:z—"’.’%>
2
[/ (Y,,z(u) -—— Y,,a(uz))] , (2.21)
where
W = f du’ [ g Gg“a.Q“"B..UB'l;z::

r= [ "’f 2 (=) st
J(u) fdu[udu”cv (w"' Al )g"'vzW“z),

M = "du' u’d ”Ggu Qan 56"
vy GZ U a¥ B vy?
%1 "

u u’?
Y,,(u) = f du’ f du”
uy uy

L4 ”
X G,y (M"",,z - M> .

4

Again note that if U, U” =0, the solution is given in
closed form, but if U,U* #0, the solution is given in
iterated form, since the solution appears in the expres-
sion for the matrix M“,,2

3. GEOMETRICAL RELATIONS

We now show how the solution to the equation of geo-
desic deviation is used to evaluate first and higher de-
rivatives of two-point geometrical quantities, following
Synge.? Let @ be one-half the square of the proper time
between x; and x, along the geodesic joining x; and x,.
We assume that x; and x, are not conjugate points, i.e.,
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that there is only one geodesic which joins them. € is
called the world function by Synge® and the geodetic in-
terval by DeWitt.® The covariant derivatives of £ at
the end points are related to the tangent vectors by

Q;ul == (uy—~ ul)Uul’

(3.1)
Q;uzz (uz—ul)Uﬁz,

from which it follows that 2,,9* =28, and g*,.Q*"
=~ ", To evaluate second derivatives of Q, we take
the variation of (3.1) with respect to v, giving

4]

Dy sy V2= = (= ) ( 61;”)1’ (3. 2a)
14

Q;u 2ivg v (uz - ul) (_5‘1;&) 2, (3. 2b)

where we have used the fact that 6U, /6v =6V, /6u. From
Sec. 2 we have the solution for V* () and therefore we
can express 6V* /bu at each of the end points in terms

of V"2, the arbitrary end-point deviation. In (3. 2a) and
(3. 2b) this means that coefficients of V*2 on both sides
of this equation must be equal, giving the desired de-
rivatives of @ explicitly in terms of known quantities.
Formally this gives

14}
Q;u vy (uz - ul) [B; suvz] u=uy»

5
Q;”z;"z = (up — ) [E Suuz]

We shall evaluate these derivatives only for null fiducial
geodesics, U,U” =0. Higher order terms in the param-
eter U,U* will be denoted by O(R). From (3.3) and (3.4)
we have

(3.3

(3.4

u=uz°

_ (uy—uy) (uy—wy)
e =~ GG,A, Sve T G, e 2l

- U, X,,00) = U, U, J5 + 0(R), (3.5)

G, 1
Q;uz;vz ( 'ul) [(G +'5§—A‘) guzvz-(anU +UuzBuz)

+ (L2 —J (up) +

J,
2 )UuzU,,z]+ o®, (3.8

U= Uy

where

Buz GpA, f A w) ( 'a> g"‘uz (:z '1;11)

1 A(u) U—u

L,= GzAzJ;i =26, G (uz_ul),
and prime indicates differentiation with respect to u.
It is straightforward to verify that U*1Q,,,., 2= U,y
V2R, 0y == Uy, and U*2Q,, .., =U,,, 2s is required
from dlfferentlatmg the identity @,,$%* =28 with re-
spect to either end point. The contraction of (3.86) is
especially simple

Q, P2=2 [(uz— uy) (g—: +5$—2) + 1] +0(Q).

Higher derivatives of Q are found by varying (3.5) or
(3. 6) with respect to the parameter v. This requires a
knowledge of the variation of the parallel propagator,

(3.7
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which therefore implies a knowledge of the covariant
derivative of the parallel propagator. Following Synge,
the variation in g;,,, for an arbitrary end-point deriva-
tion vector V*2 is given by

42
8uyvas AaVAz = L 8u 1agv25Ra515 VU du. (3.8)

Writing V" in the form (2. 20) and equating coefficients
of V2 gives

up
quvz:ha:ll 8u 1aguzaR“Brnsysz° du, (3.9

where 8, is given in (2.21). Further derivatives of the
parallel propagator are evaluated by varying (3. 9) with
respect to v. As in the case of computing the higher
than second derivatives of the world function, the result-
ing expressions are in general quite complicated. One
must be careful, too, in making these evaluations since
the terms of O(2), which do not contribute to lower
order derivatives for null fiducial geodesics, may be-
come important for higher order derivatives. This fact
arises because 6(U,U*)/6v=28(U,V*)/0u= 2U,, v/

(us — u;). Thus the variation with respect to v of a term
of order Q gives a term of order 1 in general. In appli-
cation to Green’s functions, however, there is much
simplicity in that contributions will often be found mul-
tiplied by 6(Q), which automatically eliminates any
terms of order €2, and also in that only particular com-
binations of derivatives need to be found. We illustrate
this by considering the Green’s function-for the scalar
wave equation, using the relations we have derived here.

4. SCALAR GREEN’S FUNCTION

The scalar Green’s function is defined as the solution
of the inhomogeneous scalar wave equation

b’ +aRyp=0%(x, 2), (4.1)
where ¢ is a dimensionless constant and 8% is a scalar
two-point function which vanishes unless x =2z and which
satisfies the integral relation [ 6*(x, z) V=gd*x=1. The
covariant solution of (4.1) in flat space—time is

PO = (1/47) 65(%), (4.2

where € is the world function and 6z gives a contribu-
tion only from the retarded root of @=0. If we assume
that the leading contribution in curved space—time is
of the form (4. 2) (with implied summation over multi-
ple null geodesics), then a series solution in powers of
the Riemann tensor of (4.1) can be generated from the
integral equation

Plx, 2) =3V (x, 2) - (1/4m) [[aR8x(Q(x’, 2))

+0r(R0x", (R0 7% - Dlx, x) V=gdis".  (4.3)

Although the series generated from (4. 3) may be useful
in the case of weak gravitational fields, it is clear on
physical grounds that it fails if the geometry because
highly curved, as would be the case near a black hole.
As an example of this, (4.2) signifies that the leading
contribution is given equal weight for all null geodesics,
where it is clear on physical grounds that null geodesics
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which wrap around the black hole many times must con-
tribute a much smaller amount than do the principal null
geodesics. Further we see that the right side of (4.3)
involves a derivative of the & function, which means that
terms of order & will have to be included in the evalua-
tion of Q,,%%.

The structure of curved space—time wave equations
has been investigated by DeWitt® following earlier
studies by Hadamard. ® The important feature for our
investigation is that the sharply propagated contribution
is, in general, not (4.2), but rather

PO = (81/2/47)05(9), (4.9
where the two-point scalar A is defined by
A=-det(- Q;u;y')/v_g V"'g ° (4. 5)

From (4.5) it follows that A'/? gatisfies the differential
equation

1

4. a1
duln(A )‘—Z(u—m)

(9,4 - ), (4.6)

where # is the affine parameter on the geodesic connect-
ing the two points, and implied summation over multi-
ple geodesics again holds. The remaining contributions
to Py are smeared out inside the light cone and are gen-
erally called the tail of the Green’s function. In flat
space—time 4!/2=1, so that (4. 4) is then in agreement
with (4.2). In curved space—time we can use (4.4) to
generate an integral equation, analogous to (4.3), which
exhibits the tail term explicitly. Thus the solution of
(4.1) is given by

W, 2) =9 V(x, 2) - (1/47) [ [aRS} 2(x', 2) + (8173), 3]
X 8(Qx’, 2N(x, x W= gdix'.

Note that with the leading term given by (4. 4), the cor-

rections involve the undifferentiated 6 function, so that

the quantity (a'/%),,%* needs to be evaluated only up to
order Q°,

4.7

The solution (4.7), when iterated, gives a graphical
representation in space—time of the generation of the
Green’s function from the source. The dominant contri-
bution is that which is propagated sharply along null
geodesics. The next order represents a contribution
which sharply propagates along null geodesics to an in-
termediate point x’, scatters off the curvature [repre-
sented by R or (4'/%),,5%], and then sharply propagates
from the intermediate point to the observer point x.
There is then a coherent sum (integral) over all inter-
mediate points x’ of these single scattered contributions.
The next order indicates sharp propagation to a first
scattering, sharp propagation from that to a second
scattering, and sharp propagation from that to the ob-
server, with summations (integrations) over all inter-
mediate points. The iterated solution (4.7) thus shows
how the signal in a curved space—time gets smeared
out inside the light cone,

The calculation of the scattering strength, which in-
volves (a'/?) '~ depends on evaluating (4.5) or solving
(4. 6), which requires a knowledge of the second deriva-
tives of the world function. In a general space—time
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this would have to be calculated using the methods of
8ynge, 2 generating a solution as a power series in the
Riemann tensor. Thus one could characterize the order
of the scattering by the power of the Riemann tensor
which appears in each term of the series. The general
iterated solution would then involve a double infinite
series. One could arrange this series in a triangular
fashion, e.g., combining the term representing two
first order scattering with the term representing a sin-
gle second order scattering.

For conformally flat space—times we can calculate
A'/2 3)ong the null geodesic, either directly from (4. 5),
or by solving the differential equation (4. 6). If we use
(4.5), it is easiest to choose a parallel propagated tet-
rad and evaluate the determinant from the tetrad com-
ponents. K the null vector U* had tetrad components
UV =y® y®=y® =0, then, from the requirement
that ,,,,.2" =Q,, and Q,,,,.9* =Q,,,, & must be given
in terms of the tetrad components by

A=80@nRa 60— erenleren- (4.8)
On the other hand, comparing (4. 8) with our derived
expression (3.5), we see that, to zeroth order in &,
Qeyen =Ry =0and Qe e, =R, g0y == U2 — 1)/
G,G,A,, which implies that al/2 ig

Al/2— Up~ Uy
= G2 4,702
GG, iz du/G

4.9
if the points x; and x, are separated by a null geodesic.
This same relation can be derived from integrating the
differential equation (4. 6), using (3.7) and taking care
to distinguish between derivatives with respect to «
keeping the end points fixed and derivatives with re-
spect to a variable end point u,. We see that the only
way in which A!/2 can become infinite, generally the
condition for a caustic surface, is for G to be zero at
one of the end points. The expression (4. 9) therefore
gives the explicit determination of the dominant term in
the scalar Green’s function, (4.4). There is no need
here to worry about off-null geodesic contribution since
the terms we have been ignoring are of order £, which
give 0 when multiplied by 6(€).

The calculation is not so easily done for the correction
term in (4.7), which involves the quantity (a'/2),,*
evaluated along a null geodesic. Suppose that al/2 g
given as an expansion in powers of &; i. e.,

AlY2=A+BR+CQRA- ..,

Then (A'/2),,’* would be given as an expansion
(a1/3),,5* =A,,'* +2B,, 0% + 0(Q)

so that an evaluation of (A'/?).,’* along the null geodesic
requires a knowledge of A'/? to first order in & off the
null geodesic. Therefore, it does not suffice to compute
the d’Alembertian of (4. 9) directly for use in (4. 7).

5. NULL GEODESIC LIMITS

The brute force calculation of derivatives of geom-
etrical quantities is not always the most efficient meth~
od to use, as we now demonstrate. If we make use of
the symmetries of the Riemann tensor and the form of
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the second derivatives of the world function, we can ex-
tract much information by considering the limits of two-
point geometrical quantities as the points x and %' be-
come separated by a null geodesic. We call such limits
null geodesic limits (NGL), which form a generalization
of the coincidence limits (x ~x’) considered by Synge.

From (3. 6) we have shown that the second derivatives
of the world function for conformally flat space—times
have the form

Q, w =Dg,,+tE, Q;v + Q;u E, +1.,%,

(5.1)

where D and E, could be explicitly determined, to order
Q°, from (3.6). The identity 2:°Q,,,, =Q,, applied to
(5.1) implies the relations
E*Q.,=1-D+IQ (5.2)
where / i8 an undetermined function at this point, and
Q%f,, + 2E, +1Q,, =0. (5.3
It should be noted that the form of (5. 1) does not give

a unique prescription for D, E,, or f,,. In fact @,,,
remains the same under the transformation

Suv=Fuv T agu, T8, 2, +,,8,

D-D-af, E,~E,-B,9. (5.4)

We will find it convenient later to choose a particular
guage.
If we differentiate Q.. ,, =,,, we find

supe = S a0 T F + Ry 0, 2;,0°. (5. 6)
We then substitute (5. 1) and (2. 4) into (5. 6). In the NGL
the last term of (5.1) does not appear, and the result of

the substitution in the NGL gives the equalities

D, ¥ =D = D? = P ¥ Q% (NGL) (5.7
E, ¥%*=-(D+1)E, ~3E,E*Q,, +P,, %,  (NGL)
(5.8)

which represent the differential equations for the fields
D and E, along the null geodesic. It may be verified
that the functions found in (3.6), when expressed expli-
citly in the form of D and E,, satisfy (5.7) and (5. 8)

in the NGL.

Although (5. 6) gives one relation involving third de-
rivatives of €, a more detailed relation can be obtained
by differentiating (5. 1) and taking the NGL. This gives

=Duogy, + DE, g +DE, g, + Q;v(Eu atE, E;)
+ Q;u (Ev;). + EVEA) + Q;l(fu.v + ZEuEv)

Q;u;vﬂ
(NGL)
(5.9)

The requirement 2, ,,;: = 2y 20 =R%, 2%, leads through
(5.9) and (2. 4), to the relations

D, = DE, + P, 6% = ¢Q,, (NGL) (5.10)

Ev;x"" El;uzn;v‘gx" Q;A‘Ew (NGL) (5' 11)
(NGL)

(5.12)

Eu:v_ EuEv“fuu‘Puv‘ b8uy +Q;u £,=0,
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where ¢ and £, are undetermined functions at this point.
In the NGL £ times (5. 10) reproduces (5.7). If we
multiply (5.12) by &** and use (5.2), (5.3), and (5. 8),
we obtain a consistency condition on the undetermined
functions

l-¢+EQ,=3E,E*, (NGL) (5.13)

We next impose the transformation (5.4), choosing
=-¢ and B, == §,, which makes the right sides of
(5.10) and (5.11) vanish. Also (5.12) becomes
Eu;v"EuEv-fuv‘Puv+Q;u§v+Euﬂ;vzo- (NGL)
(5.14)

The symmetry in p and v is obvious since E,,, - E, .,

=0, implying that in this gauge E, can be written as

the gradient of a scalar function. In this same gauge

from (5.2) I~1+¢ - £2Q,, so that (5.13) becomes
1+28%Q,, =3E,E*, (NGL) (5.15)

Further, if we differentiate (5. 2) and make use of (5. 1),
(5.2), (5.8), and (5.10), we find that ! is determined to

be
1=%E,E*, (NGL) (5.16)

which, from (5.15), implies that in this gauge £*Q,, =0.
The trace of f,, can then be found from (5. 14) as

fou2 =E % =P, ~ E E*. (NGL) (5.17)
Then from (5. 9) and the other relations we find that

Qo' =2D;, +Q,, (B, ~ P,%). (NGL) (5.18)

Note that (5. 18) implies a knowledge of Q,,’® to first
order in & off the null geodesic, which is all that is
needed to evaluate Al/2 to first order off the null geo-
desic and (A'/2),,"* along the null geodesic.

From (4. 6) we have

(Ina!/3), % =3(4 - ., '), (5.19)
which in the NGL implies
(Ina'/?). @*=(1-D). (NGL) (5.20)

Differentiating (5. 19) yields the differential equation
for (Ina'/?),,

(Inat/?) . Q% +D(Inat 3, + E*(1na'/?),,Q,,

+E,(1-D) +3(R,,*,,)=0 (NGL) (5.21)

with the last term given in (5. 18). The solution to this
is given by
(Ina'/?),, = E, +19,,, (NGL) (5.22)

where ¢ satisfies the differential equation

Lo ¥ +2¢ +3[E,* ~P,* +E,E*]=0. (NGL) (5.23)
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Now consider the term of order § that is neglected in

(5.22); i.e., let
(Ina'’?),  =E, +¢Q,, +1.Q. (5.24)

The requirement that (Ina'’%), ., be symmetric in 4

and v implies, in the NGL, that
Ty = +€Q,,, (NGL)

where € is not determined. Then the divergence of
(5. 24) becomes, in the NGL,

(Ina'/?), # =E,* +2¢,, 9" +¢Q,, ™. (NGL) (5.26)
Solving (5. 26) for (A /a);u"" yields the simple result
(a1/2) % =p, > A2, (NGL) (5.27

(5.25)

Note that, from (2.4), P,* =~%R.

We return now to the integral equation for the Green’s
function, (4.7). Using (5.27), we find that the Green’s
function ¢ is given by

Wx, 2) =3O x, 2) +7111? j(%- a)RAM2(x', 2) 6 (Q(x, 2))

Xp(x, x W=gdix’. (5.28)

Note that if ¢ is chosen to be % in the scalar wave equa-
tion, then there is no scattering; i.e., »'(x, z) is then
the exact solution. This should not be too surprising
however, since for a=§- the wave equation is conformal-
ly invariant and the Green’s function should be sharply
propagated on the light cone.

One can derive more information about higher deri-
vatives of 2, A'/?and the parallel propagator than we
have done here, It appears that in applications the NGL
methods yields a cleaner method of evaluation than does
a direct manipulation of the explicit solutions.
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cylinders of general cross section
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The propagation of high frequency scalar surface waves along the generators of a homogeneous cylinder
which has a cross-sectional boundary of nonconstant curvature is investigated. Asymptotic solutions are
obtained to the reduced wave equation, subject to an impedance boundary condition at the surface of the
cylinder. In the case of an open boundary curve for which the curvature attains its algebraic maximum at a
single point, it is found that modes exist for which the disturbance is essentially confined to a region in the
neighborhood of the point of maximum curvature, as well as to the neighborhood of the surface. The
amplitude of the disturbance decays rapidly on either side of the point of maximum curvature, and the
higher order modes have nulls. The case of closed boundary curves is also discussed. In a companion joint
paper by L. O. Wilson and the author, the asymptotic procedures developed for the analysis of the scalar
problem will be applied to the investigation of the propagation of elastic surface waves (Rayleigh waves)
along a homogeneous isotropic cylinder with stress-free boundary. This problem arises in connection with

guided acoustic surface waves.

1. INTRODUCTION

Surface waves are disturbances which propagate
along a surface, and have their amplitudes confined to
a neighborhood of the surface. They occur, in particu-
lar, in electromagnetics, acoustics and elasticity. In
this paper we investigate the high frequency propagation
of surface waves along the generators of a homogeneous
cylinder which has a cross-sectional boundary of non-
constant curvature. The boundary curve may be open or
closed. We confine our attention here to scalar waves,
but in a companion joint paper with Wilson! it will be
shown that analogous techniques apply to the propagation
of (Rayleigh) surface waves along a homogeneous
elastic cylinder, with stress-free boundary. The
elastic problem may be analyzed in terms of a scalar
and a vector potential, but since this leads to consider-
able algebraic complexities, it is desirable to illustrate
the techniques for the simpler scalar problem.

We consider a disturbance described by the three-
dimensional reduced wave equation

Viu+kRu=0, (1.1)

and suppress the time dependence exp(— ikct), where ¢
is the velocity in the medium under consideration. We
impose the impedance boundary condition on the sur-
face of the cylinder

Bu

™ (1.2)

+kou=0 forn=0,
where 0 < a <« ig constant, Here n measures distance
from the surface along the inward normal. It is as-
sumed that, with an appropriate unit of length, the con-
stant wave number % is large, so that (1. 2) corresponds
to a disturbance which decreases rapidly away from the
surface. We are interested in solutions in which »
varies with z, the distance along the generators of the
cylinder, as exp(i3z), where 8 is a real constant which
is to be determined.

The propagation of high frequency surface waves over
curved surfaces has been investigated by Keller and
Karal, 2 who used a complex ray extension of geometri-
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cal optics, and by Grimshaw, 3 who developed an asymp-
totic theory. They allowed for a medium with variable
refractive index, and for a variable surface impedance
which is, in general, complex, but we will not consider
such generalizations here. Grimshaw assumes an
asymptotic expansion of the form

u=exp(it) 2 A,GR), (1.3)
where ¢ and A, are complex functions of position. One
of the examples he considers is that of a circular bore,
in which the propagation is in the z direction, parallel to
the axis of the bore. However, (1.3) is not an appro-
priate form of expansion for propagation along the gen-
erators of cylinders with cross-sectional boundaries
that do not have constant curvature.

In the next section we formulate the problem in terms
of the coordinate system depicted in Fig. 1, where n
measures distance from the surface along the inward
normal, and s is signed arc length along the cross-
sectional boundary. A solution to (1.1) and (1. 2) is
sought in the form

u=exp[ikX 2z — kan +k1/26(s)] f(n, s, k), (1.4)
where f and X are expanded in inverse powers of k172,
Attention is first confined to the case of an open bound-
ary curve for which the curvature «(s) attains its
algebraic maximum at a single point, taken to be s =0,
with k/(0) =0 and «”(0) <0. It is shown that, with A~1
+a?+kak(0), there is a solution with 6(s) < 6(0)=0,
and 6(s) tending to — = as Is| — «, For small s,

6(s)~=30s?, Isl<1, b=[-}ar" (O (1.5)

The wave is therefore essentially confined to the region
Isl=0(%"1/%), as well as being confined close to the
surface in the region n=0(1),

The evaluation of higher order terms in the expan-
sions of f and X may be simplified by means of a bound-
ary layer analysis. This is done in Sec. 3, where the
stretched variable £ =kn is introduced. A particular
example is also considered.
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Higher order modes are analyzed in Sec. 4. Since
the lowest order mode is confined to the region |s|
=O(k"1/Y), we first also rescale the variable s, and in-
troduce the stretched variable £=k!/4s. Then we seek
solutions to (1.1) and (1. 2) in the form

u=exp(ikat/?z — at)v(t, ¢, k), (1.6)

where v and X are expanded in inverse powers of &'/4,
although it turns out that X may be expanded in inverse
powers of #1/%, It is found that

A=+ 4 an(0) -3 20m+ 10+ k2N +--- (1)

and
v~D,(n) = exp(~ in")He,(n); n=(20)!/%¢, (1.8)

where m is a non-negative integer. Here D,, and He,,
denote parabolic cylinder functions* and Hermite
polynomials, ® respectively. Thus m =0 corresponds to
the lowest order mode considered previously. An ex-
pression for A, is given in (4.12), the quantities therein
being defined by (3.11). From (1. 7) the propagation
constant is

B=ka!/?
=k + o2+ 31+ )V [ax(0) ~ k1 2@m +1)5 4+ - ],
(1.9)
so that the modes are not dispersionless.

Since the expansion in terms of the stretched variable
¢ is not very suitable for representing the modes for
moderately large values of £, an expansion in terms of
parabolic cylinder functions with argument p = 2k!/*

x[- 6(s)]!/? is considered in the latter part of Sec. 4.
This expansion is analogous to that obtained for the
lowest order mode.

In Sec. 5 attention is turned to closed boundary
curves, It is first assumed that the curvature attains
its algebraic maximum at a single point on the bound-
ary curve, and it is argued that modes exist which dif-
fer by only an exponentially small amount from those
derived for an open boundary, because of the confine-
ment to an interval of s of length O(k™1/%) on either side
of the point of maximum curvature, Moreover, the cor-
responding values of A should differ by only an exponen-
tially smail amount,

Attention is then turned to closed boundary curves
with the symmetry of an ellipse, and for which the
curvature attains its algebraic maximum at itwo points.
The region under consideration may be either interior
to the boundary cylinder, corresponding to a rod, or
exterior to it, corresponding to a bore, but the points
of maximum algebraic curvature of the boundary curve
are different for the rod and for the bore. It is argued
that modes exist which are essentially symmetric and
antisymmetric combinations of the modal shapes
derived in the neighborhood of the points of maximum
algebraic curvature, and that the values of X for the two
combinations differ by an exponentially small quantity.

These assertions are verified for a particular ex-
ample, at least in so far as an approximation to the
surface wave is concerned. With
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w

u =exp(ikA/ %z — kan)w(n, s, k), o | g =0 (1.10)
this approximation is

W] o~ Wis, k), A~1+0%+ Ry, (1.11)
where

ﬂ+k[ouc(s)—p]W=0. (1.12)

ds?

A term of order W has been neglected in obtaining
(1.12). The example considered is that of a boundary
of eircumference 27 for which x(s)=1+2c cos2s, with

0 <c¢ <3. Periodic solutions of (1.12) may be expressed
in terms of Mathieu functions® with parameter g =kac
> 1, for which asymptotic results may be used. The
case of a bore, for which x(s)=- (1 — 2¢ cos2s), is also
briefly considered.

We remark that the analysis of other cases, in which
the curvature does not satisfy the properties assumed
so far, hinges upon the asymptotic behavior of ap-
propriate solutions of (1.12) for 2>1, Asymptotic
solutions of equations of the form (1.12) have been con-
sidered in some generality by Lynn and Keller. !

Finally, in Sec. 6, in order to clarify the transition
from the case of constant curvature to one in which the
curvature has a strict maximum, we consider a family
of boundary curves for which x(s) =y, +k™y (s)+-- -,
where y, is constant. The results are illustrated for
the previous example, for which y;=1 and y,(s)
=2kc cos2s, where now 0<c¢ <1, and the transition to
the case kac > 1 is considered. It is also pointed out
that a refined approximation to the surface wave is
necessary in the case y;(s)=0(1), since a term of order
W has been neglected in obtaining (1. 12).

2. FORMULATION OF THE PROBLEM

The coordinate system is depicted in Fig. 1, wherein
n is distance from the surface along the inward normal,
s is signed arc length along the cross-sectional bound-
ary curve, and z is distance along the generators of the
cylinder. The unit vectors n, t, and k, which form a
right-handed set, are in the directions of the inward
normal and tangent to the boundary curve, and of the
positive z axis, respectively. Thus,

n=tXxk, @2.1)
and?

dn _ at _ dk _

ds -——K(S)t, dS_K(S)n’ ds ‘0’ (2- 2)

b9
n K
\ k
n
f a— 7 —/

FIG. 1, Coordinate system and unit vectors.
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where «(s) is the curvature of the boundary curve,
which is assumed to be sufficiently smoocth. ¥ the curve
is given by r(s), then

dr

s 6 2.3)

and the three-dimensional position vector is

%=r(s) +nn(s) + zk. (2.4)
From (2. 2)—(2. 4), it follows that
dx=ndn+[1 - k(snltds +kdz. 2. 5)

The coordinate system becomes singular for «kn=1,
but, since we are considering surface waves, kn will
be small in the region of interest. The line elements
are, from (2. 5),

ho=1, hy=1-«(sim=h, h,=1. (2.6)

Hence, ® the reduced wave equation (1.1) takes the form

u kdu 13 Kk'mou du B = 0.

o hon Rt T W 3s T ot T @7

In view of the boundary condition (1, 2), and since we
are looking for waves propagating in the z direction, we
let

u=exp(ipz) exp(- kan)w(n, s, k), (2.8)
and, for convenience, set

A=k (2.9)
Then, from (2.7),
2 2 _ K _ oW
(l+a h)w+ka(hw 2an)

w kow 1 3%w «k'n dw

T2 " hom Wast "I s =0. (2.10)
Also, the boundary condition (1.2} leads to

ow

™ n=0—0. (2.11)

Both w and A depend on k2, which is large by assump-
tion. If we expand them in inverse powers of &, as did
Grimshaw, ? then, with

A=ng kI, weEwg Ry e (2.12)
it follows from (2. 10) that 3,=1+ o and
L4 dw
-A1w0+a(£w0—2—a;9)=0. (2.13)

Thus, from (2.6) and (2.1), setting n=0 in (2.13), we
find that A = ax(s), which is possible only if « is con-
stant. Consideration of how the terms of order & in

(2. 10) could be balanced when «(s) is not constant leads
to setting

w(n, s, k) = exp(k!26(s)) f(n, s, ), (2.14)
and assuming expansions of the form

[, s,0) =20 k7%, plnys), A= kTN, (2.15)

r=0 r=0

The boundary condition (2. 11) implies that

aF| _

o | =0. (2. 16)
1788 J. Math. Phys., Vol. 16, No. 9, September 1975

From (2.10), (2.14), and (2. 15) it is found that

N=1+0% N y=0. 2.17)
The terms of order & in (2. 10) then lead to
- (P B_fo) 1 @)2 _
A1f0+a(hfo ™ +(h gs ) f0=0- (2.18)

Setting =0 it follows, from (2. 6) and (2. 16), that

(@.)2 =), - ak(s).

ds (2.19)

We consider first the case of an open boundary curve
for which k(s) attains its algebraic maximum at a single
point, which we take to be at s =0, with

k'(0)=0, «"(0)<0,

and

(2. 20)

sp< |s| <.
(2.21)

If A > ak(0) it follows, from (2.19) and (2. 21), that
exp[k!/26(s)] is not bounded for |s| <=, If A, < ak(0)
then exp[k!/%6(s)] oscillates rapidly for ax(s)> 2}, and
this is not the type of disturbance we are looking for.
On the other hand, if

Ay = ax(0),

k(s)<k(0), 0<|s|<s, x(s)<k<k(0),

(2.22)

and if we choose sgn(d8/ds) = — sgns, then 6(s) tends to
— a8 |s| =, With 8(0) =0, we have

o(s)=— jos{a[x(o) - k({o))}/? sgno do, (2.23)

where the positive square root is to be taken. It follows,
from (2.20), that for small s

8(s)~~z0s%, |s|«1, &=[-zax"(0)]/% (2. 24)

Thus on the boundary curve the solution decays rapidly
on either side of the point of maximum algebraic
curvature. The solution is therefore essentially con-
fined to the region |s| =0(™/%), as well as being con-
fined close to the surface in the region n=0(™).

Now, from (2. 18) and (2.19), using (2. 6) and (2. 22),
it follows that

_ by (s) k(s)nf1 ~ k(0)n]}
fo= - ;2(s)n]1/2 exp (’ 2[1 - k(s)n] ) ’

where by(s) is yet to be determined. An equation for
b,(s) may be obtained by considering the terms of
order k!/? in (2.10), which involve f, ;; and X3/, and by
applying the boundary condition (2. 16). However, since
we are interested only in the region n=0(™), it is
simpler to use a boundary layer analysis, which we do
in the next section.

(2. 25)

In a later section we discuss the applicability of the
results o the case of closed boundary curves for which
the curvature attains its algebraic maximum at a single
point. We also consider closed boundary curves with the
symmetry of an ellipse, and for which the curvature
attains its algebraic maximum at two points.

3. BOUNDARY LAYER ANALYSIS

We confine our attention here to a region close to the
boundary surface and set
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E=kn’ f(fl, S,k) =g(E’ S, k) (3 1)
Then, from (2. 8), (2.9) and (2. 14),

u =exp[ika/2z — at +k1/20(s)] g (¢, s, k), (3.2)
and the boundary condition (2. 16) is now

gl _p 3.3

ag tno . ( )

The partial differential equation satisfied by g is given
by (A1) in Appendix A. We assume an expansion for g
of the form

g(t, s, k)= Ek"’ 2, /2(E, S), (3.4)

and retain the expansion for A given in (2, 15).
It is shown in Appendix A that
80=by(s), £172=D1,2(8), £1=04(), &352="b3,2(5),
(3.5)

and the form of g, is given in (AT). In addition to (2.17)
and (2. 19), it is found that

de db, [d%e )

ds ds (d32 = %12)00(s) =0,
and an equation for by ;4(s) is given by (A8). We consider
the case b,(0)#0. Then, from (2.24) and (3. 6), it fol-
lows that

3.6)

(3.7

Note that if instead of assuming 5,(0)#0, we assume
that b,(s)~s™ for |sl< 1, where m is a positive integer,
then Ay, =~ (2m +1)6. This corresponds to the higher
order modes, which are treated in a different manner
in the next section, for reasons which will be apparent
later.

7\3/2=-6.

If we set
by 12(8) =c45(8)by(s)
in (A8), it is found, using (2. 22) and (3. 6), that
1 oy
by(s) ds? *

In order that ¢, ,,(s) remain bounded for small s, it
follows from (2. 24) that

(3.8)

22004y, _ ti(s)(26(0) - k(s)] -

ds ds @.9)

_Z[K(O)]z b (0) dsz (0) (3. 10)

Higher order terms in the asymptotic expansions may
be obtained in an analogous manner. For small s,
since «'(0)=0, we may write

REIRS S (3.11)

where, in particular, K, =3x"(0). The term involving
by in (3. 10) may be evaluated with the help of (2.19),
(2. 22)—(2. 24), (3.6), and (3.7), and it is found that

- « _ 3k, 1143

ITARETY: &
The quantity by(s) is obtained by quadrature from
(3. 86), wherein 6(s) is given by (2. 23), and 1, 12 by
(3.7). Then b, ,,(s) is given by (3. 8), where c, ;y(s) is

K(S) =Ko+ KyS? + Kgs® + K484+

(3.12)
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obtained by quadrature from (3. 9), with 3, given by
(3.12). Without loss of generality we may take c,5(0)
=0. As a particular example, we consider

k(s)=ysechls, 0<y<7/2, (3.13)
corresponding to the boundary curve

x(s):ﬂfcos(ytanho)do, y(s):—jossin(-ytanho)do.

(3.14)
In this case it is found that
MEay, Np==(e)'?, Mm=31+9), (3.15)
and
6(s) =~ (ay)!*log(coshs), by(s) =5,(0)(coshs)! /% (3.16)
Also,
8(017)“2%:— tanhs(1 + 2% tanh’s). (3.17)

Note that ¢4 /9(s) does not remain bounded for {s| — <,
so that #1/%c, ,,(s) does not remain small, but since
is already exponentially small for s =0(1), because of
the factor exp[k!/26(s)], this is not important.

4. THE HIGHER ORDER MODES

We have seen that the lowest order mode is essen-
tially confined to the region |s|=0("/%). In order to
analyze the higher order modes, we rescale the varia-
ble s, as well as the variable n. Thus, in (2. 8) we let

E=kn, t=k'*s, wn,s)=v(E, ¢, k). 4.1)
Then, from (2.10) and (2. 11),
2% kr 3y
2 _ 20>
k(1 +a? )\)v+ka(v ZkBE) k T s ag
B2 3% k't v
+_hz_a_§2 +—k3/4h352=0’ (4.2)
where & is given by (A2), and
ov
- =0, 4.3
Also, from (3.11),
K=Ky + BV 2y 22 e B3 e 3 4 kol e
k=2 e 4.4)
We assume expansions of the form
‘U(E, é‘, k) = Zjok-'/‘ivrpi(g, §), A= ?0 k-r/4>“r/4' (4 5)

Proceeding in an analogous manner to that in Appendix
A, we find that

N=1+0% A,=0, X2=0,

A374=0, M=0Ky, N5;4=0 (4.6)
and

v?‘/d(gsg)zar/‘i(g)’ 7':0,1,2,3,4,5. (4-7)

From the terms of order k!/2 in (4, 2), and the boundary
condition (4. 3), it then follows that

2

d’ay
= +(m< £2— A3,2)a0(2)=0.

dt 4.8)
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and that (4. 7) holds for »=6.

The solution of Eq. (4.8) may be expressed in terms
of parabolic cylinder functions. ¢ Since s=%"1/4¢, we
want solutions which are bounded for large ||. Hence,

A32=— (2m +1)3, ay=D,(), 4.9
where m is a nonnegative integer, and

n=(28)!"%¢, 8=(-ary'’’. (4.10)
In terms of Hermite polynomials®

D,,(n) =exp(- in*)He,(n), (4.11)

and He,(n) has m zeros. Since 7=(26)!/%1/%s and
He, () =n"—- @n™%+..., it is now clear why the ex-
pansion in the previous section breaks down when
s=0®VY it m> 2,

The terms of order £/ and 1 in (4. 2) are considered
in Appendix B and it is found, from an orthogonality
condition on — © < ¢ <, that

A7/4:0,

2 4k, 16k3%
and an expression for a,, is given in (B7). It is also
shown that (4.7) holds for » =7, and the form of v, is
given in (B5). Note that for m =0 the expression for X,
in (4. 12) agrees with that in (3. 12). Thus we are able
to derive the asymptotic expansion of X by means of an
analysis in the stretched variable ¢=k'/s, and also to
obtain the structure of the higher order modes. We re-
mark that, using the variable ¢, we have carried out
the asymptotic expansion, far enough to calculate 2,
with the variable »n, rather than the boundary layer
variable £ =Fkn, but this involves more algebra than the
above analysis.

2
+Smm + 1)(3?— - 5—"—‘\)] 4.12)
K3 Ky

The expansion in terms of the stretched variable ¢ is
not very suitable for representing the modes for
moderately large values of {. Hence we now consider an
expansion for the higher order modes which corre-
sponds to that obtained in Sec. 3 for the lowest order
mode. In view of (2. 14), (3.1), and {4.11), we assume
that

w(n,s, k) =G(&, s, k)D,(p) + mk™ /4H(E, s, k)D 4 (p),
(4.13)
where
E=kn, p=k'iX(s), [X(s)F=-46(s), (4.14)

with sgn X (s) =sgns, and 6(s) as in (2. 23). The equations
satisfied by G and H may be derived from (2. 10), with
the help of the recurrence relations satisfied by the
parabolic cylinder functions, and they are given by

(C2) and (C3) in Appendix C. The boundary condition

(2. 11) leads to (C4).

In view of the form of Egs. (C2) and (C3), we assume
expansions of the form

G(E, S, k) = '_E_ok-r/ZGr/Z(Ey S)y H(‘E’ s, k) = ‘rZ:;Ok-'IZHr/Z(E’ S),
(4.15)
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and it is now evident that we may expand ) in powers of
k1% ag in (2.15), rather than assume an expansion in
powers of k™/%, as in (4. 5). As before, we have

)‘0=1+a2’ )‘1/2=0, )L1=CYK0, (4 16)

and, proceeding in an analogous manner to that in
Appendix A, it is found that

Gr/z(gy S) = pf/Z(s)i_ Hr/2(£a S) ZQT/Z(S)’ 1’20’ 17 2.

4.17)
We have used the relationship
2
(KZ %) = a[k(0) - k(s)], (4.18)

whirh follows from (2. 23) and (4. 14).

From the terms of order k!/% in (C2) and (C3), and
the boundary conditions (C4), it follows that (4.17) holds
for » =3, and that

ax  dp LX) XX
Xas* ds (m+2)

as/ taastt Xg/z]Po(S) =0, .19)

and the equation for g,(s) given by (C5) holds. Note that,
in view of (4. 14), the equation for p,y(s) is equivalent to
that for by(s) in (3. 6) when m =0. Now, for small s we
have, from (2. 24) and (4. 14),

X(s)~ @8 2%, |s] <1, (4. 20)
The requirement that p,(0)# 0 thus implies that
)\3/2:— (2m+1)6. (4. 21)

It is shown in Appendix C that the requirement that ¢,(0)
be finite determines g4(s) uniquely. We also obtain an
explicit expression for g,(s) in terms of p,(s) and X(s),
as given by (C6).

The terms of order 1 in (C2) are considered in
Appendix C, and the boundary condition (C4) leads to
the form of G, given in (C7), and to the equation for
D1/2(s) given in (C8). Substituting py ,5(s) =7y ,2(s)p,(s),
using (4. 19), and requiring 7,,,(s) to remain bounded
for small s, we obtain the expression for A, given in
(C9). The terms involving p, and g, in (C9) may be
evaluated with the help of (2. 23), (4.14), (4.19), and
(C5), and we have verified that the resulting expression
for 2, is that given in (4. 12). We omit the rather
tedious details.

5. CLOSED BOUNDARY CURVES

We have confined our attention, so far, to open
boundary curves for which the curvature attains its
algebraic maximum at a single point. We have seen
that on the boundary curve the modes are essentially
confined to an interval of length O(k~1/%), on either side
of the point of maximum algebraic curvature, and they
decay exponentially outside this interval. If the bound-
ary curve is closed, and the curvature attains its
algebraic maximum at a single point, we would intui-
tively expect that modes would exist which differ by on-
ly an exponentially small amount from those derived in
the previous section. Moreover, the corresponding val-
ues of A would presumably also differ by an exponen-~
tially small quantity.
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«

{a)

(b)

FIG, 2. Cross-sectional boundary curves, arc length s and
unit vectors for @) a rod and (b) a bore.

We now turn our attention to closed boundary curves
with the symmetry of an ellipse, and for which the
curvature attains its algebraic maximum at two points.
The region under consideration may be either interior
to the boundary cylinder, corresponding to a rod, or
exterior to it, corresponding to a bore. The curvature
at a given point on the boundary curve for the bore is
just the negative of that for the rod, because of our
convention that n is directed into the region, as depicted
in Figs. 2(a) and (b). Note that the points of maximum
algebraic curvature of the boundary curve are different
for the rod and for the bore.

Asymptotic expansions may be developed, as in the
previous section, about each of the two points of maxi-
mum algebraic curvature, with appropriate translation
of the origin of the coordinate s. Because of the sym-
metry, both expansions will lead to the same expres-
sions for A, and to the same modal shape. Analogously
to the previous discussion, we intuitively expect modes
to exist with shapes differing from those corresponding
to the asymptotic expansions by an exponentially small
amount, and with values of A differing by an exponen-
tially small quantity. However, care must be taken as
to what should be called a mode.

Thus, from the symmetry, it is to be expected that
the true modes are either symmetric or antisym-
metric. Consider, for instance, the lowest order modal
shape, corresponding to m =0 in (4. 13). Corresponding
to this there should be a symmetric mode without nulls,
and an antisymmetric mode with two nulls, as depicted
in Figs. 3(a) and (b), respectively. (Note that the end
points should be identified because of the periodicity. )
Moreover, it is to be expected that the values of A for
the symmetric and the antisymmetric mode will differ
by only an exponentially small amount. Analogous com-
ments apply to the higher order modal shapes in (4, 13),
and the corresponding symmetric and antisymmetric
modes will have 2m and 2m +2 nulls, respectively,

The above assertions may be verified for a particular
example, at least in so far as an approximation to the
surface wave is concerned. Thus, setting »=0 in (2. 10),
and using (2. 6) and (2.11), we find that

1791 J. Math, Phys., Vol. 16, No. 9, September 1975

W) pug ~ W(s, k), A= (1+a®)~E1p, (5.1)

where, neglecting the term 9%w/an| ., which is of
order W,

2

w

L% +hlax(s) - ulw=o. (5.2)

Ag the particular example, we consider
k(s)=1+2ccos2s, 0<c<3%, (5.3)

corresponding to the boundary curve
x(s)= f," cos(0 +c sin20)do, y(s)=- J,” sin(o +¢ sin20)do.

(5. 4)
The length of the circumference is 27.

When k(s) is given by (5.3), the solution of (5.2) may
be expressed in terms of Mathieu functions, and period-
ic solutions, and corresponding eigenvalues, are®

W=ce,(s+7/2,q), kla-p)=a,q),

5.5
W=se,y(s+1/2,q), k(a-p)=b,,g), (6.5)
where m is a nonnegative integer, and

q:kac >> 1, (5- 6)

The solutions in (5. 5) correspond to modes which are
symmetric and antisymmetric respectively, about
s=m/2. But,® for ¢>1,

(@) ~bpu(@)~—2q +2@m +1)g' 2 5. .. (5.7
and
24m+5 9 1/2 .
bt @ = @)~ (2) g0 Rexp- ag,
(5. 8)

Thus the values of p for the symmetric and antisym-
metric modes differ by an exponentially small quantity,
and, from (5. 1) and (5. 5)—(5.7),

A~1+ a2+ a(l+2¢)k™t - 2@2m + 1) (ac) /232 4. ..
(5.9)

The approximate expression (5. 9) is consistent with
(4.16) and (4. 21), as is seen from (3. 11), (4.10), and
(5. 3), but higher order terms will differ, since terms
of order W have been neglected in obtaining (5. 2). Also
from (4. 13)—(4. 15) and (4. 17)—(4. 19), it is found that,
for |s| <n/2,

W | ag ~ Do (0)[s€C(S/2)™1D, [4 (R ac)! /4 sin(s/2)]. (5.10)

N

i

0

AN

» S

()

AN

[}

v

FIG. 3, (a) Symmetric, and (b) antisymmetric, modes corre-
sponding to the lowest order modal shape.
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This is consistent with the asymptotic expressions® for
the Mathieu functions for Isins| <2!/4(tac)™/3

cen(s +1/2,9)~ (- 1)"C,D,[2(kac)'/* sins],

Semai(s+1/2,9)~ (- 1)™S, D, [2(kac)!/*sins].
Moreover, ¢ for 4(kac)!/*|sin(s/2)| > m,
D,[4(kac)'/*sin(s/2)]

~[4(kac)!/* sin(s/2)]" exp[2(kac)!/3(coss - 1)], (5.12)

and (5. 10) is consistent with the asymptotic expres-
sions® for the Mathieu functions for Is| between 0 and
7/2, and not close to either.

(5.11)

The above example corresponds to a cylindrical rod,
but a similar analysis applies to the case of a bore
with the same boundary curve. In this case, changing
the sign of the curvature, and replacing s by 7/2 - s in

(5.3),
k(s)=—-(1-2ccos2s), 0<c<3. (5.13)
The eigenvalues in (5. 5) are thus replaced by
k(a+p)==-aylq), k(a+p)=->b,,4(), (5.14)

while the eigenfunctions are unaltered. From (5.1),
(5.6), (5.7), and (5.14), we now have

A~1+ 02— a(l =20kt -2@m +1)(ac) 32 4. ..,
(5. 15)

6. BOUNDARY CURVES WITH NEARLY
CONSTANT CURVATURE

In Sec. 2 we showed that expanding X and w in in-
verse powers of & is appropriate only when the pre-
scribed curvature is constant. The results obtained in
the preceding sections, which involve expansions in
fractional inverse powers of k, are applicable to the
case when the curvature has a strict maximum with non-
vanishing second derivative. It is clear that there is a
nonuniform behavior as 2 — «, and in order to clarify
the transition from the case of constant curvature to
one in which the curvature has a strict maximum, we
now consider boundary curves with nearly constant
culrvature, the deviation from constancy being of order
kB

Thus, for #>1, we consider a family of boundary
curves for which

k(s) =1y, +k'1y1(s) +kly(s)+. .., 6.1)

where v is constant. As before, for simplicity, we
confine our attention to the boundary layer, and let

E=kn, w=w(t,s,k). (6.2)
Then, from (2.10),
2 2 _ K gy JW g 0w
K1+ a x)w+ka<hw 2ka§)+k5?
2 ’
kk 0w 1 0°w xgawzo’ 6. 3)

Th oE TRAST VRS Bs

where & is given by (A2), and the boundary condition
(2. 11) implies that
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ow
- =0,
3E | (6.4)
We assume expansions of the form
A=20 kTN, w(g, s, k)= ETw,E, s). (6. 5)
=0 r=0

Proceeding as previously, the terms of order #% and %
in (6. 3), and the boundary condition (6. 4), lead to
N=1+02 N =ay,, (6. 8)
and
w,(&,8)=T,(s), r=0,1. 6.7)

From the terms of order 1 in (6. 3), and the boundary
condition (6. 4), it is found that

wa (£, 8) = Tp(s) + 3247 (9) 6. 8)
and
2 2
% * <-72-°+0171(S)— M) 7y(s) =0. (6.9)

Asymptotic solutions of (6.9) may be obtained if ay,(s)
is large, and perturbation expansions may be derived if
ay(s) is small, but in the transition region, where
ayy(s) is O(1), no approximation may be made in Eq.

(6. 9) for 7,(s). Consequently, we consider a particular
example for which this equation may be solved analyti-
cally, namely the closed boundary curve of circumfer-
ence 27 with «(s) given by (5. 3), where now 0 <c <1,
Then, from (6.1),

¥o=1, y1(s)=2kc cos2s. (6.10)
Hence (6. 9) has the form of Mathieu’s equation, and the
eigenfunctions are as in (5. 5), with corresponding
eigenvalues

3-2%=a,(q), bailg), g=kac.

Let us consider the case ¢ >>1, which holds, for
example, if ¢ =0(k™1/?). Then,*®

(6.11)

On(@) ~ Dy (@)~ = 2¢ +2@m + 1)g' 2 = 3z +m+mP)+ .. ..

(6.12)
Hence, from (6.5), (6.6), and (6. 10)—(6.12),
A~1+ a2 +kla+k2[2kac — 22m + 1) (kac)!/?
+3G+maemB e [ R Dg4 (6.13)
But, from (3.11) and (5. 3),
ky=1+2c, Kky=—4c, Kk3=0, K4=€4gc. (6.14)

Thus, from (4.5), (4.6), (4.9), (4.10), and (4.12),
A=1+0?+kta(l +2c) - 2673 2(2m + 1) (ac)t/?

+E2 31 +2c) + 5+ amim+ 1))+ - . (6.15)

Note that (6. 13) and (6. 15) are consistent through Ok™?)
for ¢ =0o(1), kac>>1.

For small g the Mathieu functions and corresponding
eigenvalues may be expanded in powers of g. % The
limiting case ¢ =0, i.e., ¢=0, corresponds to a circu-
lar rod with circumference 27. It follows from (6. 9) and
(6. 10) that the solutions of period 27 are simple
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harmonic functions, and ), =2 ~1%, where [ is an integer.

Hence, from (6. 5) and (6. 6),

r=l+ @ +Bla+ 2 E-1)+. .. (6. 186)

The exact solution to (1.1) and (1. 2) may be obtained in
the case of a circular rod, by separating variables in
cylindrical coordinates, We have verified that the
asymptotic solution of the eigenvalue equation for 2,
which involves modified Bessel functions, leads to
(6.186).

We conclude by commenting on the approximation to
the surface wave considered in the previous section.
The approximate equation (5. 2) for w/! ., was obtained
by setting =0 in (2. 10), and using (2. 6) and (2. 11), and
neglecting the term 8*w/on?|,.,, which is of order W.
Hence this approximation is not useful in the case of
boundary curves with nearly constant curvature, when
k(s) is given by (6. 1) and ay,(s) is O(1). However, a
refined approximation to the surface wave may be ob-
tained which is useful in this case. Thus, if (2.10) is
differentiated with respect to z» and then n set equal to
zero, the equation obtained by setting =0 in (2. 10) may
be used to eliminate 9%w/3n?,.,. The refined approxi-
mation involves dropping the term 3%0/9n%|,.,, which
is of order W, but is multiplied by a factor O(¢™!)
times the coefficient of d2W/ds%. With x(s) given by
(6.1), the term %% in (6. 9) is contained in the re-
fined approximation to the surface wave.
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APPENDIX A

We give here some details of the boundary layer
analysis in a region close to the surface. From (2. 10),
(2.14), and (3.1), it follows that

dk 282 T n ot

LKE (1000 a_g) l[ ﬁ) 1/2(540 o2
kh3(k as¥* as) 12 Plas) £ % \%as as

B2l +a%- )t)g+ka(%g— 2k—a£> g _kedg

de 92
+d—s§g +a—s%]=0, (A1)
where, from (2. 6),
h=1-k1k(s)t. (A2)

The boundary condition is that given in (3. 3), and X and
£ are expanded in inverse powers of k!/%, as in (2, 15)
and (3. 4).

From the previous analysis, Aj=1+a?, and the terms
of order %? in (A1) imply that

62
Za—% —éfgl =0, (A3)
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Rejecting the exponentially growing solution, it follows
that

&0 =by(s). (A4)
Next, from the terms of order £%/2 in (A1),

~X\ 280 2028112 "&1}& =0. (A5)
Hence, from (A4) and (A5),

£1/2=01/2(8) = A 9Dy (s)E/ 20, (A8)

The boundary condition (3. 3) implies that 1, ,,=0, as
before. Similarly, from the terms of order k and &!/?
in (A1), and from the boundary condition (3. 3), it is
found that (2.19) and (3. 6) hold, and that g, =b,(s) and
Z3,2=b3,2(s). Finally, from the terms of order 1 in
(A1),

_ g e 2]
21=005)+ 4 [ar2(32) Jon) an)
and, using (2.19),
do db &g
27 d;/z (ds Ka/z>b1/z(s)
K d*b
= ()\2 ~ % @) - ouc))bo(s) - -ﬁ (A8)

APPENDIX B

We consider here some of the higher order terms in
the expansions in (4. 5). The terms of order #!/4 in
(4. 2) imply, using (4.4), (4.6), (4.7), and (A2), that
/4

321)7
ot | ol

2a

d2
= ———-&;;2 +(@ry 8 = Ay 9)ay ;4 (0) + (ks ® - M 8)ao(2).

(B1)

Rejecting the solution which grows exponentially with
£, the boundary condition (4. 3), using (4. 9) and (4. 10),
leads to

d

= (e i bzza)v [@8)/2), (B2)
and to v, = =ay,(¢). Multiplying equation (B2) by
D,[(26)!/%¢], which is a solution of the homogeneous
equation, and integrating with respect to ¢ from — < to
o, it follows that
K7 /4 = 0. (B3)

Next, from the terms of order 1 in (4. 2), and from
the boundary condition (4. 3), it is found that

dlay;
;22 2+ (aky 8 = X3 )y 12(2)
"g 4 3
= ("'z -3 T oK ay(8) = axstiay 14(¢) (B4)
and
vy =ay(£) + k3 E2a,(2). (B5)
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From (4.9), (4.10), and (B4), it follows that

J:(Xz-g +;§“ 4)[ n(MF d

25 1/2K g
(—)——3 n*ay ;4D p(n)dn=0.

4K2 (BG)

Using properties of the parabolic cylinder functions,*

it is found, from (4.10), (B2), and (B3), that

-k
@y ,= 4_(25_)117% (5D pmas(m) +3(m + 1)D 1 ()

= 31Dy () = 3m(m = 1) (m = 2)D,sm)].  (BT)

Then the expression for A, given in (4. 12) follows from

(B8) and (B7), using (4. 11) and the orthogonality rela-

tionships for the Hermite polynomials®
S D)D) dn = 21/ 2n! 5y,

where §;,=1 if I=#n, and is 0 otherwise.

(B8)

APPENDIX C

We consider here the representation (4. 13) of the
higher order modes. Now,*

Drln(p) = mDm-i(p) - %po(p)’
Dr,n-i(p) = %Pqu(P) - Dm(p),

where the prime denotes differentiation with respect to
the argument. Substituting (4. 13) into (2. 10), using

(4. 14) and (C1), and equating to zero the coefficients
of D,(p) and mk1/4D__(p), it is found that

(C1)

kz(1+a2—>\)G+ka(hG zk&—) kZ%‘}
e —(ﬂ i)
LY o[58 )]
%—[(mu)(dx)c x e zx;i{gf]}w (c2)

and
2*H

k2(1+a2—x)H+ka( H- Zk—-) R T

_ kx3H __5 p/29X (X > ]
O 4 e (X
L1 )_(__X ki/z(_Z(G 98X 26
* 2 ds 8s2 as? ds 3s
LR ax ax BH]}
[ 34 - @m- 1)( )H +2x A 2 0=0,
(C3)
where / is given by(A2). From (2.11), (4.13), and
(4. 14), the boundary conditions are
oG oH
- 8£ =0, (C4)

From the terms of order k%, k%/2 and k in (C2) and
(C3), and the boundary conditions (C4), it is found,
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using (4. 18), that (4. 16) and (4.17) hold. Next, from
the terms of order %!/ in (C2) and (C3), it is found that
(4.17) holds for 7 =3, that py(s) satisfies (4.19), and

that
E/SK 71%0 [§ ESK - %)(%)2 - 7\3/2] qo(s)
( Zl% fg;o __2(1,0(3)> (C5)

From (4. 20) and (4. 21) it follows that, for small s, the
left-hand side of Eq. (C5) is approximately 25d/ds
X[sg,(s)], so that g,(s) is determined uniquely by the
requirement that g,(0) be finite. It is readily verified,
with the help of (4. 19), that a particular solution of
(C5) is g,(s) == py(s)/X(s), but this does not remain
finite at s =0. However, it may also be verified that
[po(s)X dX/ds]™ is a solution of the homogeneous equa-
tion, and thus, from (4. 20),

Po(s)>

q (s)=p°(0)< 2% 12 (0) _
0 X(s) DO(S)dXﬁdS P0(0) /"
From the terms of order 1 in (C2), and the boundary

condition (C4), it is found, using (4.18), that
Gy =pa(s) + §EK(s)[2x(0) — #(5)] o (s), (ohy

(C6)

and
Zzzs( ds ["” < ) é‘(d—)g +Aa/z]z21/z(8)
+{2K(S) [2(0) = K(s)] = Ay} by (s)
-m(dz)g qo(S)+2% %qs—"). (C8)

Substituting p, ,5(s) =74 2(s)py(s), the left-hand side of
(C8) is equal to X dX/dsdr, ;,/ds py(s), in view of (4 19).
In order than 7, ;,(s) remain bounded for smali s,
follows from (4 20) that

1 m_ 122(
+2E/;—’<o)%"s° (0)). (C9)
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Propagation of high frequency elastic surface waves along

cylinders of general cross section

L. O. Wilson and J. A. Morrison

Bell Laboratories, Murray Hill, New Jersey 07974
(Received 24 March 1975)

The propagation of high frequency elastic surface waves along the generators of a homogeneous isotropic
cylinder which has a cross-sectional boundary of nonconstant curvature is investigated. The boundary
surface is stress-free and the surface waves, or Rayleigh waves, are disturbances whose amplitudes decay
rapidly with depth into the cylinder. In the case of an open boundary curve for which the curvature attains
its algebraic maximum at a single point, it is found that modes exist for which the disturbance is essentially
confined to a region in the neighborhood of the point of maximum curvature, as well as to the
neighborhood of the surface. The amplitude of the disturbance decays rapidly on either side of the point of
maximum curvature. The application of these high frequency asymptotic results to the case of a closed
boundary curve is discussed. Particular cases will be investigated in more detail in a subsequent paper.

1. INTRODUCTION

Elastic surface waves, or Rayleigh waves, are dis-
.turbances which travel over the stress-free surface of
an elastic solid and whose amplitudes decay rapidly
with depth into the solid. We investigate here the propa-
gation of high frequency elastic surface waves down a
homogeneous isotropic cylinder which has a cross-sec-
tional boundary of nonconstant curvature. The boundary
curve may be open or closed. Rosenfeld and Keller!
treated a similar problem, but their analysis does not
cover the type of modes we discuss in this paper.
Gregory? also has considered the propagation of high
frequency Rayleigh waves over curved surfaces, but his
formalism does not apply when the waves travel down
the generators of a cylinder whose cross-sectional
boundary has nonconstant curvature.

The analysis involves a scalar wave equation, a vec-
tor wave equation, and rather complicated boundary
conditions. Since the analysis tends to become cumber-
some algebraically, a simpler scalar “model problem”
was first studied by one of the authors (J. A.M.).° The
analytical techniques developed for that problem have
counterparts for the more complicated elastic surface
wave problem to be treated here.

In the next section, we formulate the problem in
terms of the coordinate system depicted in Fig. 1 of
Ref. 3, where n measures distance from the surface
along the inward normal and s is signed arc length along
the cross-sectional boundary. Using appropriate units
for length and frequency, we shall be interested only in
the region n=0(w™), where w is the frequency, and
shall perform a boundary layer analysis, with £=wn. J

The displacement u is assumed to be given in terms of
a scalar potential and a vector potential: u=Vg + VXA,
We seek solutions to the resulting scalar and vector
wave equations of the form

[/ =exp[— ifz - a,,é + wllzlPL(S)]g('é, s; w)’
A=exp[-ifz ~ a £+ w2 (s)]C(E, s ; W),

where g, C, and 8 are expanded in inverse powers of
w'/%, and a, and a, are positive numbers.

In Sec. 3, the lowest order mode is analyzed for the
case of an open boundary curve for which.the curvature
k(s) attains its algebraic maximum at a single point,
s=0, with «’(0)=0 and «”(0)<0. It is shown that y,(s)
= 8)=¢(s) and that, for small s,

W(s)~= 3652, &=[=2yk"(0)]*/2,

where y >0 is a constant given by (3. 18), where a;, ap,
and B, satisfy (3. 3) and (3. 5). Furthermore, y(s) <y(0)
=0, and y(s)—~ — = as |s| —~~. Hence the disturbance is
essentially confined to the region |s| =0(w™/%), as well
as being confined close to the surface in the region n
=0(w").

An inductive procedure is developed, which allows
us to determine the expansions of g, C, and 8 to any
order desired. The solution is compared to that for
Rayleigh waves on a plane infinite half-space. The first
five terms in the expansion of 8 in inverse powers of
w'/? are also obtained. As we shall see, the first term
B, in the expansion of 8 satisfies the classical secular
equation (3. 5) for Rayleigh waves on an infinite half-
space. We will find that if we retain terms of orders w
and w*/? in the expression for the displacement, we have

u=wb®(s) exp[-iBz + w'/2y(s)] [n[l + w /21 /2)g)] (— a; exp(—a )+ -(E%%Z’L) exp(— a,.E))

+ (— iBok[1 + w2 A/2)(s)] + tw /2 %)(exp(- at)- (—3‘2’2%3@ exp(~ aTE))] .

S

where 5°)(s), c®/2)s), and y(s) are given by (3. 25),
(3.30), and (3. 19). On the other hand, the solution for
Rayleigh waves travelling on the surface of a plane in-
finite half-space is*
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(1.1)
| z. 2y
u=DBexp(-iBy,z) n(~a,exp(~ayt)+ _@92';—‘;“12. exp(- a,-ﬁ))
2 2
~iook (om0, 0)- BiofD expare)),  (2)
(]
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where B is a constant. Thus the first order effect of
curvature is to multiply the plane infinite half-space
solution by a factor proportional to 5°(s) explw'/2y(s)].
The second order effect is to multiply this solution by
an additional factor and to add a t component of dis-
placement which is related to the first order k com-
ponent of displacement.

In a subsequent paper, we intend to investigate the
behavior of the approximation (1. 1) in greater detail
for specific cylinders of physical interest. We will then
emphasize the physical implications of our analysis
and will stress less strongly the mathematical aspects
which we treat here.

Higher order modes are investigated in Sec. 4. Since
the lowest order mode is confined to the region !s|
=0(w*'%), we introduce the stretched variable {=w"/%s.
We look for solutions of the form

@ =exp(—ifz - a E)h(E, L ; w),
A:exp(_ tﬁz = aTtE)E(E, C; w)-

In general, 4, E, and 8 would be expanded in inverse
powers of w'/4, Because of the algebraic complexity
this involves, we make the further assumption that the
boundary curve is symmetric, i.e., k(s)=«(-s). It is
then possible to expand the unknown functions in inverse
powers of w'/2, The solutions are expressed in terms
of parabolic cylinder functions, ® or, equivalently, in
terms of Hermite polynomials.® It is shown that

B=why+ B+ w2y, + e,

where B, satisfies the classical secular equation for
Rayleigh waves and

23031 =YK(0)’ 28063 2= (2m + 1)5-

The case m =0 corresponds to the lowest order mode
considered in Sec. 3.

Finally, in Sec. 5, we turn our attention to closed
boundary curves. The region under consideration may
be either interior to the boundary cylinder, corre-
sponding to a rod, or exterior to it, corresponding to a
bore. Conclusions analogous to those for the scalar
model problem are reached.

2. FORMULATION

The coordinate system is described in Sec. 2 of Ref,
3. The displacement can be written as u=Vg + VXA,
where ¢ and A satisfy’

V2o +(w/c o =0, (2.1)
V(V-A)- VXIXA+(w/cPA=0, (2.2)
V-A=0. (2.3)

A time dependence exp(iwt) has been assumed. The
longitudinal and transverse velocities are given by ¢,
={(x+2u)/p"?, cp,=(u/p)'/?, where x and p are
Lamé’s constants and p is the density.

That the surface of the cylinder is stress-free is
expressed by the boundary conditions
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1 2 w? 2
— = — I ———— X —_— X =
W (CZT Ci) ¢n Czr AXn+2 o (Vo+VXA)=0

at n=0. (2.4)

These are obtained from the boundary conditions for®
u by using (2. 1)—(2. 3).

We are interested in high frequency waves, for which
the wavelength is small compared to the smallest radius
of curvature of the cylinder. The propagation of Ray-
leigh waves over curved surfaces at high frequency was
studied by Gregory,? who assumed an asymptotic ex-
pansion essentially of the form

@(r, w)=expliws(r)] mi::o Pl ™,

Alr, ) = expliwS(r)] 3 Ay r)o™,

where s, S, ¢,, and A, are complex functions of posi-
tion. One may show that Gregory’s formalism cannot be
used to describe the propagation of Rayleigh waves along
the generators of cylinders of nonconstant curvature.

Proceeding by analogy with the treatment of the
scalar problem, * we conjecture that a suitable expan-
sion for the lowest order mode is

@(n, s, z;w)=exp|- iz - wa 1+ &'y, (s)]f (n, s; W),
A(n, s, z; w)=exp[—iBz — wa m+ w /2P (s)]B(n, s; W),
where

fln,s;w)= 3 wmiAf iy, 5),
m=0 (2.5)

B(n, s; w)= Z% wm/2Bm/Ay ),
m=

and where o, and a, are positive numbers. We are thus
seeking waves which propagate in the z direction without
attenuation and which decay away from the surface of the
cylinder. The propagation constant is also a function of
w and is assumed to take the form

B=w ZD W ™R s (2.6)
It is indeed possible to carry through the analysis under
the above assumptions. However, since we are in-
terested only in the region n=0(w™), our task is
simplified if we restrict ourselves to a boundary layer
analysis. For this purpose, we set

t=wn, f(n,s;w)=g(k,s;w), Bn,s;w)=C(E,s; w),

2.7
so that
@ =expl-iBz - a t+w /PP (s)]g(E, 55 0), .
2.
A=exp[-iBz — a £+ w /%Y (s)]C(E, s; W), (2.8)
with
g(E, s; w)___ i w-m/zg(mlz)(g’ S),
m=0
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= 2 djr 3C, 1 d%y 1 2%C
C(E,s;w)="§] wm/2CmI2YE ), (2.9) +w1/2<h2 3 ask+h dsz’c) 7 —,-*

Then the line element h=1-kn=1-«kt/w, and 3/on a2 K'E dr L K'E ACk
— w3 /dt. Upon substituting (2. 8) into (2. 1) and (2. 2), TR s Gt g 5 =0 (2.10)
and using the curvilinear expressions for the curl, di-
vergence, and V3, ° we obtain the differential equations We next substitute (2. 8) into the boundary conditions
(2.4) and the divergence condition (2. 3) to get
2,1 8 og g Yi(8) = B(s) = (s), (2.11)
[(ar.""c';"wz)g'zaz, ag+agz ,
. 1 1 og 0
2 2 4 2
+ M_ﬁa_g+3_<d_wa)z] “’[("‘L*ci 23 )g 2°‘Las _s%
e ) not w\ds/) &
iar B gg}r sr2 d(b( ac,,)
+w1,2(_2_%a£+Ldz¢L) -Gty T Ml aC+aE
¥ ds as K®
0
. , +w [ araac +gg]+w“2x-;—wck+ aﬁ’f—-o
+_I_a + -1/2"Ed¢L s £ds s
K 8s n ds
at £=0, (2.12)
+w™ isﬁ_ % =0
2s ’ 2 .
9°C;  iBa ig og
-2a,—£f+ + =k g = 2
1 82 ac, | *C [( ) r ag o£? w w &
o 2 - _E - =t 4 =t
' [(a,+ 621' " ) C,-2a, 3t + 3e?
+w?/? -d—w( - )
N [fcaTC: _Kk 3y 1 (dzp,-)"’ ]
k ho9g - H\ds ] ac, o°%C ac; d
n L n 4 ) 1/2 _l/)'
+w(a,. 3s " 3Eds +a,kC,-«k ag) K s C,
+w”"‘(2 dpr 9C, 1 d? SQIC 25 dir Cn) sc
R ds as ® ds - (K . as") =0 at £=0, (2.13)

+(1 32C, K2 k'C, 2k 3C,
®ass "Bt R TR es 2 o2 1 9C, _2°C, _ iBar
w? | - F_C+2afag_a£2+w C,
B ’ dl,b B KIE aC . 2.3
+w1/2£§___7'c +w1_3___'=0, 7£_a u] /z@( ) ( a_g ig_
3 ds W os o £ +o? ds aLg+ag oz as+asas.
1 g2 ac, , 9%C
2 - n 3
W [(a,.+ = Z;z) —2ar 5t ] +wt/? x?g Ka—g—o at £=0, (2.14)
KarCon K 3C, , 1 (dwr) ] ( + B ) 12 4P _ 9
“"[ o " ndE " wW\as/) Cn wleL -5ty W gs CetrCy= 55 =0
2 dyr 3C, d*y 2k dy ) . at £=0. (2.15)
1/2 T Gvr
tw <h2 ds Fs +7ds Cti@as ©

Although the divergence condition holds throughout the
1 2 o, 2 c K'C, 2 3Cs medium, it will suffice to apply it at the boundary £ =0.
e Tt e s
3. ANALYSIS OF THE LOWEST ORDER MODE

/2 "35 dl/)TC + ot Kk'E 9Cn

£s =0, Substitute (2. 6) and (2. 9) in the differential equations
Kk B 9s (2.10) and extract terms of order w? to obtain
1 g2 3C, . 9°C, ( . 1 2) © g 32,40
2l (a2 + 5 - =5 k + =5 - - + =0
w [(%* E T )C -20, = T + 3?;2] ay = Bo)g 20, Y *5%— )
ka rCh k 9Cs 1 (dd)T)z ] (CLF 1 2) ©) ac©® 2Q@
- IR Svr + - cio.2 + =0, 3.1
+“’[ 7 n 3t i\as ) C» ol M r et o (3.1)
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1t follows from assumptions (2. 5) and (2. 7) that g° and
C™ are independent of £. This can be seen by expanding
F®n,s)=f°Xt/w,s) in inverse powers of w. So

g(O)(E,S):b(O)(S), C(O)(E,S):F(O)(S). (3- 2)

We wish the first terms in the expansion of ¢ and A to
be nontrivial, i.e., that 5©’#0 and that at least one
component of F®)£0, 1t then follows from (3. 1) and
(3.2) that

1
2 2
aL+ T—BOZO’

Cr

1
a2T+CT—B§:0. (3.3)
T
Next, we use (3.2), (3.3), and the expansions (2. 5)
and (2.7) in the first two boundary conditions (2. 12) and
(2.13). Setting the terms of order w® to zero gives

B — 1/202;' ~ 1By p p©

Boy  Bi-1/2¢% ) \ po =0 @9
t

Since at least b’ is nontrivial, the determinant of the

2X2 matrix in (3. 4) must be zero:

1 2

(8%— 2C-—§T—) - oo, =0. (3.5)

Equations (3. 3) determine a,and o;. When combined

with (3.5), they yield the familiar secular equation for

Rayleigh waves on a plane infinite half space. The

secular equation determines .

Using the expansions again and considering terms
of order w? in the third boundary condition (2. 14) and
of order w in the divergence condition (2. 15), we find

iBoar —(By~1/2c2)\ [F

=90.
ar B, F
Since a >0, this equation implies that

FO=F=0. {(3.6)

Turning now to terms of order w®/? in the differential
equations (2. 10) and using (3. 2), (3.3) and (3. 6), we
obtain

a241/2) Delt/2)
_g—iz_a = 2a, gag - 2BoBy /20’ =0,
820(1/23 ac(llz)

Ser =20 g ~ Wb =0,
82C,(,”2) aC,?/Z) -

852 aT 35 — Y
a2Cci/) acgp/®

32’2 —-Zda, DE =0.

Upon rejecting solutions which grow exponentially with
£, we have

g(l/Z)( £, s)=b arz )(S) - (ﬁoﬁl /25/051,) 5@ )(S),
CS/Z)(Es s):Fg(llzs(s)—(ﬁosl/zg/a T)FéO)(S)’
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C,('1I2)(£, s):F"“’z)(s),

C,i””(&,s):F,i””(s). (3.7
From (3.3), (3.6), (3.7), and the expansions (2. 5)

and (2. 7) applied to the first two boundary conditions

(2.12) and (2. 13), it follows, upon setting terms of

order w*/? to zero, that
Bo1/2h  -igeay) (69
iBoay g-1/2c% ] \ FM®
28, —i(aT+ﬁg/aT) b©
+ B85/ =0.
i(a, +B3/a;) 28, P

(3.8)

We next premultiply (3. 8) by ((85 —1/2¢%) if,a,). The
first term vanishes because of the secular equation
(3.5). Then with the help of (3. 3)—(3. 5) we find that

1 1
Bi2 [230(3%“ 522;) + ZBO(B?)_ E}T)

2 2
oo ) o )]

T L
=—Bobs s [-ﬁ-g(—"ﬁ%!)-z— +2a(a, - aT)}:o,
and thus, since o —-a,.>0,
B2 =0. (3.9)
1t follows from (3.7) that
gk, §)=b"/2s), CR/2(g,s)=F32)s). (3.10)

This is consistent with assumptions (2. 5) and (2. 7),
which also imply that g/2’ and C*/?’ are independent of
£. From (3. 8) we find that

BZ~1/26%

iBoay

—igay\ (29

pa-1/2¢%) \F{'®

(3.11)

Now consider terms of order w®/2 in the third bound-
ary condition (2. 14) and of order w"/? in the divergence
condition (2. 15). With the aid of (3. 2), (3. 7, (3.10),
and the expansions (2. 6) and (2. 9), these yield

(iﬁoaT ~ (82— 1/2¢%) <F;,1/2 N

y a/2
an B, it ’/

dp {a, 0 b©’
=7c OL 1 FO (3.12)
We then use (3.4) to get
1 d
Fa/2=0, FO/2= . &_‘SI)_ FO, (3.13)

Before proceeding to the analysis of terms of lower
order in w, we use the expansions (2. 6) and (2.9} in the
differential equations, boundary conditions, and di-
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vergence condition to write down general forms of these
equations. Our preliminary analysis has led to certain
results, such as 8,,,=0, which simplify the writing of
the general forms, which appear in the Appendix. The
differential equations appear in (A1), and the boundary
conditions and divergence condition appear in (A6) and
(A7). The notation used in these latter equations is in-
troduced in (A2).

We next proceed to the analysis of terms of order w,
i.e., with p=2, according to the notation of the Ap-
pendix. Using (3.2), (3.6), and (A1), and rejecting
solutions which grow exponentially with £, we get

g6 9=0909)+ S [aa, +(%4) - 208,
et =rte) s S0 e (2] 200
(3.14)

C U s)=F, ) s), CAE, s)=Fls).

Then from the first two boundary conditions (A6) and
from (3. 14), it follows (for p=2) that

B2-1/2¢% -—iBoa, pM
Boay BZ-1/2¢% F®
0 -ifag) (6@ -1 iBy/2a,
iB,a; Ka, FO iBy/2a, -1
[KaL+(d¢/ds)2_ ZBOBI] 5 0
x
0 [k o+ (do/ds) - 28.8,]
b d 0 Fu/2)
b -
x e =
FO tar ds (1 0 ) (le/z)) 0. (3.15)
¢

Premultiplication of the entire equation by

(B&—1/2¢% iBya ;) causes the first term to drop out be-
cause of the secular equation (3.5). The last term can be
evaluated by means of (3. 12), or alternatively, by means
of the general equation (A7) with p=1. Upon doing this
all, and using (3.4), we find that

(&) -] [FGaz2 v evter -]

20,0,

Ka

+_§“T(ﬁg—a1;ar)=0- (3.16)
It follows that

d 2

{E) = 28,8, - vk(s),
2 2

y ara4lf2 - araq) 0. (3.17)

T By - ag)?+2a%a (a, - a,)

Now suppose that the boundary curve of the cylinder
is open and that «(s) attains its algebraic maximum at a
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single point, which we define to be s =0. We assume that
k”(0) < 0 and that «(s) is bounded away from «(0) as

|s| -, Then, by following the argument of Morrison, 3
we have

Zﬁoﬁlzyk(o), (3° 18)
with sgn(dy/ds)= - sgns. With $(0)=0, we have
Ws)== [ {[x(0) - k(0)]}/* sgno do, (3.19)

where the positive square root is to be taken. Note that
#(s)— - as |s| =, so that explw'/2y(s)]—=0 as Is|
— o, Furthermore, for small s we have

Ys)~- 3055, [s]| <1, s=[-fk"(O]/%  (3.20)
so that on the boundary curve the solution decays rapidly
on either side of the point of maximum algebraic curva-
ture. The disturbance is thus essentially confined to

the region |s| =0(w"'/%), as well as being confined close
to the surface in the region # =0(w™).

The case in which the boundary curve of the cylinder
is closed will be discussed later.

Next consider terms of order w in the third boundary
condition and of order 1 in the divergence condition. By
setting p =2 in the general equation (A7) and using (3. 6)

and (3. 14), we get
le (C‘L 0)<b“/2)>
ds 0 1 F;IIZ)

(3.21)

(1)
Fﬂ
1)
Fk

iBoay —(B3~1/2¢%)
B,
_d (% 0 (b“” o
ds \0 1/\F® ) ™
Thus, upon completion of the analysis of terms of
order w or higher in the differential equations and
boundary conditions, and of terms of order 1 and higher
in the divergence condition, we have determined 8,, 8, /21
B, and y(s). We have yet to determine 5°)(s), b»*/2)s),

and b *(s), but know how to express all the components
of F®/2(s), p=0,1,2, in terms of these three functions.

ar

Proceeding to terms of order w*/2 (i.e., p=3) in
the differential equations (A1), we obtain, after using
(3.2), (3.6), (3.7), and (3.10), and rejecting solutions
which grow exponentially with £,

s Lroc+ (32 -aa]oor00

ay d | d?
+ [z Ef‘ < - d—s‘§ - 2;3033,2] b‘°’(s)},

g(3/2 )(E’ s)=b(3/2)(s)+

Ct(a/z)(g’ s):F:S/Z’(s) + %{[Ku,‘ + (%)2 _ 2[3031]1?;1/2)(3)
dp d dz
+ [2 2L Zﬁoﬁs/Z]Fﬂs)},
d
O g, ) =F/2s) + 2F GLFEs),

CLE/EE, 8)=F{F/*Xs) +

: I:"ar+(%>2 - 23031] Firz)s),

20
(3.22)
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Next, set p=3 in the boundary conditions (A6) and use
(3. 6) to get

B2-1/2¢%  —iByan ps/2)
By Ba—1/2¢% | \FE/®
+ 0 -iBay ba/2) ~1 iBo/2a )
o, Kap FQ/® -ifo/20;, -1
(ke + (dp/ds)? - 28,8,] 0
X
0 (ke o+ (dw/ds) - 28,8,]
(1/2) d d d2
A\Fem) F (2 el 2'9033/2)
iBo/2a 1 b©) 0 —a
X +'l:ﬁs/2 a 0 T
~Bo/2a, -1 F® L

b(o)) d(b (0 _1) (F(l))
+apT n
(F‘°> Tds\1 0 ) \F®
d 0 - /F(1/2)> _
s (1 o) ¢ =

F;:' /2)

In arriving at this equation, we have, as before, used
our knowledge about the functional forms of g%¥/2’ and
C¥/2) with p=0, 1,2, 3. We premultiply the equation by
(B2-1/2c% iBya,). With the aid of the secular equation
(3. 5), the first term drops out. The last two terms can
be evaluated with the aid of (A7) or, alternatively, (3.12)
and (3. 21). By performing the analysis and using (3. 3),
(3.4), (3.12), and (3.16), we eventually obtain

aT))

(3.23)

‘(ﬁj(g - ap)+2akar (oL -
20 00,

dy d  d°
x(z Ef =t %Si - 23033,2)b<°>(s)=0. (3.24)
It follows that
dp db® d? 3. 25)
2 Zl% ds +(3-s-ﬁw-_23053/2 b©X(s)=0. (
If 5°%0) 0, then by using (3. 20) we obtain
2848/2= =0, 5=[ byk (O, (3.26)

On the other hand, if we assume that b©(s)~s™ for
Is| «<1, where m is a positive integer, then

284832 = (2m + 1)5,

(3.27)
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which corresponds to higher order modes. These will be
treated in Sec. 4 by another method. Similar results
were obtained by Morrison? in his treatment of the
scalar model problem.

The quantity 4°)(s) is obtained by quadrature from
(3. 25), with (s) given by (3. 19) and B3,z by (3.26).

Note that in the Appendix we introduce the notation

/2 C s/
/ g .
X0 = (c‘,’ /2’) R (cwz))
To complete the analysis of terms of order w'/2, we
would need to use (A7), with p=3, to express Y3/2 in
terms of Y*/? X' X'/2  and X°. By virtue of (3. 12), we

then would know Y3/2 in terms of X*, X'/2, and X°. We
omit the details.

(A2)

Having thus finished the analysis of terms of order
w!/2 and higher in the differential equations and bound-
ary conditions, and of order w™/2 and higher in the
divergence condition, we have determined 8, 8,,,, §,
Bsser Y(s), X° Y°, and Y'/2, We have yet to determine
X3/2 X', and X'/2, but know how the components of
each are related. We know how to express Y3/2 in terms
of X!, X*/2 and X° and Y*! in terms of X*/2 and X°.

At this point it is possible to proceed inductively.
Consider the general differential equations, boundary
conditions, and divergence condition (A1), (A6), and
(A7). Assume we are at the pth step in the analysis,
with p = 4. Suppose that we know 8,, B,z ..., Bpiy/a
XO, X1/2, , X(P-4)/2, and YO’ ! /2, , Yy #3812 gpd
that we can express Y*-2)/2 in terms of X %3/2 gnd
these known functions, and can express Y ‘#%/2 ip terms
of X#-2/2  x#-3)/2  ang these known functions. Then at
the pth step we will be able to determine 8, ,,, X*#3)/2
Y2Y2 and will be able to express Y*/? in terms of
X @12 xw-2)/2 and known functions, and, of course,
Y#1/2 ip terms of X ®2/2 and known functions. We omit
the details of the inductive proof, since the procedures
used are quite similar to those demonstrated in the
preceding analysis. The only thing which might not be
clear from examination of (A1), (A6), and (A7) is how
X*/% and X #2)/2 gre both eliminated from (A6). After
substitution for ¥ ‘*?/2 and premultiplication of (A6) by
(B2-1/2¢% iBya ), the X?/% term drops out by means
of the secular equation (3.5). At the same time, the
term involving X (#?/2 will drop out because it is multi-
plied by a factor which vanishes when the expression
(3.17) for (dy/ds)? is substituted in it.

In order to complete the analysis for all terms in the
expansion with superscript 1/2, we must go fo the step
p =4 in the inductive procedure. This eventually yields
the rather messy equation

(OlL - (!T)[ ?)(al, - aT)+ 2aLa21']

{[2@ db(l/Z) (d—szgi 2603 )b(I/Z)]

ds

2; ()
+(d b

ik (3.28)

— (28,8, + B ’>} +p(s)p =0,
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with

p6)= G278 (g, + 0, - a3 0d][ (22) - 28]+ HROIP L8203~ 302) + 20,0)
L™T

d 2
+ K(5)BoBy [ (85— @y o) - aflay —apf]+ ————2';(3‘1 (ﬁ) (83203 + 205~ 30%a ) + a,a%(6a% + a% - 8a,a,)].
1%r
)
We now set 4. HIGHER ORDER MODES
B2 s)=c/2Ys)b ©)(s) (3.29) In this section we investigate higher order surface

and use (3. 25) to obtain

ﬂ dc(llz) 1 dzb(o) p(s)

ds ds b ds?

— (28,8, +83) =0, (3.30)
from which ¢*/2)(s) may be determined. There is no
loss of generality in taking ¢*/2)(0)=0. The trick of
setting, in general, b'*3/2)s)=c!®3)/2)(g)pXs) is
similarly useful in the pth stage of the analysis, for
p>4. In order to have ¢/2)(s) remain bounded as

s =0, we must set

1 dzb«no

p(0)

-+ ’
Bia,—ar)P+2a,0%a;, —ay)

(3.31)
with

p(0) = i{k(0)2 {yX(a, - a )*/a2 a%] [Biay + a,f — 40} o]
+[B3(aT - 3a}) + 20,07
+ 27[‘11,(32 - QLGT) - T(aL = aT)z]}’

and

where v is defined in (3. 17). Now if we write for small
s

K(S) =Ko+ KyS® + Kgs® + K8t 40, |s] 1,

then we can obtain from (3. 17)—(3. 20), (3.25), and
(3.26)

1 d?p©%0) _ 11k% 3k,
b©Y0) ds® T 16k; 4k, (3.32)

Equation (3. 32), when combined with (3. 31), gives an
explicit expression for 8,.

By using (2. 8), (2.9), and the information we have
obtained from the analysis in this section, we can now
write the first two terms in the expansion of u=Vg
+VXA. Retaining terms of orders w and w'/?, we have
(1.1) as presented in Sec. 1. Here b©)(s), ¢®/2Xs), and
dy/ds are given by (3. 25), (3.30), and (3. 1'7) respec~
tively. We know how to expand § as far as the term in-
volving 3,:

B=wB,+ B, + w2, +wB,, (3.33)

with 8,, B, Bs/z, and 8, given by (3.5), (3.18), (3.26),
and (3. 31), respectively.
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ay - a,)+2ara (e, -ay)

waves. We have seen that the disturbance corresponding
to the mode analyzed in the previous section is essen-
tially confined to the region |s|=0(w™/%). In order to
simplify the analysis of the higher order modes, we
rescale the variable s, as well as the variable n, and
introduce the stretched variable {=w'/4s. An analogous
procedure was adopted by Morrison?® for the scalar
problem. We now look for solutions of the form

¢ =exp(-iBz — a )r(E, §; w),
A= exp(" ifz - arE)E(E) ¢ w)'

(4.1)

The equations satisfied by k& and E are obtained from
(2. 10)—(2. 14) by omitting the terms involving %(s), and
by substituting

a 9
LA V2 S

o -1/4
s=w"7g, 2s 9L

(4.2)
We restrict our attention to the case of a symmetric
boundary curve, for which k(- s)=«(s), so that

K =Ko+ W™/ 2k,0% + w4 e,

K =2w 4 L+ e, (4.3)

It is then possible to expand the unknown functions in
(4.1) in inverse powers of w'/2. In the unsymmetric
case it is necessary to expand in inverse powers of
w'/% which leads to considerably more algebra. Spe-
cifically, we assume expansions of the form

R, ¢; w)= é w 2RI, b),

(4. 4)
E (&, G w)= 2 w ! PEI2XE, 0),
and
E (&, ¢; w)= i} w-(2|¢1)/4E(1/2+1/4)(£ )
n ’ e n ’ y (4 5)
E&, 6 w)= 2 o @D, ¢).
As before, the expansion of g8 is given by (2. 6).
Proceeding as previously, we deduce that
ROXE, ) =aXt), ELXE =GP0, (4.6)

and that o, >0 and a,>0 are given by (3. 3). The terms
of order w? in the boundary conditions corresponding to
(2.12) and (2. 13) lead to

B3 -1/2c% - iByar a'® -0
- H
By, ga~1/2c% G

and hence to the secular equation (3. 5) for 8,. Similarly,

(4.7)
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EXMSE 0)=GR/E), EMYE =GL/E), (4.8)
and the boundary conditions lead to
iBya  — (B2 —1/2¢%) G\ (4.9)
o, B, G/
and hence to
GHo=gl/o=0. (4.10)

Since the procedure for determining the higher order
terms is analogous to that used in the previous section,
we merely state the results. It is found that 8, ,,=0, as
before, and that

RAINE, £)=at/2XE), Y D, £)=GRIAN),

(4.11)
where
82— 1/2c%

o0y,

"iBoar al’/?)

BE—1/2c%

=0.
G:x/z)

(4.12)
Also,
ESINE, £)=GR/A8), ES/9(E, £)=G/(¢), (4.13)

where
Booy —(BE-1/2c¢%) GBI
o, iBo G/
£ (30 () <
= . 4.14)
dg \0 1 G®
With the aid of (4. 7) this gives
©)
G2 =0, G,§3/“=% %- (4.15)
(1]

Next, it is found that

RO E, £)=a " ) + (/20 ) (o ko~ 2B48,)a (L),
(4.16)

EX(E =GN0+ (£/20 1) (@ ke — 2B581)G (L),

where
Bz~ 1/2¢2 - iy o a®
iBoay BZ-1/2c% G
. 0 —iBl.aT a® + -1 i30/2a,.
1o,  Kolp G® -iBy/2a;, -1
(koay, — 2848) 0 a®\ 0
X =0.
0 (K& 1= 2868;) G®
(4.17)
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Premultiplication of the entire equation by
(8 - 1/2¢% iB,a,) leads, with the help of (3.5) and (4.7),

288, = ko, (4.18)

where y is as defined in (3. 17). This is consistent with
(3.18). It is also found that

BS/85, £)=GE/), EPIE, £)=G6E/*Xp),

and the boundary conditions lead to

(4.19)

GS/“:—L dGSI/Z)

8, dg
Finally, it is found that

GG/, . (4. 20)

BEI(E, £) = aS(0) = 52— ((ayk - 288)a (D)
2a,

dza(o)
+(aLK2§2"2ﬁoBS/2)am)(£)+'az_?— ) (4.21)

and
ER/E 1) =620 = 5o ((@rk =BG
T

a’G®’
+(awg§2—23033,2)050)(§)+—7§21—) . (4.22)
The boundary conditions, with the aid of (3. 5), (3.17),
(4.7), (4.12), (4.15), and (4.18), lead to
d2a(o)

T (YKo 8% = 28,84 ;5)a'®)(£) =0.

(4.23)

The solution of the differential equation (4. 23) may be
expressed in terms of parabolic cylinder functions. ¢
Since s =w/%¢, we want solutions which are bounded
for large 1¢!. Hence,

28,83/, == (2m +1)5, a,=D,[(26)*/%¢], (4.24)

where m is a nonnegative integer and 6= (~y«,)*/?,
which is consistent with the definition in (3. 20). The
case m =0 corresponds to the lowest order mode con-
sidered in the previous section, since from (3.20), for
S = w-l /4 g .

bo(s) explw! /2y(s)] ~ b,(0) exp(— 362,
and D,(n) = exp(- i1°).

(4. 25)

The approach used in this section was carried to
one higher order in the simpler scalar problem,? and it
was found that the next term in the expansion of the
propagation constant is determined by an orthogonality
condition on — o< ¢ <, However, because of the alge-
braic complexity of the present problem, we have not
carried the analysis of the higher order modes any
further. We also remark that a more uniform expansion
for the higher order modes was developed for the scalar
problem, ® and the corresponding expansion for the
present problem would involve parabolic cylinder func-
tions with argument 2w'/4[~ y(s)]'/2. However, two un-
known functions were introduced in the asymptotic ex-
pansion of the single dependent variable in the scalar
problem, and presumably eight functions would be re-
quired in the present problem, so that we refrain from
developing the more uniform expansion.
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5. CLOSED BOUNDARY CURVES

We have confined our attention, so far, to open bound-
ary curves for which the curvature attains its algebraic
maximum at a single point, designated by s=0. We have
seen that the disturbance, in addition to being confined
close to the surface in the region n=0(w™), is also es-
sentially confined to the region |s|=0(w*/%), and de-
cays exponentially outside this region. As was argued
for the scalar problem, 2 if the boundary curve is closed,
and the curvature attains its algebraic maximum at a
single point, we would intuitively expect that surface
wave modes would exist which differ by only an ex-
ponentially small amount from those derived in the pre-
vious sections. Moreover, the corresponding values of
the propagation constant 8§ would presumably also differ
by an exponentially small quantity.

We now turn our attention to closed boundary curves
which are symmetric, and for which the curvature at-
tains its algebraic maximum at two points, designatet
by s=0 and s =271, Thus, we assume that

0<o<l/2, (5.1)

where ! is the length of the circumference of the bound-
ary curve. Asymptotic expansions may be developed, as
in the previous sections, about s =0 and about s =27.
Because of the symmetry, both expansions will lead to
the same expressions for the propagation constant 8 and
to the same modal shape. Analogously to the previous
discussion, we intuitively expect modes to exist with
shapes differing from those corresponding to the asymp-
totic expansions by an exponentially small amount, and
with values of 8 differing by an exponentially small
quantity. However, care must be taken as to what should
be called a mode.

k(T +0)=«k(T-0),

Thus, from the symmetry and from the differential
equations and boundary conditions, it is to be expected
that to each modal expansion about s =0 there corre-
spond two true modes with the symmetries

‘P(n, T+ a, Z): ES (p(n: T=- g, Z),
Afn,7+0,2)=2An,7-0,2), (5.2)
An,T+0,2)=FA (n,T~0,2),

Afn,T+0,2)=FA,(n,T-0,2).

Moreover, it is to be expected that the values of g for
these two modes differ by only an exponentially small
amount. The corresponding assertions for the scalar
problem ? were verified for a particular example, at
least in so far as an approximation to the surface wave
is concerned. We conclude by noting that the symmetries
for the displacement corresponding to (5. 2) are
u,(n, T+0,2)=z2u,n,7-0,2),

Un, T+0,2)=zxu n, T~ 0,z), (5.3)

un, 7+0,2)=Fu,(n, 7-0,2z2).

ACKNOWLEDGMENTS

We are grateful to G. D. Boyd for posing the problem
which led to this investigation and to J. McKenna for
encouragement and many fruitful discussions.

1803 J. Math. Phys., Vol. 16, No. 9, September 1975

APPENDIX

We present here general forms of the differential
equations (2. 10), boundary conditions (2.12)—(2. 14),
and divergence condition (2. 15). First we write the dif-
ferential equations. We shall make use of (2. 6), (2.9),
(3.2), (3.6), and the fact that #=1 - «kt/w. If we were
to set terms of order w?*/2 to zero in (2. 10), we would

get
2) (2 -]
a2

X gl-2)/2) +( A = - 28085 /2 ) ((p-3) /2)

a , @
(—2&L—5-E-+T) (#/2) 4 [K oy -

= 28,8,/ + (y)=0,

(v -3 o o2 (8) ]

d2

((p=2)/
xc‘@' 2)+( ds as ds

23033/2> C((P-B)/Z)

W o
~2c 2Ly agg, O+ (1)=0,

/] 22 2 dib\2
( 297 5% +5'e—) Crra ["("‘T‘ﬂ“% (a—f) '23"3‘]

dy 8 d¥%

-2} ((p=
xc((p 2)/2) 4 (2 R as + ___2_ 23033/ )C"(p 3)/2)

+ 2K 4 - Cl/) 4 (1)=0,

0 02 d dip \?
(2o gz 350) Ci”“*[“(“r-ﬁz)*(zf) -2

as o #y

xc;(b-Z)/Z)_’_( ds as o _ZBOBS/Z)C,(z(p-S)/z)

+(1)=0. (A1)

The dagger denotes all terms which have superscripts
less than or equal to (p — 4)/2. If the superscript is
negative, then by convention that term is zero. It will
turn out that if we are, as above, considering terms of
order w?*/2, then all those denoted by daggers will have
been determined explicitly by earlier analysis of higher
order terms., We do, however, write out explicitly those
terms involving 8,,,, since g »/2 remains to be deter-
mined. If p <3, then these terms are redundant and
should not be included again.

We will return to these equations shortly to do a
little more analysis, but first let us look at the boundary
conditions. To simplify notation slightly, write

xR g(’/Z) Y»/2 _ Cr(rp/Z) (A2)

(p/2
Ct'/ ) c;ﬁ/z)
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In the boundary conditions and in other equations
which follow, any terms which involve B,/, appear ex-
plicitly, and an asterisk denotes terms whose super-
scripts are of lower order than the other terms which
appear explicitly. The order may differ for the X terms
and the Y terms. Then, taking terms of order w?-#/2 in
the first two boundary conditions (2. 12) and (2. 13) gives

Ba-1/2¢%  ~iBya,
. X2
iBya,  B3-1/26%
-20,3/0t +9%/0t> iB,0/0¢
+ : 2 2 XP/z
- 1B, 9/0¢ -2a,0/0t +0%/0¢
ﬂ _a_ 0 -1 (p-1)/2
tas\%rm )l o ) ¥
0 —isl(a,-a/ag)
+ X(P'2)/2
iﬁl(aL—a/aE) K((XT—a/aE)
..a_ i 0 -1 ®-2)/2
Fas el o) Y
0 -(ap—~23/8k)
+ By /s X#)/2
a,—08/0k 0
+i8 O -ar) xoi(x)=0 at £=0 (A3)
pi2 - -
a, 0

The term involving B,,, is redundant if p <3.

Terms of order w?-*/2 in the third boundary condition
(2. 14) and of order w'-#/2 in the divergence condition
(2. 15) give

iBoay —(B2—1/2¢2)

A Ye/2
o iBo
iﬁua/ag —ZaTa/8£+82/8£2
/2
8/0t 0 v
d¢ 011,—3/3&' 0 X(p-l)/Z
~ds 0 1
__8__ (xL—a/BE 0 X -2)/2
os 0 1
iB],(aT_a/aE) 0
+ Y@#2Y2 4 (x)=0 at £=0.

K B,

(A4)
We now return to the differential equations (A1) in
order to replace the second matrix in (A3) and (A4) by
terms involving lower order superscripts. Because we
reject solutions which grow exponentially with £ and be-
cause of the form of (A1), it is possible to show in-
ductively that for all p,

ag(p/?_) 1 (dw)z ((p-2)/2)
aE —Z(XL {[KQL+ ds —zﬁoﬁl g

dy 9
( ds 3s d—g 3053/2) g(<r3)/2)_2305’/25(0)}

+(*) at £=0. (A5)

As before, the term involving g8,,, is redundant if p <3.
Similar results hold for 8C'*/2)/3¢ |, . Notice that
ag?/®/ak|,., and 3CP/® /ot |, mvolve only terms whose
superscripts are less than or equal to (p - 2)/2.

We use (Al) and (A5) to rewrite the boundary con-
ditions and divergence condition (A3) and (A4) in the
following forms. Again remember that the term in-
volving 8,,, is redundant for p <3.

Bi-1/2c; -iBya, o 0 -iBa, et/ -1 iBo/ 20 1
. +1{. X(p=2)/2 )
WBoay -1/2¢% oy Kap T \- Bo/2a;, -1
o [ [kay +(dp/ds) - 28,8,] 0 X212
0 [ka,+ (db/dsY - 2848,]
-1 iB8,/2a
b _9_ @ ° T (p=3)/2
+( s 35 Va2 " BB\ g sae, -1 | ¥
; 0 -er (p-3)/2 4 ; 0 -—ar
By, 0 | X PTNE 418y 0 0
-1 iBo/20
0
~%or2 \_iosoe, -1 )%
ab 0 -1 0 -1
&y (p-2)/2 = y#-2)/2 4 (¥)=0 at £=0.
Tergs \1 o/ YT args\1 o ™ ¢ (46)
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o, —B%-1/2¢%) ipa, O
. yo/z 4 . Y(s=21/2
ar 18, K 8,
dyp\? ~io/20r 1 (p-21/2
——— pe— ’-
+ [Ka,+ ( %) 26@1] ~1/2a, 0) ¥
a, 0 a, O
_9y L 1y/2 _ 9 L (p-2)/2
as \0 1 X as 0 X
+(*)=0at £ =0, (AT
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All stationary axisymmetric rotating dust metrics*

Jeffrey Winicour

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

(Received 9 May 1975)

The Einstein equations for stationary axisymmetric space-times with a rotating dust source are
systematically reduced to quadratures. The general solution depends upon an arbitrary axisymmetric
solution of the flat three-dimensional Laplace equation and upon an arbitrary function of one variable.

1. INTRODUCTION

The formalisms of Ernst' and of Geroch? reduce the
vacuum Einstein equations for stationary axisymmetric
space—times to what appears to be their simplest form.
However, the problem of obtaining the general solution
remains intrinsically difficult. In this paper, I shall
describe how the same problem for the Einstein equa-
tion with a rotating dust source may be systematically
reduced to quadratures.

The dust follows trajectories T°+ 28°, where T° is
the time translational Killing vector, ®” is the rotational
Killing vector, and £ is the angular velocity of the flow.
The special case of rigid motion, 2=const, has been
solved by van Stockum® in terms of one arbitrary solu-
tion of the Laplace equation. In the differentially rotat-
ing case treated here, the solution depends upon one
arbitrary function of one variable in addition to an arbi-
trary solution of the Laplace equation. Thus the freedom
in the solution is still less than in the vacuum case
which depends upon two arbitrary functions of two vari-
ables. The hydrodynamical equation governing the ro-
tational motion of the dust gives a constraint between
the angular momentum and energy distributions which
limits this freedom.

2. THE EQUATIONS

The solutions were obtained using the space-of-trajec-~
tories formalism of Geroch® as modified to include
sources.? All notation used here is strictly consistent
with Ref. 4. For vanishing convective circulation and
pressure, the field equations for rotating dust reduce
tohs

D™TD, ) = T2 (D™D, 2
+ 817t (A, +7EY1S,) (2.1
and
S*D 2, =0. (2.2)

Here the index a corresponds to symmetric index pairs
(AB) in the two-dimensional space of Killing vectors.
The A, are scalars formed from the Killing vectors,

TE=_ A%, (2.3)

s :sf“-":<$12 gz> 2.4)
and

P=5%2,. (2.5)

Each solution of Eqs. (2.1) and (2. 2) determines a
space—time metric by means of straightforward qua-
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dratures. >* (The Appendix gives some details of this
procedure which are relevant to the present case.)
These equations are invariant under conformal rescal-
ing of the geometry of the two dimensional space of
trajectories. Furthermore, multiplication of Eq. (2. 1)
by A* gives the harmonic condition

D"D,T=0 (2.6)

so that it is possible, when convenient, to pick a con-
formally flat frame for which the twodimensional metric
A, has the form

Bpn= €26, (2.7

in terms of coordinates 7 and its conjugate harmonic
function o.

In order to analyze the remaining content of Egs.
(2.1) and (2. 2), it is helpful to introduce a null triad for
the metric G*® of the space of symmetry labels.>* We
define N* and R* by

D,S* =2N*D, 2.8)
and
D, N*=R°D, (2.9
so that
0 1
N*=NAB =" 2| (2.10)
39
re=pan {00} (2.11)
01
and
G**=2R ©$#) — 2N*N°, (2.12)

The Killing scalars can now be written in terms of ¥,
n, and p?, where

n=N2, (2.13)
and
P2=R),, (2.14)
with the identity
TE= 2 X2y == G*2g N = 2(7 - p%Y). (2.15)
Equation (2. 2) now takes the form
D, b=2nD,%, (2.16)

which implies that ¥, 7, and Q are mutually dependent
functions. The content of Eq. (2.1) not contained in Eq.
(2.6) can be extracted by contracting (2. 1) with N©*$*T),
and with S*. The Killing scalars in the resulting two

Copyright © 1976 American Institute of Physics 1806



equations can then be rewritten in terms of 7, ¥, and 7
by using Eqs. (2.3)—(2.15). Also, terms involving
D,Q can be eliminated by using Eq. (2.16). For
instance,

(D X*)D g = (2R 8% = 2N*N®) (D, 25) D, ),
= 2(N®D_A\)N*D, 2y

and

N*D, 2, =D, n-p*D,0
=D, n+[(7%- 217)/4np1D 9.

This procedure leads to the two equations:

" [ﬁme +-%Dm(%)] +£’L£}2ﬁ= 0 (2.17)
and
st [ (8) s
(2.18)

3. THE SOLUTIONS

The field equations have now been reduced to Egs.
(2.6), (2.18), (2.17), and (2.18). Equation (2.8) is
satisfied by introducing 7 as a harmonic coordinate, and
Eq. (2.16) implies that ¢ and 7 are functionally depen-
dent. Equation (2. 18) determines the dust density u in
terms of 1, ¥, T and the conformal scale of the 2-geom-
etry (see the Appendix). That leaves Eq. (2.17) to be
solved.

In order to solve Eq. (2.17), the functional depen-
dence of 77 and ¥ is used to define a function 8 by

D, =D,/ m. (3.1)

By using the harmonic property of 7, Eq. (2.17) can
then be put in the form

ffnaeto £)) -

This last equation implies the existence of a potential
w defined by

1 ¢ (7P
*me =-; [%Dm(ﬂ'fz) +?7Dm<—¢-’-)],
where a star denotes the dual operator so that
*D™ — €""'Dn

(3.2
(3.3)

in terms of the twodimensional alternating tensor €™.
The potential w must satisfy the equation

R )

oo (2 [t0uters+20,(T)]

=-7(*D"7)*D,w
or
T D™TD,w) =0, (3.4)

But Eq. (3.4) is equivalent to a flat threedimensional
Laplace equation!
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The general solution thus depends upon an arbitrary
axisymmetric solution of the Laplace equation w and an
arbitrary function of one variable, say n(y). Then Eq.
(3.1) determines the function g(¢), and Eq. (3.3) gives

nz

™D, w =%D,,.(B‘fz)+%1)m (_le> . (3.9

Integration of Eqs. (3.5) determines the function
3BT+

where « is defined by
a=2n- [(n/¢) dy.

Thus w and 7() determine ¥ by a sequence of quadra-
tures. Finally,  is determined by integration of (2.14)
and the metric is determined by a further quadrature
(see the Appendix).

For special choices of the functions w and 1(y). The
physical properties of the solution depend upon the den-
sity p determined by Eq. (2.18). In particular, the phy-
sically relevant domain of the solution is restricted to
the region where (— ), (, and p? are positive. Explicit
details for special cases will be presented elsewhere.
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APPENDIX

In addition to the analogs of Eqs. (2.1) and (2. 2),
there are auxiliary field equations given in Ref, 4
which can be solved by straightforward methods. In the
present case, these equations reduce to

R =2T3(D"X*)D, 2, + 87 (A1)
and
E,,=2D,D,7 + 7D, X*)D,\, = 5T 1, (D*A*) D2, =0,
(A2)
where R is the scalar curvature of the 2~-metric k.
When Egs. (2.1), (2.2), and (2. 6) hold, the diver-
gence of E,, satisfies
D"E,,,=D,T[R = 3T3(D™*)D, )\, — 874]
so that Eq. (A1) is extraneous.
Also, E,, is trace-free and symmetric so that Eq.
(A2) is equivalent to
(D"1)E,,, =0
or
- D, [(D"T)D,7]
=7 D)D) DAy = 37D, T) (DPA*)Dy g - (A3)

To analyze the content of Eq. (A3), it is convenient to
introduce the harmonic coordinates, described by Eq.
(2.7), for which

9md,T =0,
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where 9,, is the derivative with respect to the metric
8,- Then Eq. (A3) reduces to

20,0 =T (@"T)(3,A%) 8,0 = 37713, T) (32, ..  (A4)

Equation (A4) determines the conformal scale factor in
terms of a quadrature provided that the right-hand side
is consistent with the integrability condition

€"3,0,,0 =0.
we have
€™,[TH(8"T) (3, X*) (3nha) = 377 (3,7 (B"A%) 2,0 ]
= €™(3,T)(3,A)9,(T13",) — €™(3,,T)(3,A%)9,(T1 2™, )
= €™¢,,, € (3,7)(3,2%)3,(Ta",)
= @"(3,7)(3,1%)9,(Tta™, ).
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But the final side of this equation is conformally invari-

ant and vanishes because of Eqs. (2. 1) and (2.2).
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Correlation inequalities for two-dimensional vector spin

systems
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A set of correlation function inequalities including Griffiths, Kelly, Sherman type inequalities are proven
for a lattice system of N sites where on each site there is a vector spin [s = (5%,5°), § = 1] whose

distribution of values over the unit circle is given by f(8), where f(8) = f{—8). The spins interact through
two-body, anisotropic, ferromagnetic interactions. Also an external field h, 2*> 0, and h*> 0, is present.

The proof uses Gaussian random variables.

I. INTRODUCTION

Correlation inequalities have received a great amount
of interest in recent years initially because of their
applications in statistical mechanics? and more recently
because of their applications in quantum field theory.?
In this paper we extend the method of Gaussian random
variables used previously 35 to prove a number of
correlation inequalities for systems with one-dimen-
sional spins to prove a set of inequalities for certain
lattice spin systems having two-dimensional spins.

Ginibre ® has proven a set of Griffiths, Kelly, and
Sherman™?® (hereafter GKS) inequalities for a certain
class of systems with two-dimensional vector spins.
The class of systems allowed in the following results
complements that of Ginibre’s by being in some respects
less restrictive, e.g., the amount of allowed anisotropy
being greater, while in other respects being more
restrictive, e.g., only allowing two-body interactions.

_ Besides complementing the class of systems for

which the inequalities hold new inequalities are proven.
A negative GKS inequality is proven which shows that any
correlation average of a product of x components of the
spin decreases as a function of the interactions in the

z direction and vice versa [see Eq. (23)]. Also a set of
new inequalities of more complicated forms of thermal
averages is proven.

In Sec. II we describe the general model system and
discuss a number of preliminaries before proving in
Sec. III the existence of a general class of inequalities
for these model systems. Section IV contains explicit
examples of the general inequalities proven in the
preceding section and some application of these in-
equalities to statistical mechanics. Applications of these
type inequalities in quantum field theory are also now
being made,®

ll. THE MODEL SYSTEM

The model system consist of set of N sites in v-di-
mensional space. Each site has associated with it a two-
dimensional vector spin, 8=(s*, s*), with I8! =1, whose
distribution over the unit circle is given by f(8) where
f(8) is assumed to be even, i.e., f(8)=f(-8). For the
plane rotator system f(s)=1. Discrete rotators with p
allowed states {p even since f(s8)= f(- s)] can be con-
structed by taking f(8) =732, 6(6 - [2n/pln). Models of
this type were proposed and studied by Potts. ° The
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system is assumed to have a Hamiltonian of the form
N
==52,J0,5) (s s "+ s s ) = 2 (W™ "+ h*s f)
td =1
(m

where J(i, §),¢, k*, and k* are nonnegative for all ¢ and j.
The external fields, #* and k*, could be made to vary
from site to site if desired.

The method of the proof is based on the identity !
exp(% gZ; £yt ) =(2m)"¥/*(det o) /2

xff exp(—%§x¢(a'l)ux1

N N
+ 27 z,x,)n dx, (2)
=1 i=1

valid for any real, symmetric, and positive definite
matrix a, and for any N complex variables £,. The
sign of (deta)"*/? is to be chosen positive. The right-
hand side of Eq. (2) can be considered as the expected
value E (expy [, x,£,) with respect to the Gaussian
density function

W (%) = (27) /2 (deta)™/* exp (— %? xl(a-l)”x,), (3)

where X=(x,,%,, ..
then one can show

N n
E,{H (xg) ‘}
inl

where the n, are nonnegative integers.

.»%,). If a is a nonnegative matrix,

N
=0 if :21, n, is odd
(4)

N
>0 if2 n, is even,
i=l

The identity (2) can be used to rewrite the Boltzmann
factor exp(~ BH), where hereafter we set =1, by
identifying the variable &, with the spin variables S,* or
€S,* and forming a matrix J= o with off-diagonal elements
J(%,7) and all diagonal elements equal to a number J,
=J(i, 7} large enough to guarantee that J is positive de-
finite. The Boltzmann factor with Hamiltonian (1) is then

e = ff W (X)W . (z) exp(é (%48 *+h's ix))
N
X exp (§ (z,e8,5+ h'slg)) (5)

=E, , {exp(é (x,8/7+hs 1") exp ( f‘_, (28,5 +h*s ,'))} .

13
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Here we only assume J to be positive definite and J(i, 7)
real and symmetric J(i,j) =J(j, {). The partition function,
Z ,, is given by

Z,= ff ‘I;INI ds, f(s,)e ¥
:Ex.z {ff }i dSif(S‘)

N
X exp(‘Zl) (%8, *+ h¥s * + 2 €5 F+ h*s i'))}. (6)

i1l. PROOF OF THE CORRELATION INEQUALITIES

Using the re-expression of the partition function in
terms of Gaussian random variables, Eq. (6), one can
write for the correlation functions expressions such as

Ny N
(f&y-(f{g=E {ff 511 dstf(sc)jl;ll ds} f(s;)
N
X(FG-FG") exp(}_‘, s5(x,+ hF) + s Hez, + h%)
i=l

N
+ ; X (x) + h¥) + s,5(ez] + h,'))}, (7

where f and g are products of spin variables 8,, i
=1,...,N; and F, G, and G’ are the corresponding
derivative operators in terms of x,, €z,, x}, and ez}
with 7=1,2,... N and where by E{---} we mean the
average taken with respect to the product measure
W (x) W (2) W, (x") W (2") dx dz dx’ dz’.

The crux of the proof is to rewrite Eq. (7) in terms of
the new variables

a{:(l/‘/z—)(x{+x’.‘), B¢=(6/f2_)(zi+ Z;),
Y =(1/V2) (x;~ %), 5,=(/V2)(z,-2)), (8)

which are obtained by an orthogonal transformation of
the x's, x{’s, 2,’s, and z|’s. The F, G, and G’ now
become expressions involving partial derivatives with
respect to the o’s, 8’s, ¥’s, and §’s. For a large num-
ber of F’s, G’s, and G'’s a simplification occurs. (FG
- FG'") has a minus sign preceding the second term,
while the transformed derivative operator will be a sum
of products of partial derivatives all of which are
preceded by only a plus sign. This orthogonal trans-
formation is such that W,(x) W (z) W (X"} W (z") becomes
simply W (o) W ,(8) W ,(y) W (5) and we shall use E{--'}
to denote either average as they are equivalent.

For the statement of the theorem we focus our at-
tention on the transformed derivative operators, i.e.,
those involving the a’s, 8’s, v’s, and 5’s. We consider
the general form

l—I —— —— —— [P
15,8021\ 9B, (a'}’»> 551>
(9)

where i,j, %k, and ! range over all lattice sites 1,2,...,N
and 7% nf, nt, and n,° are nonnegative integers.

D=

Theorem 1: Define

N N N N‘ 6
N1=Z; n,%, NZ:EnJB, N3=Z”k79 N4=Zn; . (10)
i=1 =1 =1 =1
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We then have for the model system of Sec. II:
(a) E{D}=0
(o) E{D}<0
(c) E{D}=0

if N; and N, are both even;
if Ny and N, are both odd;
in all other cases.
Note: If h*(h*)=0, then we have the following more
restrictive statements:
(a’y E{D}>0 if each N,(NV,), N,, and N, is even;
(b’) E{D}<0 if each N,(N,), N,, and N, is odd;
(¢ E{D}=0
Furthermore, if both 2*=0 and 2*=0, then we have:
(a”) E{D}=0
(b”) E{D}<0
(c”) E{D}=0

We shall only prove (a), (b), and (c). The others will be
easily seen to follow.

Proof: From Eq. (7) and the definitions of the rotated
variables, Eq. (8), one has

x ¥
E{D}:E{Df...j' 11 ds,f(s,)11 ds;f(s))

in all other cases.

only if Ny, N,, N;, and N, are all even;
only if N, N,, N,, and N, are all odd;

in all other cases.

N 1
Xexp[’gg (72_— ak+h") (sk"+s;’)+(—\/§2: B,+ h')

1 €
X($ 5+ s+ — vy (s, =S+ —15,s ‘—s")]
kR ] R R k \/i_ R R L]

V2
(11)

Now integrating over — 8; and - 8; is equivalent to the
integration over s, and 8}, and therefore we can write

E{D}=E{Df~f ﬁl dsif(sc)ﬁ ds;f(s)
N 1 x
X El cosh[<72: ak+h> (s + s
+<€F2 Bk+h’> (sk'+sl'e')

1 e
+Fz——Yk(skx_s‘x)+_€‘/§__6[;(3);‘_8);)}}' (12)

Furthermore, using a common identity of hyperbolic
trig functions, we have

N N
E{D}:E{D[...f I ds,f(si)El ds;f(s})

il 1 x rx
XTI COSh[(—ﬁ‘ ak+h") (s.*+59)

k=1
+<—f/2: Bk+h‘> (s, + Sk')]

1 € ,
X cosh <~—-— Vs F=si)+ -E By(s," - Sk'))

V2
2 1 % 2 '8
+ s1nh[(—\/;_—ak+ h") (s,*+ sk)+(% B,+ h‘) (5,5 + 5, )]

x sinh(—l— VS — S+ £ Gs,°~ s;’))}.

(13)
V2 V2
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For every pair of states s=A and 8’ =B there is the
reciprocal pair of states s=B and 8’ =A. Going from
one of these pairs of states to the other leaves s+ 8’
unchanged while s - 8’ changes sign. Therefore, since
sinh(x) is an odd function of x the integrations over the
sinh functions is zero, and we are left only with the
integrations over the products of the cosh functions.

Expanding the cosh terms and considering each site
separately (hence we drop the subscripts), we have for
the single site integration in Eq. (13)

f f F(8)f(s") dsds’

<5 /e + 17 (s7+ 5 +[(e/VZ)B + h¥] (s + s"9
"Z=° (2n)!

Z [(1/¥2 )r(s™ = s'%) + (¢/2)6(s* — s") P
(2m)!
Expanding the separate terms by the binomial theorem
and using the angle variables ¢ and ¢, where s*=cos®é,
sf=ginf, s’*=cosyp, and s’*=sing,

(14)

2n 2

3
E]

n=0 m=0

¥
o

0 qul

x(‘r)z'""(EG)"f de f d¢ (cosé + cosgp)zr?

X (sinf + sing)? (cosb — cosp)’™ (sinb — sing)?.  (15)

Considering now only the 6 and ¢ integrations and ex-
panding each term by the binomial theorem, we have

EEER () ()0 7) (5) o

X f dB(cosB)‘z"'"’"“‘ 2Zn=9)a (SinG)"""""

-

T
X f d¢ (coso)*<(sing)**e, (16)
-T

For the ¢ integral, if b + d =o0dd number, then the inte-
gral is zero. Therefore, we require b+ d=even num-
ber, and hence b and d are both even or both odd. Simi-
lar reasoning for the 9 integral shows (g +p) - (b +d)
must be an even number. Since b+d is even, g+p is
even, and therefore ¢ and p are either both odd or both
even. Therefore, also, (2m - ¢) and (2n ~ p) are both
even (odd) if p and q are both even (odd). Hence the
(a + V2 h%)’s, ¥’s, (B + V2 h*)’s, and 5’s which are to the
powers 2n-p, 2m —gq, p, and g respectively are either
all to an odd power or all to an even power. However,
as yet we know nothing of the sign of the coefficients
given by the integrals over 6 and ¢.

Using the addition formulas of sin and cos functions,
one can rewrite the 6 and ¢ integral in Eq. (15) as

(=12 [ d6 [ d¢ [cos3(8+ p)Pmt+e[cosi(6 — )]
X [sin3(0 + ¢) '™ =*#[sin(6 - ¢)J*, (17

where due to the restrictions on p and g found above
each square bracketed term is to an even power and
hence the integral is positive. Therefore the coefficients
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are composed of positive terms, binomial coefficients,
factorials, etc., except for the (— 1) ¢ found in Eq.
(17). If (2m - g) = odd number (forcing p to be odd), then
we have a negative coefficient, or if 2m — ¢q is an.even
number (meaning p also even), we have a positive co-
efficient. For each site then we have a general series
of terms of the form

O(a + V2 h¥)a (¢ + V2 h5YP (¥)¢ (e5)4
~Wa + V2 B (B + V2 R (V)¢ (eb)?, (18)

where a, b, ¢, and d are even nonnegative integers,

e, f, g, and h are odd nonnegative integers, and where
©and ¢ are nonnegative. This same form is retained
when taking the product over all sites ¢, {=1,2,...,N.
Therefore, using the basic relation expressed in Eq. (4),
one has the results (a), (b), and (c) of the theorem.

IV. EXPLICIT INEQUALITIES AND APPLICATIONS

Theorem 1 is stated in terms of the expectation value,
E{D}, of a product of derivative operators in the rotated
variables o, B, v, and §. We now show how these re-
sults when written in terms of the initial x, x’, z, and
z’ variables give GKS type inequalities as well as ad-
ditional new correlation inequalities.

First we prove the following inequalities using
Theorem 1:
s X

<¢IE]A( : )j

0, (D= (I (NI (s H>0,  (19)

(20)

<12A(s ) ;ga (s

The derivative operator terms of Eq. (7), FG - FG’,
which give these correlation functions are respectively

2 m 8 9 + &}
¢g,48x, JEB ax, j(_B 8xj ‘rel aa, By,

405 (5 +3—27)]—,g3[—}2—(52~,-%)]}’

(21)

(o, 12 -p %)z (2l
igAaz feseaz, j€n € 9z] | ica|yT \0B, 86‘)

Lo lE Gl G-

(22
where the right-hand side of Eqs. (21) and (22) are in )
terms of the rotated variables of Theorem 1. Equation
(21) [(22)] consists of a summation of terms of the form
of Eq. (9) each with a plus sign (all negative terms
cancel). Furthermore, each remaining term in the ex-
pression for Eq. (21) [(22)] has N,=0 [N,=0], and
therefore we have that each term is covered by either
statement (a) {(a)] or (¢) [(c)] of the theorem. Therefore
the total expression for Eq. (21) [(22)] consists of a sum
of nonnegative terms and therefore is itself nonnegative.

;')) - <igA(s i‘))<jga(sj‘» = 0-

One can also prove the following type inequalities:
X' Y\ _ x) ) <0.
GO, (69 T (M= T (N (s, (23)

The proper derivative expression for this correlation is
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(1, = Y -p, ()
€4 0%, :ga €92, Jrelaeaz; =2, V3 \da,; ay,

1 /2 d 1 (9 G
x{!ga [G\/g_(a'yj +a§,>]_1g8[-€—\/§—-(a—7—:_£;>]},

(24)
where again on the right-hand side all terms proceeded
by a minus sign cancel. Looking at the terms in the
curly brackets, we have only terms remaining which
contain an odd number of (3/96,)’s, i.e., N,=odd num-
ber. Since there are no other 3/95 ; type terms, only
statements (b) and (c) apply to the terms of Eq. (24),
and the total expression therefore has a nonpositive
expectation value.

These inequalities can be used as the original GKS
inequalities to prove the existence of the thermodynamic
limit of the correlation functions. The boundary con-
ditions obtainable with these model systems extends
those previously obtainable for the similar systems of
Ginibre. ® Now an external field in both x and z direction
can be applied. Thus, for example, for the plane rota-
tor, one can fix the spin to be in any direction in the x—
z plane, not simply the z direction.

One of the physical consequences of Eqs. (19), (20),
and (23) when taking A ={i } and B= {4, k} is that in-
creasing or adding any interaction along the same direc-
tion as that of the magnetization, s, or s;* increases the
magnetization while increasing or adding any interaction
in the opposite direction decreases the magnetization.
Therefore, if one can show, for example, there exists
a spontaneous magnetization in the x direction, m** for
any decrease of ¢ in Eq. (1), one has the guaranteed
continued existence of m**,

Besides the GKS type inequalities we can obtain new
correlation inequalities by writing any derivative opera-
tor which has the form of Eq. (9) but which does not
directly correspond to a GKS inequality when written in
terms of the x’s, x”’s, 2’s, and z”’s. In the case of a
derivative product involving only two partial derivatives
one has only first or second GKS inequalities. With
three partial differentiations one has a number of new
inequalities. For example, (1/v2)*(3/3a,)(3/3y,)(3/
dy,) gives one the inequality

(875,78 5) = (s, D (s, D= (sD(s/ 5D+ (s (s, >0.
(25)
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A similar expression for the z components of the spin
can be obtained by interchanging 8, with o,, 5, with y,
and 6, with y,. Inequalities of this form mayin some
cases be stronger than the usual GKS inequalities. One
can select sites Z, j, and k2 as in Fig. 1. Then if one
thinks of a system with nearest neighbor interactions
only or any interaction decreasing with the distance be-
tween sites, one is intuitively lead to believe for non-
zero temperatures

(78 >(8,58,0, (8,55, >(s,/5,,

(For the two-dimensional Onsager—Ising model this
type behavior can be shown explicitly. ?) Also one
imagines (s,/%=(s,*=(s,. By defining m ={(s 9, in-
equality (25) can be written as

(s 7s,%8,% = (s,(s s ) > m[{s *s ) = (s, )]

(26)

(27)

Hence, when m >0 and Eq. (26) holds, the right-hand
side of (27) is a positive number rather than the zero of
the GKS inequality.

Other inequalities involving three partial differentia-
tions can be found. Corresponding to [(1/e2)(1/v2 ) (3/
da,)(3/36,)(3/25,)], one has

(575,75, = (5 75, (5, =5 75,55, 9 + (5 (5,75, >0,
(28)
or, taking [(1/¢%)(1/VZ )*(3/2v,)(3/38,)(3/26,)], one has
(578,58, = (8 7S " US D + (5,78, (s, D= (s, (5,55, <0.
(29)
Together (28) and (29) give
(8,548,585, ~(s,5(s,75,9 20. (30)

Other inequalities involving four, five, etc., sites can
be generated in a similar manner.
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We discuss the projective unitary representations of the Weyl group (Poincaré group enlarged with

dilatations).

1. INTRODUCTION

Conformal invariance is actively investigated nowa-
days; it implies, besides Poincaré invariance, dilata-
tions and “special conformal transformations.”! Since
scale invariance guarantees by itself the conservation
of the special generators (in some sense; see Refs, 1
and 2), a first step to understand a conformal quantum
theory is to develop a “Wigner program” for the “Weyl
group” of dilatations plus Poincaré group, i.e., the
search of projective unitary irreducible representations
of this group; this is the aim of the present paper.

In Sec. 2 we define the group; in Sec. 3 and 4 we
study and characterize the pertinent representations;
Sec. 5 contains some comments on the explicit
realizations,

2. THE GROUP %

Let D be the one-parametric Lie group of multiplica-
tion of a four-vector by a positive real number, It is an
Abelian, connected and simply connected group, but a
noncompact group, which is isomorphic to the additive
group IR of the real numbers.

Let A=D®/ be the direct product of the homogeneous
connected Lorentz group /, by the former group D of
dilatations.

If T, denotes the four-dimensional translation group
and we consider the natural action of D® /=4 over
T,, we will call*f the semidirect product of groups:
t=T,o(P®/[,). This group X does not keep distances,
but does operate causally, i.e., keeps the nature of
spacelike, timelike, and lightlike vectors, as well as
future and past (when compatible); in fact it is a “maxi-
mal causal group” for relativity (Zeeman?).

Then, when an origin is fixed, the coordinates of a
point and the corresponding image by the transforma-
tion (a, X, A) of % are related by

x™ =" 2 +at

3. T\ZE PROJECTIVE UNITARY REPRESENTATIONS
OF

If A is considered as the symmetry group in a guan-
tum theory, one must find the projective (anti-) unitary
irreducible representations of 'A. But as % is a connect-
ed Lie group, a continuous representation cannot be
(projective) antiunitary. The method of studying the
projective unitary irreducible representations (PUIR)
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of a connected Lie group G is developed in Ref. 4,
where it is shown that all of the PUIR of G can be de-
duced from the UIR of a group G called projective
covering group of G, which is the middle group of a
well-defined central extension of the universal covering
group G* of G, by the second cohomology group
H,{LG,R) of the Lie algebras LG and R of the groups G
and U(1), relative to the trivial action of LG over IR.

In the simplest cases in which H%, (LG,IR)=0, the
projective covering group coincides with the universal
covering group. This is the case that we are consider-
ing as we shall justify.

In fact, letA be the group defined in Sec. 2. The
corresponding Lie algebra LA is generated by the in-
finitesimal generators (non-Hermitian) M, ,, P,, and D.
The commutation relations in L°A are those of the
Poincaré Lie algebra, plus the following ones:

[MuwD]zoa [Pu’D]=—P .

All central extensions of LA by IR can be obtained in

a simple way by using the method proposed by Levy-
Leblond,® All the extensions of Poincaré Lie algebra by
IR are trivial extensions, so that we can say that any
central extension of L by IR is generated by M,,, P,, D,
and a new generator I. We must consider the same com-
mutation relations that in the Poincaré case, plus the
new ones:

(M,,,Dl=m,, I, [P,,Dl=-P, +p,]1,

where m,,= = (M,,,D) and p, = = (P,, D) are the values
of the “cocycle” = associated to the extension, As a
consequence of the associative character of the compo-

sition law in the algebra (d is the boundary operator),
dZ(A,B,0)==(4,B],C)+=(B,Cl,A) +=(C,A],B) =0
holds for all A,B,Cs L&
If we consider d = (D, M,,,, M,,) =0, we obtain easily
E((My,, My,],D) =0.

Here, the explicit form of this commutator is irrele-
vant, but such a commutator is a linear combination of
the generators M,; which is reduced to a single M,, (up
to a constant) when p=2X\. Then we obtain in this case
Z{M,,, D)=0, that is to say, m,,=0. An analogous ar-
argument, with d = (D, M,, ], P,) =0 leads to p,=0.
Then every extension of L¥X by IR is a trivial one, and
we can summarize as follows:

Theorem 3.1: Every PUR of the group A can be lifted
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to an UR of the universal covering group %* of X. Con-

versely those unitary representations of X* mapping the
kernel of the covering homomorphism in U(1) give rise

to projective unitary representations of 5.

4. CHARACTERIZATION OF UNITARY
REPRESENTATIONS OF £

Now, we must characterize all IUR of the universal
covering group of % because any IUR of £* does satisfy
the condition “mapping the kernel of the covering homo-
morphism in U(1).” In fact, the Schur lemma tells us
that this kernel, being a central subgroup of X*, is
necessarily mapped onto U(1), for every IUR.

This problem can be solved following the Wigner—
Mackey method which can be applied directly in the
search of the IUR of any regular semidirect product
with an Abelian kernel. © In fact, the group 4* is simi-
lar to%, but [, must be “replaced” by SL(2, €), this
last acting on T, via covering homomorphism SL(2, €)
—~/,. Therefore, A* is a regular semidirect product

¥*=T,0(D®SL(2,T))

with the Abelian kernel T,~IR%. The dual group T, of T,
is also (isomorphic to) IR!. Under the action of

D® SL(2,T), T, breaks up into six orbits: {0}, V*, Q%
;, where V* is the future (past) lightcone, Q* the in-
side and Q; the outside of V.

For the orbits Q*, Q; the little groups can be easily
calculated, and we find

G,.=SU(2), Ga,=SU(1,1).

They are the same isotopy groups as for the Poincaré
case, This result is that we have to expect: Any dilata-
tion A#1 does change the (Minkowsky) length of any

spacelike or timelike vector; therefore, the correspond-

ing little groups cannot contain any dilatation with A#1.
But for the light cone, the preceding argument does not
exclude dilatations of the little group, because they
keep the length of the lightlike vectors. In fact, let p
=(0,0,1,1) the standard point on V*. The general form
of an element in D®SL(2, €) can be taken as a 2X2
matrix M

u=(" ) (5 %)

where Ac R, «,8,7,8c €, and a8-fy=1.

If M leaves p invariant, we can easily conclude that
M is as follows:

_ (exp(iv/2) Aexp(-ig/2)
M‘( 0 Aexp(-w/m)

with A¢ IR*, ac €, ¢cIR.

The structure of this little group can be easily seen:
Its law of composition is
Mla, X, @) M(b, i, 6)

= M(a+ (1/7) exp(- i) b, Apt, @ + 6)

Because of this law, it is clear that the subgroup T,
={M(a, 1,0)} is an invariant one, A={M(0,2, ¢)} is an
subgroup and both determines a semidirect product

structure on G,., whose action is A, @):al—2at
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(A, @): al™ x'e~*°a, where a is a shorthand symbol for
(a,1,0) and (A, @) for (0,2, @). Then, the little group of
the light cone is G, ~ T, ® (' ®U(1)), where U()) stands

for the first covering (twofold) of U(1) and IR* is the
multiplicative group of positive real numbers. To see
more clearly the relation of this little group with the
first covering of the Euclidean group E(2) which appears
in the case of Poincaré group, the little group G“,” can
be seen to be isomorphic to the semidirect product
E(®) oIR* with respect to the action A: (a, @) I~ (A1 ¢, @),
To visualize this little group, we can say that, on the
standard lightlike vector, some Lorentz transforma-
tions act as a dilatation, and can be “compensated” by
a suitable real dilatation, The real number A< IR* pa-
rametrizes such a “compensated” dilatation.

Obviously, the little group of the trivial orbit {0} is the
direct product D® SL(2, €) and its representations are
product of the any two corresponding to D and SL(2, T),
which are well known,

The following step is to find the irreducible unitary
representations of these little groups.

We comment only the case of G“,* . As this group
is itself a regular semidirect product with Abelian
kernel, the Wigner—Mackey technique is to be applied.
It is clear that U{1)® IR* produces in T, only two orbits,
which we call {0} and C=T, - {0}. In the first case, the
little group is U(1)® IR*; in the second, Z, [because the
double covering ﬁ(Tt U(1)]. The irreducible unitary
representations of U(1)® IR* are well known, and are
characterized by n/2 (< Z) and p < IR; in the case of
Z,, there are only two representations which are de-
noted by e ==,

All IUR of G(V,,) are given below.
Orbit Representations
{o} [p,n/2] PER, ncZ
c [€] €==

Then, all the IUR of £* are given by

Orbit Representations
QF l£;n/2] ne?Z
Q, no physical sense
{o} no physical sense, but presumably
include the vacuum
[+; C; €] €=

As stated in Theorem 3.1, these are also the PUIR
of the groupX. As we can see, for the Q* Q, orbits,
the label m c IR* dissappears; for V* there appears a
“dimension label” p< IR in one series and the label =
of “continuous spin” disappears in the other series;
finally for the orbit {0} there appears also a “dimen-
sion label” pc IR.

5. REALIZATION OF THE REPRESENTATIONS

As is well known, the Mackey—Wigner technique pro-
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vides not only a characterization, but also a construc-
tion of the induced representations, In our case we can
take the same procedure that for the Poincaré group
with only this difference: the invariant Haar measure
induce now only a quasi-invariant measure, so that the
representation acquires a factor (the square root of the
Radon- Nikodym derivative; see Simms,")

As an example take the ' case; the Hilbert space is
LYQ* — V,,,, (€)), with scalar product

@)= f %301_) Pt () Py ()
and the representation is

[Ua, 2, &) 3 1(p) = (1/2) exp(- ipa) D,(A)) ¥(A"*A™p)
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so that unitarity is automatic [4, is in the little group
sU@)].
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A theory for the representations with a highest and/or lowest weight is given for the semisimple complex
Lie algebras (and their real forms). These representations are either irreducible finite-dimensional,
irreducible infinite-dimensional or reducible, but not completely reducible, infinite-dimensional (called
elementary representations), depending upon the property of the associated highest (or lowest) weight A.
No restriction is made to those representations of the semisimple Lie algebras which can be integrated to
form representations of the corresponding Lie group. The algebra A4, is chosen (Sec. III) as a simple and
familiar example upon which, however, much of the proof for the results obtained for the theory of
representations with a highest (and/or lowest) weight for the general case of a semisimple Lie algebra rests
(Sec. IV). 1t is demonstrated that the irreducible representations D(A) with a highest (and/or lowest)
weight A of the semisimple Lie algebras decompose with respect to any (regularly) embedded subalgebra of
the type 4, in the manner that either (a) the subrepresentations subduced on A, are all irreducible finite-
dimensional, or (b) all infinite-dimensional. If for case (b) the complex number M*° = 2(M,a)/(a,a), a the
(simple) root of A, and M a weight of D(A) extremal with respect to A, is not a nonnegative integer, then
the representation subduced on A, is irreducible. If, however, M ° is a nonnegative integer, then a reducible
but not completely reducible, representation is subduced on 4,. Based upon the results of Sec. IV a
generalization of Freudenthal’s formula is obtained in Sec. V, valid for irreducible infinite-dimensional
representations with highest (or lowest) weight. In Sec. VI generalizations are given of Racah’s recurrence
relation for the multiplicity of weights, WeyPs character formula and Kostant’s formula for the multiplicity
of weights for infinite-dimensional irreducible representations with a highest (or lowest) weight of the
semisimple Lie algebras. These formulas are derived utilizing theorems and lemmas obtained by Verma, L
M. Gel'fand, S. I. Gel’fand, Bernstein, Harish-Chandra and the results of Sec. IV. In Sec. VII some of the
infinite-dimensional representations of the algebra 4, are discussed as examples, employing the geometrical
methods developed by Antoine and Speiser and by Biedenharn and others.

1. INTRODUCTION

The motivation for writing this article stems basical-~
ly from the fact that, over the past few years, infinite-
dimensional representations with highest weights have
become of increased importance in physics. Among the
applications of infinite-dimensional representations
with highest weights of semisimple Lie algebras are
the hydrogen atom, ! the N-dimensional harmonic oscil-
lator.? Also the so-called ladder representations, 3* ap-
plied in particle physics,®® represent an example for the
use of this type of representations in physics. Still other
interesting applications are discussed in Ref, (4),

It was felt that a systematic study of the theory of
infinite~dimensional representations with highest weights
of the semisimple Lie algebras would be of interest in
view of their increasing importance in physics. From
this point of view, in addition to results obtained by the
authors, results obtained by other scientists have been
included in this article, in order to give as complete as
possible a comprehensive theory for the infinite-dimen-
sional representations with highest weights for the com-
plex semisimple Lie algebras.

Infinite-dimensional representations with highest
weights for the semisimple Lie algebras have been
studied extensively by Harish-Chandra.’ However,
Harish-Chandra restricted his attention to those repre-
sentations with a highest weight of real semisimple Lie
algebras that can be integrated to form a representation
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of the corresponding Lie group. These representations
have the property that 2(A, @;)/(ay;, &) =n,, n,; integers
2 0 or <0, with A the highest weight of an irreducible
representation and the «; the simple roots of a semi-
simple Lie algebra G. This type of representation forms
only a small subset of the set of representations with a
highest weight. And, in fact, it is only those represen-
tations of this subset which have at most one of the in-
tegers n; <0 that can be integrated to representations
of the corresponding group. This restriction is not
maintained in this article and all representations with
a highest weight of a semisimple complex Lie algebra
will be considered, independent of whether they can be
integrated to representations of the corresponding Lie
group or whether they can be continued to merely a
local representation of the corresponding Lie group.

In 1968 an article was published by Verma® which con-
tains essential results for a theory of infinite-dimen-
sional representations with a highest weight of semi-
simple Lie algebras. Some of these results will be
quoted and utilized below. Verma, in proving some of
his theorems had to use conjectures, based upon which
the theorems would hold. One of these conjectures was
shown to be not valid by Gel’fand and collaborators.”

In fact, it was demonstrated by them that Theorem 1 of
Verma, based on that conjecture, could not hold in the
form in which it was formulated. Below it will be proved
that part of Verma’s Theorem 1, reformulated as Lem-
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ma 5, nevertheless holds. Based on another conjecture,
Verma derived a formula for the multiplicity of weights
of irreducible representations with a highest weight of
the semisimple Lie algebras. However, for the case of
highest weights A, which have the property that S(A +R)
=A +R, for some element S of the Weyl group W, S#1,
this formula is not correct (for infinite-dimensional rep-
resentations A is not restricted to the fundamental do-
main). Counter examples can be easily constructed from
the algebras of rank 2. Other formulas for the multipli-
city of weights of representations with highest weights
will be derived in Sec. V and Sec. VI,

Listed in some greater detail, this article consists in
a study of the infinite-dimensional representations with
highest weight of the complex semisimple Lie algebras,
with the aim of

(1) determining the invariance properties of their
weight diagrams with respect to the Weyl group,

(2) obtaining recurrence relations of the type of the
formulas by Freudenthal and Kostant for the case
of finite-dimensional representations,

(3) introducing characters, as elements of a com-
mutative domain of integrity,

(4) the derivation of a formula for the character,
which corresponds to Weyl’s character formula
for the case of finite-dimensional representations,

(5) the derivation of a formula for the multipicity of
weights which corresponds to Kostant’s formula
(involving the partition function) for the case of
finite-dimensional representations.

In Sec. II of this article definitions are given concern-
ing Lie algebras and representations, not necessarily
irreducible, with a highest weight. In particular, the
notion of an elementary representation is introduced.
Further, a theorem on the decomposition of an infinite-
dimensional representation with highest weight with
respect to its weight subspaces is quoted, in view of its
use in later sections. Finally, the complex Lie algebra
L(3,C) and its real form L(2, 1) are chosen in order to
give some examples of infinite-dimensional representa-
tions with a highest weight.

Section III gives a summary of the theory of repre-
sentations with a highest weight for the algebra 4,, cor-
responding to the Lie group SU (2) and SO (3). The pur-
pose of this summary is twofold. First, it serves as
another, and complete, example for the theory of rep-
resentations with a highest weight of a complex Lie
algebra through the derivation of all its representations
with highest weight. Second, this summary is of vital
importance for later applications, in particular in Sec.
Iv.

Section IV is the central part of this article and much
of the rest of this article is based upon it. In particular,
the results of Sec. IV permit the derivation of
Freudenthal’s formula for (infinite-dimensional) irre-
ducible representations with a highest weight of a simple
Lie algebra G. Theorem 3 of Sec. IV describes the de-
composition of irreducible representations with a high-
est weight with respect to all subalgebras of the type
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G"+G* + G, where G is the Cartan subalgebra of the
algebra G and G* and G™ are the subspaces of the
Cartan decomposition of the algebra G corresponding

to the roots @ and (- @). Knowing this decomposition
for any such subalgebra, with a corresponding to a
“compact root” or a “noncompact root, ” yields in par-
ticular complete information concerning the multiplicity
structure of these representations.

In Sec. V Freudenthal’s formula is derived for irre-
ducible representations with a highest weight for simple
Lie algebras. The proof follows closely Jacobson’s
proof®® of Freudenthal’s formula for the case of finite-
dimensional representations and is based upon results
obtained in Sec. IV,

In Sec. VI the concept of character is introduced for
infinite-dimensional representations with a highest
weight. Theorems derived by Gel’fand and Verma, per-
tinent for the derivation of results that are to follow,
are quoted. Based upon these theorems the recurrence
relations for the multiplicity of weights of the type of
Racah and Kostant are proved, with some modifications,
for the case of infinite-dimensional representations with
a highest weight. Weyl’s character formula is derived
and, finally, Kostant’s formula for the multiplicity of
weights (involving the partition function) is obtained for
infinite-dimensional representations with a highest
weight. Some of the proofs for the theorems of this
section have also been given by Dixmier. %

In Sec. VII the algebra 4, is chosen to demonstrate
the meaning of the formulas obtained in Sec. VI on hand
of an example. The graphical method employed is a
continuation of the geometrical methods developed by
Antoine and Speiser® for finite-dimensional representa-
tions and by Biedenharn and others!® for infinite-dimen~
sional representations.

If. REPRESENTATIONS WITH A HIGHEST
(LOWEST) WEIGHT

Let G be a complex semisimple Lie algebra of rank
1. Let G=G° + % 4crG® denote the canonical decomposi-
tion of this algebra, where the sum goes over all roots «
of the root system I'. Then the algebra G can be gen-
erated by elements hy, ¢, f;, i=1,2,...,1. Thereby
the elements #; form a basis for the Cartan subalgebra
G® of the algebra G, while the e; are elements of the
(one-dimensional) subspaces G*! of G, corresponding
to the simple roots «,, i=1,2,...,1, and the f, are the
elements of the root spaces G*i of G. The elements
hi, e;, and f; can be chosen in a manner such that the
following commutation relations hold,

[y, 1y]=0,

(75, €;]= o)) ey,
[hhfj]:"' a](h{)fj,
Ui ed=n,

[fi, e,1=0 for i#j.

Let p denote a linear representation of the algebra G in
a linear space V. A representation p of an algebra G
defines uniquely a representation p(f2) of the universal
enveloping algebra 2 of the algebra G.
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A representation p of an algebra G is called a repre-
sentation with a highest weight on the space V if the fol-
lowing conditions hold:

(1) There exists a vector x in the representation
space V such that p(k)x = A(h)x for every h,
he G, where A(h) is a linear form on G°,

(2) ple))x=0, i=1,2,...,1.
(3) V={pla)x/ac @}, i.e., the set of vectors p(a)x,

for given x, coincides with V as the element a
goes over £,

The linear form A(R) is called the highest weight of the
representation p.

The finite-dimensional irreducible representations of
the semisimple complex Lie algebras are examples for
representations with a highest weight.

In the following the definition for an elementary
representation is given, For this purpose let A=A(h)
denote some fixed linear form on G°, For given A a
representation p of the algebra G is constructed in the
following manner:

Let G~ denote that subalgebra of G which is generated
by the elements f; of G. Let &_ denote the subalgebra
of 2 which is generated by the subalgebra G-. Then 2_
is the universal enveloping algebra of G~. The envelop-
ing algebra ©_ forms a linear space and the space is
taken as the carrier space of a linear representation p
of the algebra G. As a basis for the space 2_ the follow-
ing set of elements is chosen

Lfi XfigX e XS, =fifiy e o fin

i,=1,2,...,1, r=1,2,...

with the condition that every pair of elements

Fut Fosfifiafinn " Fis
Fo iy i ifine S

is identified for which [fin’fiml]: 0 holds. A represen-
tation p of the algebra G on the space &_ can then be de-
fined as follows:

p(M)1=A1,
p(fI1=1;,
D(ei)l =0,
R A O
X(mfsy fig~ - Sips M
P(fi)fnfiz . 'fi, :fifilfiz v 'fi.,’

p(e{)fitfiz oS, =fi1(p(ei)fiz . 'fi,),
- éil‘l(A —Qip— e — air)(hi)fig ot 'fi,-y

i=1,2,--,1,
where the 0;; is the Kronecker Delta.

It is not difficult to verify that the formulas (1) indeed
define a representation of the algebra G on the space
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Q_. This representation will be called an elementary
representation with a highest weight and will be denoted
by d,.

There exists a one-to-one correspondence between
complex linear forms A on G® and elementary represen-
tations d,. The representations d, are in general re-
ducible, but not completely reducible. This implies
that condition (2) of the definition of representations
with a highest weight will, in general, hold also for
other vectors of the space V. Thus the representation
space V of d;, may have an invariant subspace V' such
that the representation induced on the factorspace V/V'
is an ivveducible representation with highest weight
An).

Elementary representations play a useful and im-
portant role in the investigation of irreducible repre-
sentations with a highest weight.

Below an important theorem on certain properties of
linear representations with a highest weight is quoted
for subsequent use in later sections.!!

Theovem 1: Let p denote a linear representation of
a semisimple complex Lie algebra G with highest weight
A which acts on the vector space V. Then the space V
decomposes into a direct sum of finite-dimensional sub-
spaces V, where Vy is the set of all vectors x of V for
which p{h)x = M(h)x for all 2 G°. The subspace V, is
one-dimensional. The highest weight A is unique and
every other weight of the representation p can be ex-
pressed in the form A - ¥}, k;@;, where the a; are the
positive simple roots of G and the k; nonnegative inte-
gers. Moreover, to every linear form A on G’ there
exists, up to equivalence, one and only one irreducible
representation of G with A as highest weight.

An {rveducible representation with highest weight A
will be denoted by D,. Representations with a lowest
weight are related to irreducible representations with
a highest weight through symmetry considerations. If
2(A, a;)/(a@y;, o;) is a nonnegative integer for every sim-
ple root @;, then and only then is D, a finite-dimensional
representation (i.e., a representation with a highest as
well as a lowest weight).

The dimension of the subspace V, of Theorem 1 is
called the multiplicity of the weight M in the represen-
tation D,.

So far linear representations of complex semisimple
Lie algebras have been considered. This restriction is,
however, not necessary since there exists a one-to-one
correspondence between the representations with a
highest weight of a complex Lie algebra G and its real
forms. This one-to-one correspondence will be demon-
strated in what follows, taking the general linear group
GL (n, C) as an example.

The algebra of GL (n, C) is denoted by L (r,C). As
basis for L(n, C) the matrices e;,, ¢, k=1,2,...n, can
be chosen with the matrix elements (e,;,); n= 6;5,..,

l, m=1,2,...,n. The complex linear combinations of
the e;, constitute the algebra L(n, C). The elements ¢,,
and \/——_le,-k are linearly dependent elements of this
algebra, and in a representation of L(n, C) the operators
E;,and v—1E,, correspond to these two elements. This
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is in distinction to the case when the algebra L(x, C) is
considered to be real. Then the dimension of the alge-
bra is twice the dimension of the “complex L(n, C)”

with e;, and V=1e,, as basis elements. The algebra con-
sists in this case of all real linear combinations of the
€, and S | ¢;,- However, in a representation the two
operators representing the elements e,, and V=1 e;, are
not necessarily related by v—1 as it is the case above.
Representations of the complex Lie algebra will be
called complex representations.

A complex Lie algebra G may contain real subalge-
bras with the property that their complex extension
yields the complex Lie algebra G. Such subalgebras are
called real forms of the complex algebra G. Therefore,
a complex representation of the (complex) Lie algebra
G will induce a representation of any of its real forms.
Conversely, a representation of a real Lie algebra will
generate a complex representation of the complex Lie
algebra corresponding to it. The irreducibility of rep-
resentations is conserved in this correspondence be-
tween the complex representation of the complex Lie
algebras and the representations of its real forms.

It follows that to (irreducible) representations with a
highest weight of a complex Lie algebra correspond
(irreducible) representations of their real forms. These
representations of the real forms are also called rep-
resentations with a highest weight.

A simple example for representations with a highest
weight is supplied by considering the (real) Lie algebra
L(2,1) of the group U(2, 1). Some of the representations
of the discrete series of representations of the algebra
L(2,1) are representations with a highest weight. The
representations of the discrete series of L(2, 1) are ob-
tained by partitioning the number 2 into two nonnegative
integers, p, q. To the three possible partitions (2, 0),
(1, 1), and (0, 2) correspond the following three types of
generalized Gel’fand Zetlin patterns,

My Mgy Mgy Myg > 1myg +1

we M3+ 12 myp > mggt+1
myy Mg = My = Mgy
Myg Mg Mgy

UG

with the m,, integers. If a pattern is denoted by the
symbol © and the basis vector corresponding to it by
£(0), then the operators E,,, E,, ,, E, ,., which cor-
respond to the elements e,,, ¢,,, €, ,., of L(2,1) [and
of L(3,C), the complex extension of L(2,1)] are given
by

Mmyp > myg+1
Mgz — 1= myy

My = My = Mgy

Myg Mgy Moy =12 my3 > mgg =1
- 1 = mzz
Mg = Myy = Mag

kel
Ek.l'kg(e) = .L—Il a:_l(G)E(O:_l) (2)
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Ekkg(e)z(émlk_émi,h-l>§(e)’ 3

E, ,1£(0) =§ b L (O)E(OF,), @

where a!_,(6), b!,(6) are numbers depending on the val-
ues m;, and 6},_1 is the pattern obtained from the pattern
© by replacing m, ,., by m, ,,+1 while 67}, is the pat-
tern obtained from the pattern © by replacing m, ,, by
My, pa — 1. The formulas (2)—(4) have been given for the
general case L(p,q), p +q=n, withi=1,2,...,n [and
thus also hold for L(n,C)]. For n=3 and p =2, ¢=1,
the example L(2, 1) is obtained.

The matrices e,,, #=1,2,...,n, form a basis for the
Cartan subalgebra of the algebra L(n, C). Therefore,
the vectors £(©) are weight vectors with respect to this
Cartan subalgebra. Analyzing the inequalities imposed
on the numbers m,, it is easy to recognize that the rep-
resentations which correspond to the partitions p
=2+0and p=0+2 of L(2, 1) are representations with
a highest weight and a lowest weight, respectively. In
general it can be observed that as a consequence of the
conditions imposed on the m,,, the representations of
the discrete series of the algebra L{p, g) which corre-
spond to the partitions p=p +0 and p=0+p are repre-
sentations with a highest and lowest weight,
respectively.

The “ladder representations” of the algebra L(p, q),
which are not representations of the discrete series,
are also representations with a highest (lowest) weight.
The Lie algebra of the group SO(p, ¢) contains among its
representations of the discrete series also represen-
tations with a highest (lowest) weight.

IHl. REPRESENTATIONS WITH A HIGHEST WEIGHT
OF THE SIMPLE ALGEBRAS OF RANK 1

In this section some known results are discussed con-
cerning the theory of linear representations of the sim-
ple algebras of rank 1. These results are basic for the
further development of the theory of representations of
the semisimple Lie algebras as given in this article.
Therefore, below a brief outline is given of the prop-
erties of representations of simple algebras of rank 1
upon which much of the following will rely upon.

Let G be a three-dimensional complex simple Lie
algebra with basis e, f, & for which the following com-
mutation relations hold:

[h’ €]=2€, [h’f]:"zf: [f: e]:h' (5)

Since the Cartan subspace of this algebra is one-dimen~
sional, the linear form A(k) is uniquely characterized
by the complex number A.

Let p, be a representation of G with A as highest
weight and let x be the vector corresponding to this
highest weight, p,(h)x=Ax. Then, since

a0 ,(N%) = (02(NoA(R) = 20, (Mx = (A - 2)p, (N, (6)

the vector p,(f)x is again an eigenvector of p,(%) and
thus is a weight vector corresponding to the weight
(A -2). Similarly, the vectors (p,(N)%, (0,(N)x,

are weight vectors corresponding to the weights A - 4,
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A -6, -+, respectively. Continuing in this manner a
sequence of weight vectors is obtained. This sequence
may be finite or infinite.

Setting (p,(N)ix=x,, i=0,1,2,---, the following prop-
erty holds:

pale)x; = (= jA +5(G - 1))x; . "

Proof: This formula is correct for j=0. Suppose it
is correct for all values j<i. Then for i=j+1,

pale)x;=pple)x;
= pA(e)pA(ﬂxj
=(pa(Noale) = pp(M)x;
=palA(=jA +5(G - 1))955-1 -(A- Zj)xj
=(- G+ DA +5( + 1),
=(=iA +i(i = 1))x, .

The operators p,(k), pale), p,(f) acting on a vector x;
of the set {x,/i=0,1,2--+} yield a multiple of another
element of this set. For representations with a highest
weight A therefore this set is invariant under the oper-
ators p(h), ple), p(f) and the most general element of,
this space which carries the representation p, is ob-
tained as a linear combination over the elements of this
set.

If for some value ¢ it holds that p,(f)x; =0, then the
representation is finite-dimensional and necessarily ir-
reducible. In order that a representation is finite-
dimensional a necessary (but not sufficient) condition
is that the highest weight A is a nonnegative integer.

(It should be emphasized that we are not restricting our
attention to irreducible representations. Thus p, may
be a representation which is reducible but not complete-
ly reducible. For ivreducible representations the con-
dition is necessary and sufficient.)

A representation p,, with A a complex number, may
be infinite-dimensional (and is so necessarily except
for A a nonnegative integer). A necessary and sufficient
condition for an infinite-dimensional representation p,
to be reducible is that A is a nonnegative integer. This
is shown as follows. K for every value ¢=0,1,2,...
it holds that p,(f)x; #0, then the representation is infi-
nite-dimensional. IXf in equation (7) the coefficient on
the right-hand side becomes zero, namely if

-jA+jG-1)=0, (8

for some value j#0, then the representation p, is re-
ducible. In this case the vectors x;, x;.,4, -+ form the
basis of an invariant subspace V of V. This is however
the case for A =j~ 1. The restriction of p, on the in-
variant subspace V forms an irveducible infinite-dimen-
sional representation with highest weight — (A +2). The
weight vector corresponding to the highest weight is

X 4. I, on the other hand, A is not a nonnegative in-
teger, then an infinite-dimensional representation is
irreducible. This can be seen as follows. An arbitrary
vector of the representation space V is given by

V=B Xy TR, T By Xy,

where the B;; are complex numbers. Acting on such a
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vector successively with the operator p,(e) yields, after
a finite number of steps, a vector Bx, with 8 some com-
plex number not equal to zero and x; the basis vector
corresponding to the highest weight A. Then, acting on
%y by operators of the form (p,(f)" it is possible to ob-
tain an arbitrary basis vector of V. Thus the following
theorem holds:

Theorem 2: Every representation with a highest
weight of a complex simple Lie algebra of rank 1 is
equivalent to one of the following representations:

(1) Irreducible, finite-dimensional representation
Pa. For this type of representations A is a nonnegative
integer m. If the basis for the finite-dimensional vector
space V is given by the vectors x, %y, %5, . . ., X,,, then
it holds

pall)x;=(m=2ix;, i=1,2,...,m,

pA(ﬂxi:le, i:()’ 1’ 2a°--7m’

pA(ﬂxm = 0’
pale)xy=0,

paledx;=(=im+i(i-1)x,4, i=1,2,...,m.

(2) Infinite-dimensional representation p,. For these
representations A is a complex number. If the basis
for the infinite-dimensional vector space is given by
Xgy X1, X3, * * », then it holds

pall)x; =(A=20)x,, i=0,1,2,+--,

pA(ﬂxi =%, 1=0,1,2,---,

pale)x,=0,

pale)x,=(=iA+ili = V))x,,, i=1,2,°-,

If A is a nonnegative integer then the infinite-dimension-
al representation is reducible. If A is not a nonnegative
integer then the representation is irreducible.

A reducible infinite-dimensional representation p,,
A =wm a nonnegative integer, has in a basis x, %y, X5, -« -
the matrix form

" 0

* Ye .
The submatrices ¥, form a finite-dimensional irredu-
cible representation with highest weight 72 while the

submatrices ¥, form an infinite-dimensional represen-
tation with a highest weight — (m +2),

IV. PROPERTIES OF {RREDUCIBLE
REPRESENTATIONS WITH A HIGHEST WEIGHT

Let G denote a complex semisimple Lie algebra.
Let D, denote an irreducible representation of G with
a highest weight A, Moreover, let G’ denote an arbi-
trary, but fixed, Cartan subalgebra of G with basis
elements #;, i=1,2,...,1. The basis elements %; are
chosen in such a manner that for every element e GY
holds «;(k)=(h, k;), i=1,2,...,1, where the bracket
denotes the scalar product of the elements %, %;, de-
fined by the Killing—Cartan form, and where the «;,
i=1,2,...,1, are a system of simple roots of G. We
define k] =2k,/(q,, @,). The Weyl group of G is denoted
by W, the subset of all positive roots of G is denoted
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by A. Let a4, 0y,,...,a, be a subset of roots of the
set of simple roots for which holds A(hi Y=ny,, j
=1,2,...,r, with n,, nonnegative mtegers Then the
subset of roots of A which are linearly dependent on
these roots will be denoted by A,. The subgroup of the
Weyl group W which is generated by the reflections

S‘ +S1yy+ « - 551, On the hyperplanes perpendicular to the
roots ay,, a.z, , a1, is denoted by W,.

Lemma 1: Let D, denote an irreducible representa-
tion of G with highest weight A. Let M denote an arbi-
trary weight of D,. Then, if A(%}) is a nonnegative in-
teger, S;M=M - M(h})o, is a weight of D,.

The proof of this lemma is analogous to the proof of
Lemma 7.3 in Ref. 8 and we refer to this reference.

Lemma 2: Let D, denote an irreducible representa-
tion of G with highest weight A. If M is a weight of D,,
then SM, Sc W, is a weight of D,.

The proof follows directly from lemma 1.

The operators which correspond in a representation
D, of the algebra G to the elements ¢;, e, (both, a;
and « denote positive roots), f;, f,, h are denoted by
E, E,, F;, F,, H, respectively.

In the following, a theorem will be proved. This the-
orem is the basis for the investigation of the properties
of representations with a highest weight, reducible as
well as irreducible, of the semisimple Lie algebras.

Theorem 3: Let D, denote an irreducible representa-
tion of G with a highest weight A on a space R. For
every a of A root vectors e,, f, are selected in such a
manner that [f,, e, ]=h,, where h, is defined by (&, k)
= a(h), he G. If the representation D, is restricted to
the subalgebra G, ,=G"+G* +G™*, with G*, G root
subspaces of G corresponding to the roots o and - @,
then the following two cases hold for the decomposition
of the representation D, with respect to the subalgebra
G

(1) For ac A, but a¢ A,, the space R decomposes
into a direct sum of infinite-dimensional subspaces,

which are invariant under G, (but not necessarily
irreducible). For each of the subspaces exists a basis

Yos Y15 V2s - « » , SUch that
Hy,=M~ia)(h)y;, i=0,1,2,-
Foyi=via, 1=0,1,2,...,
9
Euyo=0 ( )
ana—(a’a)z(z—l my,y, i=1,2,...

(2) For ac A and a € A,, the space R decomposes into
a direct sum of finite~-dimensional subspaces, which
are invariant and irreducible under G ,. For each of
the subspaces exists a basis yg, 91, - .., ¥m such that

Hy,=(M-ia)(h)y,, i=1,2,...,m,
Foyy =¥, £=0,1,2,...,m~ 1,
Faymzoy (10)
Eqyy=0,
1821 J. Math. Phys., Vol. 16, No. 9, September 1975

(o, C’l)z(z—l my;q, i=1,2,...,m.

ani
In Egs. (9) and (10) the symbol M denotes the weight of
the vector y,, and it holds (a, &) = (h,, k,) and m
=2(M, a)/(a, a).

Unfortunately, a simple proof of this theorem has
eluded us and we find it necessary to break up the proof
in three main parts. It has also been found convenient
to prove first Lemmas 3 to 5 before proving Theorem
3 itself.

Lemma 3: Let @ and 8 be positive roots of G and s
the largest nonnegative integer for which sa+f isa
root of G. Then for p > s the relation holds

FﬂthB:I"B‘Futp-"7/11:111-#81701’.1 toos +7’3Fsa~BF£-s:

with the v;, i=1,2,...,s, as numerical factors.

Proof: Up to a numerical factor it holds [F,,
=F,.,. Hence, ignoring coefficients,
Fo?Fyg=F " FyFy + F,*'F,

=(F,"2FsF, + F,*?F, ,)F,
+ (Fap-zFa*SFa + Fap-zFaa-bB)'

Fy]

(11)

Continuing to substitute the first line of Eq. (11) for
F,*-'F, yields the desired result, since F,y.;=0 for
¥>s,

Lemma 4: Let y denote a vector of D, such that Hy
=M(h)y, M some weight of D,. Then the following re-
lation holds:

F "By
= (COFam + clEaFa m + czEjFam+z Fooe+ CkEofFa ""k)y,
(12)
where the ¢y, 1=0,1,2, ...,k are numerical factors.
Pyroof:
(1) The relation holds,
(FyEDy = (E F,EX" + EX')y
=(E;F, +EFYy, k>1, (13)

as can be easily verified by successively substituting
the left side of Eq. (13) into the right side. In this
equation multiplicative factors are ignored since they
are irrelevant for later considerations,

(2) The relation holds,

F,"E}y =F " E}F, +EFV)y
=F"HF EfFy + FLES )y
=F,"¥E:F, +EF)F,
+(EF'F, +EF)y
=F,"2EFF+ E}'F, + Ex?y

=(ESFQ + EE'FJ™ +o 0o + EJRF, )y, (14)

B. Gruber and A.U. Klimyk 1821



with 2, m =1 and E" =0 for <0, Again, multiplicative
factors are ignored. For m >k, Eq. (12) is obtained.

Lemma 5: If a subspace R’ of R is invariant under
the algebra G, then R’ is also an invariant subspace
with respect to the three-dimensional simple algebra
G@,=GY +G* +G™, where G, is the subspace of G°
spanned by the vector 4,.

Pyoof: E(a, is a subalgebra of G,,.

Proof of Theorem 3

The proof of Theorem 3 is given in three parts.

Part 1 is for the case that 2(A, a)/(a, a)#n, n=0,
integer. Part 2 considers the case with 2(A, o)/
(a, a)=n, n>0, integer and ad A,. Part 3 treats the
case with 2(A, a)/(a, @)=n, n>0, integer and ac A,.
These parts are subdivided into smaller units in order
to keep the proof as transparent as possible.

An ordering is introduced into the set of weights of
the (irreducible) representation D, in the following
manner. Let the set of simple positive roots II
={m, @, ..., a;}, [ the rank of the algebra, be ordered
in some arbitrary manner. Then a weight M=A
— Z}.ak,@; is called higher (lower) than a weight M’
=A-7;.k;q,, if for the first nonvanishing difference
k,— k;>0 (<0) holds.

A vector y which corresponds to some weight M is
called extremal (with respect to the operator E ) if it

holds that E,y =0.

Throughout the proof o denotes a (not necessarily
simple) root of the system A of positive roots.

Part 1: 2(A, a)/(a, a) #n, n= 0, integer

In this case it necessarily holds that a e{ A,. This is
seen as follows. The set of roots A, is defined as
A, ={acala= 7;q;, a; € I, 7; nonnegative integers,
2(A, a))/(a,, a,)=n,, n, >0, integer}. Thus, if
ac d,, then 2(A, a)/(a, o) =n, n=0, integer. It should
be noted that the converse is not true (parts 2 and 3
below).

(@) 2(A, @)/(a, @) #n, n= 0, integer.

Let x denote a vector of highest weight, Hx =A(h)x.
A subspace R, of R is constructed which is spanned
by the vectors

Vo=X%, yleaxi"wyn:Fw"x""- (15)

R, is invariant under G, (see proof of Theorem 2) as
well as under G, (Lemma 5). Since 2(A, a)/(a, o) is
not a nonnegative integer if follows from theorem 2
that the space R, is irreducible and thus carries an i»-
reducible infinite-dimensional representation of the al-
gebra G ).

(b} 2(M, a)/(a, @) #n, n> 0, integer

Let M=A -3 kyjay, not all 2;=0, denote the second
weight according to the order introduced into D,. We
assume that 2(M, a)/(a, @) #n, n= 0, integer. Let Vy
denote the (finite-dimensional) subspace of D, consist-
ing of the elements y such that Hy = M(h)y, with dimVy
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=7, v some integer > 0. In Vy there may exist ele-
ments y such that E,y =0. For any element y € V;; which
is annihilated by E, we form the sequence

n,

ysFay’-“’;Fays"‘- (16)

It follows from (a) that we obtain an invariant sub-
space Ry, which carries an ivreducible infinite-dimen-
sional representation of the algebra 6(,,,. The number
of invariant and irreducible subspaces R, obtained
in this manner is equal to the number of linearly inde-
pendent elements y € V, for which E,y =0.

(c) 2(M, a)/(a, a)=n, n=0, integer

By proceeding consecutively to lower and lower
weights M, according to the ordering introduced into
D,, the construction {(a) holds as long as 2(M, a)/

(@, a) is not a nonnegative integer. It will in general,
however, happen that 2(= k; a;, @)/{a, @), for k; >0,
integer, becomes negative. In this case, if 2(A, o)/

(@, a) bappens to be a negative integer, 2(A - Tk,a;, a)/
(a, a), not all k;, =0, may become a positive integer or
Zero.

Let M again denote a weight of the form M=A
- Zk;ay, not all 2; =0, however with the property that
2(M, a)/(a, a)=n, n>0, integer. If there exists an
element y € V), such that E,y =0, then we form the
sequence

yo=%, Nn=Fyy, yz=F§y,"“, yn:Fu"y,"" . a7

The sequence, Eq. (17), does not terminate and we ob-
tain a reducible infinite-dimensional representation of
G(a)'

Proof: Assume that the sequence, Eq. (17), termi-
nates, i.e., there exists a nonnegative integer m such
that F,y #0, F,™'y=0. If oy # o is a simple root we
form Eyy, E;=E, . Two cases can happen:

Case (bl): Eyy=0. K E;y=0, we have under the as-
sumption made above,

Eyy=0, E,y=0, Fam’ly =0, (18)
with
2(M, a)/(a, @)=n, n=0, integer. (19)

Case (c2): E;y#0. If E;y+#0, a vector 2z is constructed
from y such that z is extremal with respect to E, and
Eqs. (18) and (19) hold for the vector z with weight M’
for some value of m.

The vector z is obtained as follows. Let 2 denote a
positive integer such that EZE;y #0, E)*'E;y=0. Such
a k exists since any weight of D, is of the form A
- Zky a;, a;c1l, k nonnegative integers. Acting with
E,, a=ZXr;a, 7;nonnegative integers, onto the vector
Ey yields the weight A — Zkjoy + oy +ia, £=1,2,3,:--,
with M + gy =A = Zk;0,; + oy the weight of the vector
Eyy. For a finite value =k a vector will be obtained
which is no longer a weight of the representation D,
(in order to express this vector in the form A
~Zkya;, oa,cll, some of the 2; must become negative
integers).

At this point it is convenient to prove the following
lemma before proceeding further with case (c2).
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Lemma 6: Under the assumptmn that the seq'uence,
Eq. (17), terminates, it holds F* E*Eyy #0, F" E*Ey
=0, »’ some positive integer. I [F,, E;]=0 it follows
from Lemma 4 that Lemma 6 is true and that n’ =m

+k. X [ El] aFy_ oy, a#0, one obtains with
[F,, E,]=H,, and ignoring coefficients,
FIEy=F"E\Fyy + F”"'F, oy

= F 2B Fly + F" 2Fyo Foay * FS""Fuay
Y+ Fyoay Py + FoFya F™'™

@=0y

=EF,"

+onot+ Fu”'"1Fa_a1y. (20)
Let s - 1 be the largest integer for which F 1)y

#0. It then follows from Lemma 3, Lemma 4, and

the assumption Fy #0, F"'ly=0, that Lemma 6

holds with n»* =m +% +s. This completes the proof of
Lemma 6,

Proceeding further with case (c2), let M’ =A -3 kjay,
B} nonnegative integers, be the weight of the vector
E%® Eyy, then it must hold, due to Lemma 6, that
2(M’, @)/(a, @) =n, n>0, integer, since according to
Theorem 2 the sequence equation (17) does not terminate
for any other value. The vector EXE,y has therefore the
property E, (EXE.y)=0, Fo ‘(EXE;y)=0, with " some
positive integer, and 2(M’, a)/{a, a)=n»>0, integer.

If it now holds E,(E%E,y)=0, then E}E,y satisfies
Eg. (18) with y ~ EXE,;y, m -’ and we have case (cl).
Thus z = E; Eyy. If E\(ELE,y) #0, then y’= E}Ey is not
yet the desired vector z and we have again case (c2)
with y —3’. The same construction as given in case
(c2) is now applied to the vector ¥’. For the vector
y” obtained in this manner it either holds E;y” =0,
case {c1), and y” =2z, Or it holds E;y” #0, case (c2),
and the construction as given for case (c2) is repeated
for the vector y” = E,y”. After a finite number of steps
a nonzero vector z is obtained, since every time case
(c2) is repeated the positive root o, is added to the
weight of M of the vector y.

With the vector z obtained in this manner the same
construction as given above for a; # @ is repeated for
the simple root o,# a,, a. A vector v with some weight
M’ is obtained satisfying Eqs. (18) and (19) with
Ay = 03.

In constructing v it may occur that while a vector
extremal with respect to E,_is obtained, this vector
is no longer extremal with respect to E, . In this
case this vector has again to be made exiremal with
respect to £, , which may in turn result in a vector
no longer extremal with respect to E, . However, after
a finite number of steps a vector z is obtamed which
is extremal with respect to E,, E,, and E,,.

The procedure described above is repeated for all
simple roots «; # a. A vector w with weight M is ob-
tained, satisfying

Ew=0, 2(M,a)/(a, ®)=n (n>0, integer) (21)

for all simple roots a;, i=1,2,+--. This implies that
under the assumption that the sequence equation (17)

terminates, a highest weight M is obtained for the ir-
reducible representation D,, which satisfies Eq. (21).
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This would imply that the irreducible representation
has two different highest weights. This is, however,
impossible. Thus the assumption that the sequence
equation (17) terminates leads to a contradiction.

Part II: 2(A, &)/(a, @) =n, n=>0, integer, ag A,

As in Part I let Ry denote a subspace of R invariant
with respect to the algebra G,. In the following,
Theorem 3 will be proved for the case that 2(M, a)/
(¢,a)=n, n>0, integer, with a ¢ 4,.

If ad A,, then in the decomposition a=Z7;a; (a;
simple roots) there is at least one simple root ¢; such
that a; é 4a,. Let y € Ry denote an extremal vector for
E, satisfying Hy =M(h)y, i.e., E,y=0, with 2(M, a)/
(o, @) =n, n=>0, integer. The sequence

Yo=Y, U=Fsy,e.0,Yp=F;"y,c- (22)

does not terminate since 2(A, o;)/(ay, a;) #n, n> 0 inte-
ger, as follows from Part I. It will be shown that the
sequence

Yo=Y, N=Fo¥, v, Vn=Fgy, e+ (23)

does not terminate either.

In the following three cases will be distinguished,
namely (o, a,) >0, (a, a;) <0, and (a, a;)=0.

(a) (a, Clj) >0

Suppose the sequence, Eq. (23), terminates, i.e.,
there exists a positive integer n’ such that

Fy+0, F"y=0. (24)
Then, for arbitrary m, the sequence
Yn=F™y Foly FiVhyoee, Fayheeo (25)

terminates too. This follows from Lemma 3. However,
the vector y;, may not be a vector of highest weight for
the algebra G,. For this reason the sequence is formed

soe (26)

as a continuation of the sequence equation (25) to vec-
tors of higher and higher weight (with respect to G,,).
The sequence {26) obviously terminates since @ is a
positive root. [See Part I, case (c2).] Moreover, the
two sets together, Eq. (25) and Eq. (26) are invariant
under G @ and form a basis for a finite-dimensional
(and irreducible) representation of G(a,

’ Nt
aVms oo os BV,

Vhs EaYhny EE

The weight of EJy,, is M- ma; + na, where M is
the weight of y,. Now it holds a# a;. Thus «
=Z7qa; a;cll, contains at least one other simple
root @, # ;. E, acting on a vector with weight M - ma;
+na yields a vector with a weight M~ ma;, +(n+1)a.
Since there exists at least one other simple root «,
# oy, it follows that there exists a positive integer »,,
such that M — ma; +nya is no longer a weight of D,
for all m. Moreover, n; is independent of the value m.
Therefore, under the condition that » <n, it holds for
some value m,

2(M=ma; +na, a)/(a, a) <0, (27
since (a;, @) > 0. According to Theorem 2 this contra-

dicts the fact that M - ma; +na is the highest weight
of a finite-dimensional space which is invariant under
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Ga)- Thus the sequence equation (23) does not termi-
nate if (o, @;) > 0. As a consequence we obtain the fol-
lowing lemma:

Lemma 7: X B is a simple root of G for which the
sequence

Yo Y1=Fg¥o, oo, ¥ y=Fgyg e~
does not terminate, and if o is another positive root,

aé A,, such that (a, B) >0, then the sequence
yO,yleayO: °°-9yn:Fo:y0’°°°

does not terminate either.
(b) (a, a;) <0

It is sufficient to prove that the sequence equation
(23) does not terminate for M=A, A the highest weight
of D,. Indeed, if x; is a vector which corresponds to
the weight A of D, then it holds x;c v, i.e., ¥y is a
finite linear combination of vectors A4, -+A,y, with
the A; either E, or F,, v< A, This follows from the
irreducibility of D,. If the sequence equation {23)
terminates, then it follows from Lemmas 3 and 4 that
there exists an integer n, n> 0, such that
FJ(AAp - -Ay) =0. Hence, there exists an integer
n, n’ =0, such that Fix,=0. Thus, if the sequence
equation (23) does not terminate for M=A, then it
does also not terminate for M#A,

Since « is not a simple root [if it were then the con-~
dition 2(A, a)/(a, @) =n, n> 0, integer, implies that
ac A,], the root & can be represented as a sum of 2
positive roots 84, 8;, one of which is a simple root.
Moreover, at least one of these two roots does not be-
long to A,. Consider now the set of roots of G which
is generated by the application of the Weyl reflections
Sa-+ Sa.» SBz and their products to the roots «, B;, and
B,. The sét of roots obtained is a subsystem I'® of the
root system I'. Moreover, I'® is a system of roots of
a simple Lie algebra of rank 2, denoted by G®. Let
AP =T® 1A, Then A® is a system of positive roots
for the algebra G®. Let 2%’ denote a universal envel-
oping algebra of G®_ The universal enveloping alge-
bra 2@ can be embedded in the universal enveloping
algebra @ in a canonical manner. In the following we
shall assume that 2% is embedded canonically in €,
i.e., Q¥ CQ,

Consider the subspace R®'=Q®y, of R. It is clear
that the reduction of the representation D, with re-
spect to the subalgebra G® contains a representation
of the algebra G® on the space R® which has a highest
weight A. This representation will be denoted by D2,
It is also clear that the vectors of Eq. (23) belong to
the space R*’, Thus, the sequence equation (23) ter-
minates for the representation D, of G if and only if
this sequence terminates for the representation D2’
of G®. Similarly, if the sequences yo, Fg Yo, .- -,
Fﬂg‘y »°°°, ¢=1,2, do not terminate for the represen-
tation D, they do not terminate for the representation
D&,

Thus, in order to prove that the sequence equation
(23) does not terminate it is sufficient to prove it for
the simple Lie algebras G®’ of rank 2, i.e., for the
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case of A,, B, and G,, respectively. Let us first con-
sider the case that the algebra G® is the simple alge-
bra B,., Let a; and a, denote two simple roots of B,
such that |y |>la,i, i.e., o is the longer of the two
simple roots. The other positive roots of B, are then
given as ay t a,, @ +20,. There exist only two possi-
bilities for a realization of the roots «, £, B, in B,,
namely (bl) a=a +20,, Bi=ay, Bi=a, By=oyt+a
and (b2) a=o + @, Bi=ay, Br= ay.

Case (b1): a=a; +2a,, fi=ap By=ay + 0y Itis
clear that the root a, is a simple root of the system
A of G, while B, is not a simple root, If the sequence
Yo» Fs1¥oy - -+ s Fo¥g, . .. does not terminate, then the
sequence equation (23) does not terminate either, ac-
cording to Lemma 7, since (a@,, o; +2a,) > 0.

Now let us assume that the sequence y,,
Fgy0s« oy Fgiyg, -+ does terminate (hence B € 4,,
and for some integer m > 0 it holds Fy™y,# 0, Fy™*y,
=0). Then the sequence ¥, Fgyg, ... 8yY0r **+ does
not terminate, as a consequence of Lemma 7 [(ay, 85)
> 0], since the sequence ¥y, Foy Yoy +ee, Falyp e+ can
not terminate. If this last sequence would terminate,
then it would hold oy, @y 4, and thus also ac 4,,
contrary to our assumption.

Consider the sequence FB;"yoEyi,,, Foylyenes
FJy}, »+-. According to Lemma 3 this sequence ter-
minates if the sequence equation (23) terminates. It
will be demonstrated that this sequence does not termi-
nate. Consider the system of roots S,,A=4". The sys-
tem A’ is obtained from the system A by replacing
a, by - a, (Ref. 8, Sec. 8, § 1, Lemma 1). The system
A’ can again be considered as a system of positive roots
of G. According to Lemma 1 (applying it to the root
a, =fB;) the representation D, is a representation with
highest weight vector y/, with respect to the system of
positive roots 4’ (it holds Eiy,, =0 for all B¢ &/, E}
=E, for B# ay, and E, =F, ). All considerations fol-
lowing Lemma 7 can now bezrepeated by substituting
A— &7, (highest weight y, for A)— (highest weight y’ for
&%), (roots B) ~(roots S, B), (sequence y,, Fgvy, ...,
Fjly,, *++) —~(sequence y’, Fh,y,, ..., Fiy’, +*+, where
B’ :Sazﬁ, Fy,=Fg. if ' >0 and Fj =Eg., if f7 <0). Ob-
viously, the subalgebra G’ is the same for both cases.
According to Theorem 2 it holds that E},y}, = F., ™!,
=cy, c#0. Hence 2®y, =Q®y =R%  Thus thé rep-
resentations D’ for the two cases coincide. Thus,
from the fact that for the case of the system of positive
roots A the sequence yg, Fy ¥4, .« oy Fo™yy, * =+ does not
terminate, it follows that tﬁe SEqQUENCE Vi, FoVis « vt
FJy!, -+ does not terminate, since S, _a; = a. Above
it was shown that if the last sequence éoes not terminate
then the sequence equation (23) does not terminate
either.

Case (b2): a=a, + o, f; = 0y, B, = a;. The proof for
this case is quite similar to the proof of case (b1) and
we delete it. Again it follows that the sequence equation
(23) does not terminate.

So far the proof has been given for the special case
that G®’ = B,. However, for the other algebras of rank
2(namely A, and G,) the proof follows analogous lines
and we do not give it,

B. Gruber and A U, Klimyk 1824



Consequently, it has been proved that the sequence
equation (23) does not terminate for 2(A, a)/(a, @) an
integer >0 and a¢ A,. Equation (9) shows how the
operators H, F,, E, act upon the vectors of the se-
quence equation (23). The proof of Eq. (9) follows the
proof given in Theorem 2 and will not be repeated here.

The sequence equations (16) and (23) consist of lin-
early independent vectors. The operators H, F,, E,
transform the vectors of these sequences into vectors
of the same sequence. Thus, in the cases considered
so far the space R is decomposed into a direct sum of
infinite-dimensional subspaces which are invariant
under G,. Each subspace forms the space for a rep-
resentation with a highest weight of the algebra G,.

Part II: 2(A, 0)/(a, a)=n, n>0, integer, ac A,

According to Lemma 2 all sequences of type equation
(23) are finite under the conditions given above. From
Theorem 2 follows that every sequence of this type
forms a basis for a finite-dimensional irreducible
representation of G,.

The operators H,, E,, F, act on the elements of the
basis according to the formulas given by Eq. (10). Thus,
for this case the space R decomposes into a direct sum
of finite-dimensional subspaces, each of which is in-
variant under the algebra G,,. This completes the proof
of Theorem 3.

Covrollary 1: Let D, be an irreducible representation
of G with a highest weight A. If o is a positive root
and a< A,, M a weight of D,, then the multiplicity of
the weights M and M - 2(M, a)/{a, o) is the same.

Proof: According to Theorem 3, the space R of D,
decomposes into a direct sum of finite-dimensional
subspaces which are invariant under Gy,. The multi-
plicity of a weight M is equal to the number of invariant
subspaces which contain a vector of weight M. From
Lemma 2 follows that the finite~-dimensional irreducible
representations of G,, contain with a weight M also
the weight M - 2(M, a)/(«, a). This proves Corollary 1.

Covollary 2: Under the conditions of Lemma 2 the
multiplicity of the weights M and SM, Sc W,, is equal
in a representation D,. The proof follows from
Corollary 1.

Theorem 3 shows that the symmetry of Corollary 2
is the maximal symmetry of the weight diagram of the
irreducible representation D, .

V. FREUDENTHAL'S FORMULA FOR INFINITE-
DIMENSIONAL REPRESENTATIONSWITH A
HIGHEST WEIGHT

The derivation of Freudenthal’s formula for the case
of finite-dimensional representations of the simple Lie
algebras G is well known. Below it is demonstrated that
Freudenthal’s formula also holds for infinite dimen-
sional irreducible representations with a highest weight
of the simple Lie algebras G. The proof rests on
Theorem 3 of Sec. IV. The notation employed is that
of Sec. IV.

Let a denote a positive root of a simple Lie algebra
G. Let M’ denote a weight of an irreducible representa-
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tion D, of G with highest weight A, Then the set of
elements

soo, M +2a, M+, M',M' = a, M' = 2a,++*

is called an a-sequence containing the weight M’. Such
a sequence forms a subset of weights of D, (to elements
of the sequence which do not correspond to weights the
multiplicity zero is assigned).

Let aet A,. Then, if M is a weight of D, such that
M+ adD,, the a-sequence containing M is given as

(28)

Let R denote a linear space which carries the irreduc-
ible representation D, and let the subspace /! Hepa D€
defined in the sanmie manner as the subspace Vy._,, of
the space V of Theorem 1, Sec. II. From among the
representations of the subalgebra G, of G, as con-
structed in Theorem 3, those with the highest weights
M,M-aqa,...,M-pa contribute a subspace to/ y_pa,
such that the direct sum of these subspaces forms the
space My o. If m; denotes the number of representa-
tions of G, with highest weight M ~ ja, then

M,M~oa,M=2a,+++ .

(29)

M =Nyoja = MU (i-1)a »

Here and in the following 7, denotes the multiplicity

of the weight M of D,. Let y, ; denote a vector of
weight M - pa of the space which carries a representa-
tion of G, with highest weight M -ja, j<p, as given
by equation (9). Since

m' =2(M-ja, a)/(a, a)=m -~ 2j,
it holds that

EyFoy, ;=30 -+ 1) =m+i)a, a)y,
and

FoBoyy ;=300 -1)0 -m+j-1)a, a)y,.;.

In the following the traces of the operators E,F, and
FyE,, restricted to the subspace/lly_,,, are evaluated.
From Egs. (29) and (30) it follows that

(30)

Tr FaEa:imj%(p_j)(p—m"'j"l)(as a)
Mapo i=0

4
=J.§0(nﬁl-la' - nM-(!-l)a)%(p —])(P -m +j - 1)

X(a, a)

p=1
=§"M-ja%(2j -m)(a, a)

p=1
== ZrusaM=ja, o)

and
Tr/” E,F,=~ in‘,_,‘,(M—ja, a).
H=pa -0

Setting ny, =0 if M "is not a weight of D, and inverting
the sums, one obtains

Tl'/n”FaEa == l,);,nu,ju(M+ja, a),
Tr/n”EuFa == z-l;nuua (M+ja’ C(), (31)

where M now denotes an arbitrary weight of the se-
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quence equation (28). If a< 4,, then from considera-
tions analogous to those given in Ref. (8), Sec. 8, § 2,
it follows that

TrmMFa E,=- jé‘({n”_,a (M-ja, a), (32)
Tr/n EUFC! == Z;nMﬂ-ja(M +]ay a)-
M i=0

The Casimir operator for a simple Lie algebra G is
given as

1
I'= 2 HH - ), F,E,~ ), E,F,
i=1 A

a& aCA
1
=) HH - ), H,-2 2, F,E,,
i=1 aEA XC A

where the H; and H* are defined as in Ref. 8, Sec. 8,

§ 2. On the space R the Casimir operator I is a mul-
tiple v of the identity operator with y=(A +R, A +R)

— (R, R). This can be seen as follows. The space R can
symbolically be written as R ~Qx ~Q ~ x, where Q
characterizes the enveloping algebra of G (see Sec. II)
and where x is the vector corresponding to the highest
weight A. This means that every element of R can be
expressed as a linear combination of elements of the
form k

y=F Fy - F 1. o (33)
Since E,x =0, it holds that
1
Tx=2sHHx+ 2, Hyx.
$=1 ac A

Using the fact that®

1
L HHx=(A, Nx
t=1

and that
2 Hyx= 25 Ahy)x= <A, 2 a)x,
xC A a& A xS A

it follows

Cx=(A, A)x + (A, > a)x

aEa
=(A, A)x + (A, 2R)x
=((A+R,A+R)—- (R, R))x

with 2R=2,c, a. Since it holds (r, Fj] =0, it follows
that this relation is true not merely for the vector x
but for any vector y € R. Thus

C=y1=(A+R,A+R)-(R,R)L, (34)

The trace of [, restricted to the subspace/li, is vny
and thus, from the definition of the Casimir operator,
it follows
1
Yy = 2try, HH = 2ty (FyEy - EyF,). (35)
i=1 M a€A M

With the help of the relation®

1
23 Ty, JHH = (0, My

i=1

and with Eqs. (31), (32), it follows from Eq. (35) that
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mM = (M, M)nM

+ 2 ( 2ifyase (M +ja, @) + 2 ny.e (M +ja, a)
aCa \ 470 i1
a¢AA

+ 2 (Z;nM_ja(M-ja, a)
€Ay \7=0

+ngnM+la (M +ja, a)) . (36)

Using the relation®
jé)nu-m(M—ja’ @) =ny(M, a) "’j;)"mja(M tie, a),
Eq. {36) goes over into

vy =M, Myny + 25 ny(M, &) +2 25 Dny.,o(M+ja, a),
(SN aCA=l

and by substituting into this equation the identity
(M, Myny +ny ZC) (M, @)=((M+R,M+R) - (R, R)n, ,
@z A

Freudenthal’s formula is obtained as
((A+R,A+R)= (M+R,M+R))n, =2 ,? Dy (M+ja,a),
at A=l

Thus, Freudenthal’s formula for the case of infinite-
dimensional irreducible representations having a high-
est weight is identical in form to Freudenthal’s formula
for finite-dimensional irreducible representations.
However, in distinction to the finite-dimensional case
there may exist weights M with the property
(M+R,M+R)=(A+R,A+R). In this case the coeffi-
cient of ny, is zero and Freudenthal’s formula does not
yield the multiplicity of such weights.

VI. MULTIPLICITIES OF WEIGHTS AND
CHARACTERS FOR ELEMENTARY
REPRESENTATIONS AND FOR INFINITE-
DIMENSIONAL IRREDUCIBLE REPRESENTATIONS
WITH A HEIGHEST WEIGHT

Let P(M) denote Kostant’s partition function. For
given M its value equals to the number of partitions
of the linear form M into a sum of positive roots of
the algebra G, namely M =3 ,c, k, @, with nonnegative
integer coefficients k2,. Thus, for M =0, it holds that
P(M)=1, and for elements M for which one or more of
the integers %, are negative it holds that P(M)=0.

In the following some theorems and lemmas are
given. These theorems and lemmas are needed for the
derivation of both, characters as well as recurrence
relations for the multiplicities of weights of infinite-
dimensional representations with highest weight of the
semisimple Lie algebras G. Some of these theorems
and lemmas have been obtained previously. In this
case the theorems and lemmas are simply quoted with-
out proof, except when it was felt that an alternate or
simpler proof would be desirable.

The following theorem is due to Verma. ®

Theorem 4: The multiplicity of the weight A’ of an
elementary representation d, is equal to P(A—A).
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Proof: The elementary representation d, is defined
on the space of the enveloping algebra Q_ (see Sec. II).
According to the Poincaré—Birkhoff—Witt theorem®
a basis for $2_ can be defined in the following manner.
The set of elements f,, with a€ A, forms a basis of
the subalgebra G- of the algebra G. An ordering is in-
troduced into the set of positive roots A, For any pair
a, a’ of positive roots it then holds with respect to this
ordering that either a < a' or a> a'. The number 1
and all elements of the form f, fow...fn), such
that @’ < @” <.-- < a", make up a basis for the envel-
oping algebra . According to Eq. (1) the operators
of the representation d, act upon this basis in the fol-
lowing manner [it should be noted that the two basis
for _, the one given now and the one of Eq. (1), Sec.
II, are different],

p(W1=A(R)1, (38a)

p(fu)l =1y, (38b)

ole,)1=0, (38c)
P fefyres s fom =(A -’ —a”eeee —a')(h)

X fasforet * Lot (38d)
O )aofarrs s s Satmd=Fifyof om® * *fotm (38¢)

p(e{)fa'fa" ‘et fa(")zfa'(p(ei).fa". b a(n))
+[ehfa']fa"“'fa(")' (38f)

Obviously, the right-hand side of Eqs. (38e) and (38f)
can be reexpressed as linear combinations over the
basis elements introduced above for the enveloping
algebra Q_.

From Eq. (38d) the multiplicity of a weight M of the
representation d, can be read off easily. It is equal
to the number of basis elements f, fys:**« f,(n) of the
space §2_ for which holds a’ + @” ++++ + a™®
=A - A’, This is, however, precisely the value of
P(A - A’). This proves the theorem.

The following lemma is also due to Verma.® Let Z
denote the center of the enveloping algebra Q. Each
representation p, of an algebra G with highest weight
A generates also a representation of its enveloping al-
gebra £. The representation of 2 obtained in this
manner is also denoted by the symbol p,. In the repre-
sentation p, of the enveloping algebra  the elements
of Z are represented by operators which are multiples
of the identity operator. This is seen as follows. Let
x denote the vector of highest weight. Then, since
[z, R]=0for ze Z and e G, it holds

palR)pa(2)x =pu(2)p(R)x = A(B)ps(2)x.
Since the subspace V, is one-dimensional (Theorem 1,
Sec. II) it holds p,(z)x =v,x, where 7,=7¥,(A) is a com-
plex number. As for the case of the Casimir operator
T (Sec. V) it can be demonstrated that p,(z)y =¥y for
every element y of the representation space. Thus
pa(2)1 =7, (M),

The map z ~%,(A) is a homomorphism of Z into C,
the field of complex numbers. According to Theorem 5
of Ref. 12 it holds ¥%,(A) =x.(z), where X is some
linear form on G° and y,(z) is the character on
(see Ref. 12).
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Lemma 4: Tt holds 7,(A) =X,(2), i.e., A=A,

Proof: From Lemma 36 in Ref. 12 it follows that
Xa(2) is an entire analytic function of the A; =2(A, a,)/
(a4, @), i=1,2,...,1. Equation (1) shows that for
every z < Z the expression ¥,(A) is an entire analytic
function of the A;, i=1,2,...,.. For finite-dimensional
representations D, the proof of 7,(A) =x,(z) has been
given in Ref. 12, § III. Since the lemma holds for high-
est weights of finite~-dimensional representations, it
must hold identically due to the fact that 7,(A) and
X4 (2) are entire functions.

Lemma 5: A representation p, with highest weight
A contains only irreducible subrepresentations which
have a highest weight. Moreover, the highest weights
of the irreducible subrepresentations are of the form
S(A+R)-R, Sc W,

The first part of this lemma is a consequence of
Theorem 1 of Verma in Ref. 6. However, Bernstein,
Gel’fand, and Gel’fand have given a counterexample to
this theorem in Ref. 7. In the following it will be proved
that while Verma’s Theorem 1 is not correct, Lemma
5 nevertheless holds.

Proof: A reducible representation p, with a highest
weight A can be decomposed into a semidirect sum of
irreducible representations. The operators are then
of the form

where every box corresponds to an irreducible repre-~
sentation (finite- or infinite-dimensional). The star in-
dicates that there are nonzero matrix elements below
the block~diagonal. Above the block diagonal all matrix
elements are zero.

Let V denote an invariant irreducible subspace of the
space V which carries the representation p,. The sub-
space V may be finite-dimensional or infinite-dimen-
sional. It will be demonstrated that the subspace V
carries an irreducible representation with a highest
weight.

Let y=pyx +... +B,x, be an arbitrary element of

the subspace V, with x,,...,x, weight vectors corre-

sponding to different weights. Consider a sequence of

elements,

¥, pA(ea ‘l)y’ pA(eu ig)pA(e"il)y’ eeey pA(ea{") nee pA(eail)Jh
(39a)

such that none of these elements is equal to zero, while

the last element satisfies
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Ny=0, j=1,2,...,L
(39Db)

Such a sequence can be constructed for any element y
of the space V, since the action of the operators
pA(eai) increases a weight by the vector «;. However,
no weight can become larger than A, the highest weight
of the representation p,. Since V is an irreducible
subspace, every vector of the sequence equation {39a)
belongs to the space V. The last vector of the sequence
equation (39a) is a linear combination ¥,z + ++*+ 7,2,
of weight vectors z, ..., z, which belong to different
weights. According to Theorem 1 weight vectors which
belong to different weights are linearly independent.
Now, for arbitrary i, i=1,2,...,7, the vectors
paleg)zy, .., paleq,)z, correspond to different weights.
Therefore it follows from Eq. (39b) that for every 7,
i=1,2,...,m, it holds

pA(eaj)(pA(eai") ‘pA(eail

pleg )z;=0, i=1,2,...,1L (40)

Thus, in the linear combination 2z, +- - - +y,2, each
term vanishes separately, independent of the coeffi-
cients 7;. Since the vectors z4, 2,, ..., 2,, belong to
different weights it follows that the z,, i=1,2,...,m,
themselves are elements of the space V

For each of the elements z; the space V,, ~pA(Q
is constructed. Since z; e V 1t holds V, . C V From
Eq. (40) it follows that V »; 15 an invariant subspace
of the space V with a vector of highest weight, namely
z;. Now, V +V, o i#j, since the two vectors z; and
2; correspond to dszerent weights. On the other hand,
it has been assumed that the space V is an ivveducible
subspace. This leads to a contradiction unless there
is only one irreducible space V., and it holds that

V=V, with z, the highest weight of the subspace V.

Now, the same con51dera,t1ons as given above are
repeated for the factor-space V= V/V This space is
invariant under p,. Continuing in this manner the first
part of the lemma is proved by taking into account that
the representation p, can contain only a finite number of
irreducible representations with a highest weight. This
follows from the fact that every weight subspace V,
of the representation space V is finite-dimensional
(Theorem 1) and from the second part of the lemma.
The second part of the lemma is a consequence of
Theorem 5 of Ref. 12 concerning the character x,(z),
zc Z, and of Lemma 4.

Theorem 5: Let d, be an elementary representation
with highest weight A. If for every element S of the
Weyl group W the element S(A +R) ~ R is not a weight
of d,, then d, is irreducible.

The proof is a consequence of Lemma 5.

A representation d, for which elements S(A +R)
-~ R, S+#1, are weights of d, may contain invariant
subspaces. Before a theorem can be formulated con-
cerning this type of representations the following defi-
nition has to be made. Let A and A’ denote linear forms
on G’ and By, Bs, ..., B, a sequence of positive roots.
As before it holds
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2(7, 8,)
(ﬁh

The sequence B4, 85, ..., B, is said to satisfy condition
(a) for a pair of weights (A’;A), if

(1) A':SB"SB"_I b .SBIA’
(2) for everyj, j=1,2,...,n, it holds
Z(SBj_l? sBj_z et sslA; ﬁj)/(Bh Bj) =m

with m > 0, integer (S; =1).

Sp A=A~ )B;

(41)

Theorem 6: An elementary representation d, contains
the elementary representation d,. as a subrepresenta-
tion if and only if a sequence of positive roots
By, Bsy « .., B, exists such that condition (A) is satisfied
for the pair (A’ +R; A +R).

The proof of this theorem is given in ref. (7).

Theorvem T: If an elementary representation d, con-
tains a subrepresentation d,. then it contains d,. only
once.

This theorem is quoted in Ref. 6 and proved in
Verma’s Yale University dissertation (1966).

In Ref. 6 a conjecture was made, which reads as
follows (conjecture 1 of Ref. 6):

Conjecture: Condition (A) is a necessary condition
for d, to contain d,., as a subrepresentation.

This conjecture made by Verma has subsequently
been proved to be correct, as is evident from Theorem
6. Verma has shown® that assuming the validity of this
conjecture the following theorem holds.

Theorvem 8: An elementary representation d, contains
those and only those irreducible representations D,
with highest weights M for which the elementary repre-
sentation d, is a subrepresentation of d.

Covollary: An elementary representation d, contains
an irreducible representation Dy, at most once.

In the following expressions are derived for the mul-
tiplicity of weights of (infinite-dimensional) elementary
and irreducible representations with a highest weight.
These expressions are the analog to the formulas ob-
tained by Racah® and Kostant!* for the multiplicity of
weights of finite-dimensional irreducible
representations.

In order to derive expressions for the multiplicity
of weights an algebra U over the field of complex num-
bers C is defined in the following manner.® A one to
one correspondence is established between the linear
forms M on G° and formal exponents e(M). In this set
of formal exponents a multiplication is introduced,

e(Me(M"y=e(M+M"). (42)

Then the elements of the algebra U are defined as (in
general infinite) sums over the exponents e(M) with
coefficients in C,

2 age(M), ay=C, (43)
M

with the condition that this sum belongs to U if and only
if there exists a weight such that any weight M of the
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sum can be written as

M=A- 2, ma;, m;=0, integer,

a‘EA

where the sum extends over all positive roots «;. The
multiplication in the algebra U is given by Eq. (42)
and it is easy to see that ¢(0) is the unit element for
U. It can be shown that the algebra U forms a commu-
tative integral domain,

An element of U,
X=2imye(M), (49
M

is called a character of a representation p, with highest
weight A of an algebra G, if the n, are the multiplici-
ties of the weights M of the representation p,. For con-
venience the summation in Eq. (44) is taken over all
weights, setting 7y, =0 if M is not a weight of the repre-
sentation p,.

According to Theorem 4 the multiplicity of a weight
M of an elementary representation d, is given as
P(A - M). Thus, the character of an elementary repre-
sentation d, is given as

Xa=2P0 - Me(M)=e(A)2SP(A - Me(M~A).
M M
Since it holds that?
S PANe(-A) IT (1-e(=a)=1
A’ aca

and that

> (detS)e(SR)=e(R) I1 (1-e(- o)),
Sew acA

the character X4 for the elementary representation
d, is obtained as

r_ e(A) _ e(A +R)
Xa= HQGA(I- e(— a)) B ngw(detS)e(SR) ‘

On the other hand, the character xf\ can be written as
Xa =2 nye(M). (46)
»n

(45)

Equating Eqs. (45) and (46) and comparing coefficients
of e(M), the following recurrence relation is obtained
for the multiplicities nj} of the weights of an elementary
representation d,,

n;):_ SZ (dets)nM+R-SR, M¢A’

(=4

S# (47)
ni=1,

This result is not surprising since the multiplicity
structure of the elementary representations d, is pre-
cisely that of the partition function. This recurrence
relation for the partition function has first been ob-
tained by Kostant and proving it is one of the exercises
given by Jacobson (Ref. 8, p. 263). Since, however,
elementary representations are basic to what follows
a short proof of Kostant’s result has been given above.
A generalization of this formula has been obtained by
one of the authors in Ref. 15.

In order to obtain similar recurrence relations for
irveducible representations D,, Theorems 6, 7, and
8 have to be taken into account. For a given weight M
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of D, the multiplicity n, is obtained from the multipli-
city n of the elementary representation d, by sub-
tracting the multiplicity of the weight M of all sub-
representations of d,. First a special case is con-
sidered. Let d, denote an elementary representation
and d, its only subrepresentation. Then it must hold,
from Theorem 6, that A’=S(A+R) - R for some

Se W. Let nf denote the multiplicity of the weight M
of the representation d, and »2’ the multiplicity of the
weight M of the representation d,.. Then it holds

72;}:— Z; (detS)nﬁez-sm M:’éA:
Scw
S#1

48
nht, (48)
nd' =— 2 (detS)nif.z_sr, MzK,
SEwW
5#1
nhi=1.
Thus, the multiplicity ny of the weights M of the irre-
ducible representation D, is, for this special case,
given as
Ny =nj - "ﬁ' == SZ€> (detS)ny.r. sk = By, aes M#A,
S#lW
Ny — 1. (49)

It should be remembered that the multiplicity #p’ of
weights M of d, which are not weights of d,. is zero.
For M=A’, the third of the Eqs. (48) yields zero and
thus gives a zero contribution to #,.. The actual mul-
tiplicity nﬁ: =1 is subtracted through the Kronecker
symbol.

From equations (47) and (49) it is apparent that the
formula for the multiplicity of a weight M of an elemen~
tary representation d,, containing one subrepresenta-
tion d,. is identical to the formula for the multiplicity
of the weight M of the irreducible representation D,,
except for the weight M=A"of D,. For this particular
weight the value obtained from Eq. (47) has to be
decreased by one in order to obtain the multiplicity
nae of the weight A’ of D,,

Theovem 9: I D, is an irreducible representation of
the algebra G with highest weight A, then the multipli~
city n, of a weight M of D, is obtained as follows:

(a) if M is a weight of D, such that
M+R+S'A+R), anyS'eW, §'#1,

or if
M+R=S'(A+R), for some S'e W, S'#1,

but there exists no sequence of positive roots
B4, By, . . ., B, which satisfies condition (A) for the pair
of weights (M + R; A +R), then it holds

ny=-— 24 (detS)ny.z_sg;
Scw
sA
(b) if M is a weight of D, such that
M+R=S"(A +R), for some S'c W, S'#1,

and there exists a sequence B, B;, ..., B, of positive
roots which satisfies condition (A) for the pair of
weights (M +R; A +R), then
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Ny =— 2 (dets)nM+R-SR+7/s"
i

with

Ys.z—;‘/T—ln (50)
The sum in Eq. (50) goes over all elements 7 of the
factor space W/ W*, where WA={Sc W,S(A+ R)=A+ R},
for which Td S'W*, Td W* and for which a sequence of
positive roots By, B,, . .., B, exists which satisfies condi-
tion (A) for the pair of weights (M + R, T(A +R)). The

Eq. (50) is a recurrence relation for the determination
of the integers 7p.

Proof: Part (a) of the theorem is correct since Eq.
(47) holds for all weights of D, which are nof highest
weights M of elementary subrepresentations d, of
the elementary representation d,. The proof of the
validity of part (b) is as follows. Let d,, be an elemen-
tary subrepresentation of d, with highest weight M and
let M" = T(A +R) - R be the lowest highest weight which
corresponds to an elementary subrepresentation dy.. of
d,, such that dy.. contains d, as a subrepresentation.
Then it holds ¥, =-1.

In general it holds for the case of any subrepresen~
tation dy.. of d, which contains dy in turn as a subrep-
resentation, and does not contain any dj which contains
dy, that ¥y, =-=1. The same argument is now repeated
for the subrepresentations d,.. in place of the sub-
representation d,. For given subrepresentations dy..
all subrepresentations dy~ of d, are considered which
contain dy.. (and its subrepresentations) as a subrep-
resentation, but no others. The information obtained
in the first step determines the value of the corre-
sponding ¥y. Continuing in this manner the value of
Yss is obtained. This completes the proof of Theorem 9.

Theovem 10. Let D, denote an irreducible represen-
tation of an algebra G with highest weight A. Then its
character and the multiplicity of its weight are given
as

_ Zsewiw, Yse(S(A +R))
Xa= T3, (detS)e(SR)
Ny = >

SEW /W,

¥sP(S(A +R) — (M +R))

with ¥s=0 if dsa.r,& 18 not a subrepresentation of d,.

Pvoof: The proof of this Theorem rests the theorems
for the characters and the multiplicity of weights of
elementary representations by following the lines of
argumentation as given in the proof of Theorem 9.

Vil. GEOMETRICAL INTERPRETATION OF
CHARACTER AND MULTIPLICITY OF WEIGHTS
FOR INFINITE-DIMENSIONAL REPRESENTATIONS
WITH A HIGHEST WEIGHT

A simple geometrical interpretation is possible
for the characters and the multiplicity of weights of
elementary as well as irreducible representations with
a highest weight. Such a geometrical description has
been given by Antoine and Speiser?® for the case of
finite-dimensional irreducible representations, while
Biedenharn, Gruber, and Weber and Klimyk!® treated
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the special case of infinite-dimensional representa-
tions of the algebra A, along similar lines. For alge-
bras of low rank the geometrical description lends
itself to a graphical interpretation. In the following
the algebra A, is chosen to demonstrate graphically
the meaning of the formulas for the character and for
the multiplicity of weights for its infinite-dimensional
representations with a highest weight.

In Fig. 1 the root system of the algebra A, is plotted,
with o and o, simple (positive) roots. With respect
to a conveniently chosen basis the simple roots can be
represented as vectors a; =(1,~1,0) and a,=(0,1, -1).
Then R=(1, 0, -1), [This embedding of the weight space
of the algebras 4, in an (I +1)-dimensional space is
conventional. In this (I +1)-dimensional space the action
of the Weyl group takes on its simplest form. ] The
three lines 1, 2, and 3, perpendicular to the positive
roots oy, a,, and R, are reflection planes. All possible
reflections and products of reflections on these lines
(planes, in general) generate the Weyl group W of
A,. For the representation of the roots (and weights)
chosen the action of the Weyl group consists simply
in all possible permutations of the components of a
root (weight). A set of weights related through the
Weyl group is called a set of equivalent weights. Such
a set of equivalent weights has been indicated in Fig. 1
by points. The shaded domain A is called the funda-
mental domain, It contains the highest weight of every
set of equivalent weights and all other domains B-F
are related to it through the Weyl group. If for a weight
A holds that A, =2(A, «;)/(a;, @;)=n, n=>0, integer,
for all simple roots «;, =1, 2,.../, then the irredu-
cible representation which has A as highest weight
is finite-dimensional. Its outer contour is obtained by
joining the points in A and B, Band C,...,Fand A,
consecutively by straight lines. All highest weights of
finite-dimensional irreducible representations lie in
the fundamental domain A (including the boundary).
A typical example is A=(4, -1, -3) with A, =5, A, =2,

Figure 2 illustrates the case of an elementary rep-
resentation d, with highest weight A = (4, -3, ~-1). It
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FIG. 2.

holds that Ay =7, A,=-2, This elementary represen-
tation is not irreducible, but contains d,, dy. and d,,
as subrepresentations, with M’=(-3,-3,6), M*
=(-4,5,-1), and M=(-4,-2,6). This is a consequence
of Theorem 6, since condition A is satisfied for the
pairs of weights (M'+R; A+R), (M"+R; A +R), and
(M+R;A+R). Property (1) of condition A holds ob-
viously. While (2) of condition A, since (q;, a;) =2,

(R, R)=2, takes on the form (A + R, R) =6,

((A +R), az) = 8, and (S ,(A +R)’ al) = ((-2? _3: 5)1 al)

=1 for the three pairs obviously. In turn, both subrep-
resentations d,, and d,. contain d, as a subrepresenta-
tion, while d, =D, is irreducible according to

Theorem 5. The outer contour of the infinite-dimen-
sional representations d,, d,., dy., and D, is indicated
by the two straight lines (solid for d, and d, and broken
for d,, and d,.) which emerge from the highest weights
and extend to infinity. The weights of the representa-
tions lie on the lines and to the left of thelines. In

each of the subspaces Ry,, Ry.. and Ry of the space R,
which carries the representation d,, there exists a
vector y which satisfies p,(e;)y=0, i=1,2,...,1.

A=14,-3,-1)
dI\

FIG. 3.
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FIG. 4.

This is simply a consequence of the fact that d,, d..
and dy are subrepresentations. It should, however, be
noted that, while d, is reducible, it is not completely
reducible. The subrepresentation dy is a subrepresen-
tation of both, dy and dy...

Figure 3 shows the (infinite-dimensional) irreducible
representations Dy,, D,., and D, =d, which are sub-
quotients of the elementary representation d,. Accord-
ing to Theorem 8 the highest weights are the same as
for the elementary subrepresentations d,, d,~, and d,,.
It holds M}=0, M},=-9 for D,,, M{=-9, M%= 6 for
Dy. and M, = -2, M,= -8 for D,. The positive values
(more precisely, the nonnnegative integer values) of
these projections of the highest weights onto the two
simple roots @, and a, are directly related to the invar-
iance (if any) of the weight diagram under Weyl reflec-
tions, Thus, the weight diagram of D,, is invariant with
respect to reflections on the line perpendicular to the
root @,, the weight diagram of D, is invariant with re-
spect to reflections on the line perpendicular to the root
a,, while the weight diagram of D, is not invariant under
any operation of the Weyl group. Using a symbolic
notation, Theorem 6 shows that D,,=d,. -d,, Dy
=dye—dy, and Dy=d,.

Figure 4 shows the irreducible representation D,
with its multiplicity structure. Again symbolically
writing, the irreducible representation D, is related
to the elementary representation d, and its elementary
subrepresentations according to Theorem 8 as D,,=d,
— (dys = dy) = (dy+s = dy) = dy. It is worth noticing that
for irreducible representations D, which have their
highest weight within the fundamental domain, the
familiar formula of Kostant for the multiplicity of
weights is obtained in this manner. (The multiplicity
within each elementary representation is given by the
partition function.) Racah’s formula for the case of
infinite-dimensional irreducible representations has to
be modified, according to Theorem 9, at the encircled
weights, namely at M', M” and M. Consecutively de-
termining the v, it holds that ye=-1, y..=-1, and
Ys== (¥Ys + ¥ss) = 1=1. Thus, at the weights M’ and
M" the multiplicity obtained by Racah’s formula has,
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according to Theorem 9, to be decreased by 1, while
at the weight M the multiplicity has to be increased
by 1.
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Path integral method for superfields

M. Huqg*

Department of Mathematical Physics, University College, Belfield, Dublin 4, Ireland

(Received 26 December 1974)

A path integral method for superfields has been developed. This is made possible using a suitable definition
for functional differentiations in the 8-dimensional space of x and 8. The Ward-Takahashi identities arising
from the invariance under supersymmetry transformations are shown to take very neat and compact forms

for the Green’s functions of the superfields.

1. INTRODUCTION

Recently Wess and Zumino! introduced Fermi—Bose
supersymmetry. The transformations of this are gen-
erated by infinitesimal coordinate dependent, anticom-
muting Majorana spinors a(x) in four dimensions. Later
,on? the coordinate dependence of « is dropped to avoid
problems arising from scale and conformal anomalies.
Salam and Strathdee®* have shown that the constant pa-
rameter supersymmetry transformations can be con-
sidered as operations on superfields defined on the
eight-dimensional space of coordinates x,, and the
anticommuting Majorana spinors é,.

A remarkable feature of supersymmetry is that both
bosons and fermions are accommodated in the same
multiplet. Iliopoulos and Zumino® have studied exten-
sively the simple case of the superfield containing a
scalar field 4, a pseudoscalar field B, a Majorana
spinor field §, and two auxiliary fields F and G. These
authors have shown that a nontrivial Langrangian model
constructed out of these fields is not only renormaliz-
able, but with the feature that only one wavefunction re-
normalization common to all the fields is required.
There are no mass and coupling constant renormaliza-
tions. This latter feature is due to the specific struc-
ture of the Lagrangian. Tsao® has shown this can be
shown to arise also from Ward—Takahashi (WT) iden-
tities for broken y,-invariance. Iliopoulos and Zumino®
and Ferrara, Iliopoulos, and Zumino’ have written down
WT identities for invariance under supersymmetry
transformations. Because of these we have remarkable
cancellations between the Green’s functions of the dif-
ferent fields. When considering perturbation theory,
this would manifest as cancellations between different
Feynman diagrams, hence getting rid of many bad di-
vergences. By proceeding this way the study of diver-
gences of multiloop diagrams and their possible can-
cellations can turn out to be very messy and rather
tricky. If it is possible to deal with the superfields di-
rectly without decomposing them into component boson
and fermion fields, then we shall be treating a host of
Feynman diagrams collectively. This is expected to
make everything much simpler. The very first step in
this direction was taken in Appendix C of Ref. 4. Using
this as a starting point, Capper® has written down
Feynman rules for superfields directly and used them
to show that the study of divergences of multiloop dia-
grams can indeed be quite straightforward.

In this paper, our aim is to show that a path integral
method for superfields can be developed and the WT
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identities written in neat forms. For the purpose of
illustration we shall consider the model of Iliopoulos
and Zumino. Here one is dealing with the chiral and
scalar superfields ¢,(x,6). If we introduce suitable
external sources J (x, ), then it should be possible to
generate all Green’s functions by functional differentia-
tions with respect to J,(x, ) of the generating function-
al. As it is pointed out in Appendix C of Ref. 4, a
clarification of the meaning of 6/6J,(x, 6) is necessary
before we can proceed any further. There this has
been by-passed by making use of the invariance of the
Green’s functions under supersymmetry transforma-
tions. Salam and Strathdee have shown in a more recent
paper” that a clarification of the meaning of 6/6J,(x, §)
is easily obtained. We have adopted this definition of
5/8J (x,8), using which it is possible to develop a con-
sistent path integral method and derive WT identities
directly in terms of superfields.

The plan of this paper is as follows. In Sec. 2 we
have developed the path integral method. The
Ward—Takahashi identities for supersymmetry trans-
formations are derived in Sec. 3. Section 4 contains
our conclusions. Some useful formulas are given in
the Appendix.

2. PATH INTEGRAL METHOD

We shall adopt the notations of Ref. 4. These and
some useful formulas for manipulating with the anti-
commuting Majorana spinors are given in the Appendix.

A supersymmetry transformation is

X, %, +3i€y,0, 2.1)
6,7 0,+e,,

where ¢ is an anticommuting infinitesimal Majorana
spinor. Under these the scalar superfields &,(x, 0)
transforms as

®,(x,0) = @,(x,8)+e,0 (x,0) (x, 6) (2.2)
with
D (x,0)= 5?9_“ + %(yuﬂ)a a% . 2.3)
We have for ®,(x, 6) the following expansions:
@, (x,6)=exp(+ 107v,0)
X{A (%) + 6P,(x) + §B(1 £ iy, )OF,(x)}.  (2.4)

To go over to the notations of Iliopoulos and Zumino
we define

Copyright © 1975 American Institute of Physics 1833



A= E(At iB),
F,=3(F%iG),
b= %(1 + i)'s)ip.

The Lagrangian constructed from superfields should
transform like a scalar superfield. But for invariance
under supersymmetry transformations it is necessary
for the action to be invariant which require that all
6-dependent terms in the Lagrangian should be surface
terms. By keeping this in mind, the following simple
Lagrangian can be constructed using &,(x, 6):

(2. 5)

L(x,0)=3DD{L + L, +L,}, (2. 6)
where

L,=31DD{& (x,0)®_(x, 6)}, (2. Ta)

Ly =-3m{@2(x, 6) + $2(x, 6)}, (2. ™)

L,=-38{®3x,0)+d3(x,6)}. (2. 7e¢)
The differential operator D, is defined by

D= aga -L,0, 5%: 2. 8)
and

D,=CLD,.

Now we introduce the external sources J(x,#) with the
expansions

dJ,(x,0)=exp(F %57)159)
X {Jp (%) ~ 8, (x)+ (2 iv)6d, ()} (2.9)

Then the generating functional wlJ ] for Green’s functions
in presence of external sources may be written down
except for an over-all constant factor as follows:

wlJ]= [ dle iS[®]
+iP fd“x (x,8)® (x,0)+dJ_(x,8)®_(x,0)]}, (2.10)

where d[®] is an invariant measure over the fields
& ,(x,8) and &_(x,0) and the invariant action S[®] is de-
fined by

S[@]=~P8) [ ax{, ,(x,6)

+L(x,0)+L (v, 00} (2.11)
and the differential operator 2(8) is defined by
iR
P(8)=-1DD, (@ 12)

P®) [ d*x= [ a*s[{- DD},
Now, to enable us to generate all the Green’s functions
from Eq. (2.10), we shall need the definition of 6/
8J,(x,8). We shall find the following definition, which
is the same as that given by Salam and Strathdee, ? te
be appropriate:

5 _ 15
6J,(x, 0) =exp(¥ :67v,0)

[ = o]
* (oJAt(x) RS 27

= 3
L ,
+46(1+iy,)é GmJF*(x)) .

Using Eq. (2.9), we can immediately calculate

(2.13)
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g%%f%f% =exp(¥ 16,7v.8,)
X exp(F §6,0v,6,)4(8, — §,) (1 £ i%;) (6, - 6,) 6% (x — )
=0,(x,8,:,6,) (2.14)
and
8J(y,6,)/8J,(x,8,)=0; (2. 15)
we have the property
P(8) f d*x @ (x,0)8,(x, 859,60 =,(7,6"). (2.16)

The change of variable for functional differentiation is
effected by

5
CARCN =/9(e)f d*

<5‘1.’.(y,9) o
5J,(x,6,) 5 (y, 6)

+ gc\lr:'((jfoal)) 6\1!_?3),0)) (2.17)
where
¥, (x, 8)=exp(+ ;67v,6)
XA (%) + BN (%) + 18(1 £ iy,)8f,(x)} (2.18)
and
qu_jx—,?") = exp(¥ 167'y,6)

(wx - 7V;< T30 20 7 ))
{2.19)

The consistency of Eq. (2.17) may be checked by
choosing ¥,=J,

8J,(v, 6) 3
P “”f @y (éux,e,) 57,8

6J.(y,8) & )
3J,(x,8,) 8J.(¥,0)

=20 [ & 5,05,6,:9,0) g7 = 57y -
(2. 20)
Now, since
P(6) [ d*x{d (x,0)® ,(x,0) +J_(x,0)@ _(x, 8)}
= [ @x{J, (A (x) +Jp WF (x)
+J, (09,(x) +J, (A (%) +Jp_(¥)F_(x)
+J, (9.0}, (2.21)
it is trivial to check using Eq. (2.13) that
GST[JL) =i(0]®,(x,8)|0). (2.22)

To generate Green’s functions of arbitrary order, all
we have to do is to differentiate appropriate number of
times. Let us now introduce the generating functional
Z[J] for connected Green’s functions by

Z{J]= - dnW[J].
Then
| Tie (x,,8,). ..

(2.23)

@y, 05} 0)
(2. 24)

q)-v(xN ’ eN) d)_(yl, 9;) .
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i 8" 2[J]
- (SJ’(xl, 8,)... GJ’(xN,GN)GJ_(yl,Gi). . 0d (94, 84) Tieo

Now we can go ahead to introduce the generating
functional T[¥] for one particle irreducible (OPI) ver-
tices. To do this, we have to introduce the vacuum
expectation value of &,(x, ) in presence of the sources
J(x,0):

62[J]
8J,(x, 0)
We can use Eq. (2,18) and (2. 19) to define expansion
of ¥,(x, 6) and functional derivative with respect to
¥,(x, 8) respectively. Then observe A,(x)={(014,(x)|0),
F.(x)={01 F,(x)10),, and NV (x)= (01 ¢,(x)| 0),.

We have -

T[¥]=z[J]- P6) [ d*x
x{J (x, O)¥ (x, 0) + J_(x, )¥_(x, 6)}. (2.26)

To generate OPI vertices, we have to differentiate with
respect to ¥,(x, 6) sufficient number of times and then
set ¥,=0. As, for example, for the inverse propagators

52T [¥]

T, (x,0)= =(0|®,(x,8)|0),. (2. 25)

T 0,:y,0,)= 2,27,
(% 0333, 62 = 5505300, 6, * (@.2%)
521"[\11]
T(x,6,39,6,)= 3%, (x, 6,)0%.(, 6) - (2.27)
We introduce the Fourier transforms
r“(p;al,ez)=f a*ze'* T, (x,6,:;9,6,), (2.28)

where z2=x -y. A similar expression holds for
rﬁ(f’;au 92)-

3. WARD-TAKAHASHI IDENTITIES

Following a method used by Lee and Zinn-Zustin!¢
in the case of gauge theories, it is straightforward to
derive the WT identities for supersymmetry trans-
formations. Observe that the functional integral in
Eq. (2.10) remains invariant under the change of inte-
gration variable &,(x, 6) ~ &,(x, 0) +¢,0 ,(x, )8 ,(x, 6).
Since S[¢] is invariant under this, only the source
terms in Eq. (2.10) are altered, and we are led to

[ dl@Texp{iS[®]+iP(8) [ a*x[J (x,0)@,(x, 0)
+J_(x, )@ (v, 0)]}
x{+ie P(6) [ . (y, 00 ,(v,0)2,(,0)
+J.(y,00) (v, 0)@_(v,0)]t=0.

The second curly bracket may be taken outside of the
functional integration if we replace &,(y, 6) by 6/
idd,(y, 6). Then we have

/9(9)/ dx {J,(x, )0 ,(x, 6) mi—o—)

3.1)

+dJ_(x,0)0 (%, 8) 5T (x 0)} WlJ]=0. (3.2)
This can be expressed in terms of Z[J]:
P(e)f d‘x{ T6,000 o(5,0) 3 ;g"l)

+J_(x,0)0 ,(x,6) a;f[‘q))} 0. (3.3)
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This is the WT identity satisfied by Z[J] in presence
of the sources J,(x, #). Now observe for any chiral
fields &,(x, 8) we have the result

P(o)f dx 5%7 ®,(x,0)=0 (surface term). (3.4)
Using this, one can easily verify that
P6) [ d*x@,,(x,0)D ,(x,0)8,,(x,0)
8) [ dixd,,(x,0)]) ,(x,0)®,,(x,0). (3.5)

Then the WT identity Eq. (3. 3) may be rewritten in
the form

62Z[J]
P(efd4 {GJ’(
62[J]
od _(x, 9)0

By working through the actions of 0 ,(x, ) and (8), it
is straightforward to check that Eq. (3. 6) is identical
to Eq. (17) of Nliopoulos and Zumino, ® which is the WT
identity in terms of component fields. To do this, we
observe that

D (%, 00 (x,8)

+ (x, O)J_(x,G)} =0 (3.6)

Da(x’ 0. (x, 6)=exp(F %57759)
{4 1al®) + [, (0) +38Tp (£)3(1287,)6],
+40(12iv,)0GHT, (%)), } (3.7

Next making use of the rule of multiplication of two (+)
and two (~) fields, we obtain

f P (Z 62[J] 8Z[J]

8J, (%) 79,6 = oJp (%)
+ [JA*(x)+i7JF+(x ] —="=

J, (%)
L+iy, 62[J]

2 &, (x)
8Z[J]
6dp (x)

—zy 62[J] ) _o
od, *(x) -

. 6zZJ]
8J, (%) P, (%) -

+1i J, (%)

+ W, )+, (W] == (3.8)

Using Eqs. (2.5), we have

8zlJ] 6zlJ]

8J, 5, (x) 8J, 5, (x) Wyl y(0)
8 Z[J]
8dg (x)

i§d, (x) -

5Z(J]

- 0 p(x) Jox) -

Yoy (%) 3.9)

=7l o] ] =o.

This is precisely Eq. (17) of Ref. 5 in our notation.

+ [JA(X) + YJB (x) +ia(JF(x

Now returning to Eq. (3.3), let us differentiate it
with respect to J,(y, 8,) and then set J, =0 to obtain

P(B)f d*x exp(* +6,7,7,0,) exp(¥ 167,7,6)
{48,120, + 10(1 £ iv))6 ~ 38,(12 7,)0)6%(x - )

6Z[J]

Do, 0) s o) =

=0. (3.10)

By working out the actions of J,(x, 6) and /(8), it is
possible to perform the x-integration using §*(x — y).
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Then we obtain

exaie ) [ 3705 + (350 49 37m) 2
~16,(124v,)0,8 %%]—)] =0. (3.11)

But this is precisely
D 0,8, %(Zy[—‘]gj =0, (3.12)

Similarly, if we perform functional differentiations
with respect to J (x,,8,) > +J (xy,0,) and

J.(3y,07) 2 J (¥, 6,) and then set J,=0, we shall
obtain the WT identity for the (N + M)th order connected
Green’s function

N, M
( ,Z_;Da<x;,9¢>+1230a<y,,9,>)

x N z[J] -0
0 (%1, 6;) - - - 6 (xy, 6y)0J_(yy, 91')’ < 8 (yu, éﬁ ’

It is easy to see that for OPI vertices we shall have
WT identities of the form

( {Z:_Eﬁa(xi’ 8;) +120a(yj, 9;))

=1

(3.13)

6N+MF[\I,] —0
) 6\11,(96", GN) 5‘1’-(')’1, 91,)' . G‘I’-WM, 9}) e
(3.14)

X
8% (x,,0,) "

4. CONCLUSIONS

To bring out the usefulness of the WT identities for
the superfields, we shall first show the consequences
of WT identity for the vacuum expectation value of
&,(x, ), i.e., Eq. (3.12). Note that, using the fact
that the vacuum expectation values in the absence of
external sources are coordinate independent, we find
that Eq. (3.12) takes the form

i)
a—-é; {<0 IAi:(x) l 0>

+9(0| 6,0 |0 +38 (1+in)6 (O] F(x) |0} =0.  (4.1)
which immediately leads to

(0f3.(0)[0)=0, (4.2)

(0] F,(x)| 0y =0. (4.3)

Equation (4.2) is simply a consequence of the spinoral
nature of ¥,(x), while Eq. (4. 3) is a consequence of in-
variance under supersymmetry transformations.

‘Next, taking N=M=1 in Eq. (3.14), we have WT
identities for the inverse propagators

[Ou(xy 81) +[)a (y, 92)]11&(36, 91’ Y, 92)
Using Eq. (2.28), we have in momentum space
42

i) 1 . —
[55; — +5{¢<e,-ez)}a]r&(p,el,ea—o. 4.5

Because of chiral nature of I,,{x, 6,;y, 6,) we have [see
Eq. (A8)]

(1 - 2'75) d
2 [-1:3 a-918
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4.9

1 d
- %(Y“ 91)8 ox, }FH(’C’ 615y, ez) =0,
(3
(4. 6)

1836

1—iyg G} i 3
( 2 ) aB {3-92.3 - 2(7u 62)s Yy
Or in momentum space

13y, 0
(T—s) s {5’91_6 '%(ﬁeﬂs} C..(p;6, 6,) =0,

(A=) {53—2‘;+é(ﬂez>a} T.(p36y, 6) =0,
A first look at Eqs. (4.5) and (4.7) suggests that the
most general form for I',.(p;6;, 8,) can be taken to be
F..(0:6, 65)
= exp(3adyiffy; 6, +1b0,iBvs0, +5cO,56,
+5d01ipv;6,) X [C(p?) + (B, - 6,)
X3 (1 +i%)(8 = 6,)D(p®)].

Inserting this in Eqs. (4.5) and (4.7) and using

Eq. (A7), we can easily show that a=~b=1, ¢=d=0,
C(p?) = 0. Just for the sake of convenience we shall take
out a factor +M and write

[,.(p;6y, 8,) = expli 8,if v 6y — 3 0,i8756;]

XEM(B; - B,)5(1 +iv5)(6; — 8,)D(p?).
(4.9)

For the propagator T, {p;6,, 6,) Eqs. (4.7) are replaced

1-3 ¢ 1

(1 + i~/5> 3
2 af 3-923

Then I',_ can be shown to have the form

} FH-(x, 91;y7 92) =0.

4.7

(4.8)

(4.10)

+%(ﬁ92)a} I..(0;6y, 65 =0.

I._(p;6y, 8y)
= expl4 Byipys 6, + 1 Byipfvs0, + 26,01 — iv5)0:1C(p7).

(4.11)
We introduce the renormalized propagators by
FL(P;GI: 92)2211&({);91, 92) (4- 12)
and take
I7.,(0561, 6,) = 3M,(8, - 6,)3(1 +iv5) (6, - 6y),
I7.(0;6y, 6;) =1, (4.13)

It has been shown by Iliopoulos and Zumino® that be-
- cause of the special relation

F 1 (a 2 (4. 14)

it Le= g (5 + 54 Lo
being satisfied by the Lagrangian Eq. (2.6), the follow~
ing condition is satisfied by I'[¥]:

9 M
Brlel=- 2P0 [ #sle.0,0+2.6,0]

sr[v]

1 or[¥]
tog” “”f 4y <6‘P+(v, 5 ", e)) '
(4.15)

This is Eq. (40) of Ref. 5 in our notation. Taking func-
tional derivatives with respectto ¥,(z, 6,) and setting
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¥, =J,=0, we obtain
P(6) [ dy{T..(z, 659, 6) + T, (2, 6,59, 0>}
=+ M exp(~ 56,7, 756,)

x[dystly-2)=+M. (4.18)
Going over to momentum space, we have
P(OHI,.(0;6,, 8) + T, (0;6,, 8)}=+M. (4.17)

Using Egs. (4.12) and (4.13), we arrive at the result
M,=ZM, (4.18)

showing that no mass renormalization counterterms is
necessary. It is left to the interested readers to show

that no coupling constant renormalizations are necessary
as well.

In this paper we restricted ourselves to chiral fields
@,(x, 6), but all the results can be easily extended to
deal with general nonchiral fields &(x, 8) = &,(x, 9)
+&_(x, 6) + &,(x, 6). The notable difference is that now
the operator (6) shruld be replaced by the operator
:(DDY.

Salam and Strathdee® have derived in their paper the
Feynman rules for superfields using the path integral
method, while in this paper our main objective has been
the derivation of Ward—Takahashi identities. These
should be extremely valuable in the studies of renor-
malizability of superfield theories.

APPENDIX
We shall take the y-matrices to satisfy

%W PN =28, (a1)
with

== 8u=—8p=~-85=1, %B=-1 (a2)
and

Y P =y,. (a3)
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The Majorana spinor ¥ is such that

p=9 = CyYT (A9
with
Cl'=CT"=-¢C, Cly,Cc=-97. (A5)

A very important identity satisfied by the Majorana
spinor 6, is

ea-eﬂ == %6(,559 + %(75),,5@759

+ 367" ¥5)us0i, ¥50. (a6)
The following identity is very useful:
1idy, ) - 144y,
( 3 9a9 5 6=0. A7
The chiral fields ®,(x, 6) satisfy
1%y,
(_2—51)) o,(x,00=0 (A8)

It is quite straightforward to prove these identities
and the proofs can be found in Refs. 4 and 8.
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Random function theory revisited: Exact solutions versus
the first order smoothing conjecture

|. Lerche and E. N. Parker

Enrico Fermi Institute, University of Chicago, Chicago, Illinois
(Received 6 May 1975)

We remark again that the mathematical conjecture known as first order smoothing or the quasilinear
approximation does not give the correct dependence on correlation length (time) in many cases, although it
gives the correct limit as the correlation length (time) goes to zero. In this sense, then, the method is

unreliable.

In a recent paper Roberts and Soward! urge upon the
reader the concept that earlier papers by ourselves are
riddled with mathematical errors. Insofar as there is a
central point to their paper, it seems to be the asser-
tion that we? have provided no valid mathematical exam-
ples in which first order smoothing theory (quasilinear
theory, or the adiabatic approximation) gives erroneous
results. We are flattered by their fixation on our work
on this question, but in all modesty we must point out
that Kraichnan, 3 Frisch,* Herring,® and others earlier
had provided several examples of the invalidity of first
order smoothing theory (FOST). Indeed Frisch! has put
the point succinctly: “Using dishonest methods is like
gambling: one does not know in advance whether the re-
sult will be valid or not.” It is curious, in fact, that
Roberts and Soward purport to quote from our paper,
but delete from the text of the quotation our reference
to the earlier examples of error in FOST provided by
other authors.

To illustrate the difficulty with FOST, we? worked out
the normal modes for two different equations

2'B 2B
T [1+€60()] e =0

and

2
%3 - [1+eév(x)]g§ =0,
where 8y is a random function of either ¢ or x. We used
a method developed by Uhlenbeck and Orstein® to obtain
exact solutions (normal modes), the dispersion relation
appearing then as an infinite determinant which can be
summed to any desired order in e. We also obtained the
dispersion relation for the normal modes using the
truncation of the original equations as prescribed by

FOST.

Comparison showed that if dv is a function of 7, FOST
gives a dispersion relation for the normal modes which
~ disagrees with the exact theory in the first correction
term O(e?), i.e., it agrees in the limit for € rigorously
zero, but FOST dispersion relation does nof correctly
include the effect of nonvanishing €. This was enough for
us to declare FOST untrustworthy. We should emphasize
that in our exact solution, to which the result of FOST
compared unfavorably, we obtained the exact solution of
the original equations in the form of an infinite deter-
minant. The determinant can then be summed to any
order, We summed it to O(ez). Roberts and Soward in
their solution first approximate the original equations
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by a moment scheme correct to O(e?). Then they obtain
the exact solution of those approximate equations. The
solution of their approximate equations agrees with the
result of FOST but not with our solution of the exact
equations. They have established, then, that the exact
solution of approximate equations (such as FOST, or the
moment equations) is not the same as an approximate
solution of the exact equations. Their work underscores
again the dangers of schemes such as FOST that start
out by approximating the equations. The only way to be
sure of the result is to solve the exact equations with a
systematic mat hematical approximation scheme. In-
deed, Roberts and Soward attack the problem correctly
in their Sec. III, employing an asymptotic matching
method to the exact equations. There they find an eigen-
value approximately 8 percent different from the value
obtained from FOST and from their exact solution of the
truncated moment equations. Thus they join us in show-
ing the unreliability of exact solutions of approximate
equations, such as FOST.

Now, when 0v is a function of x we found that FOST
gives the correct contribution O(e?) to the dispersion
relation for the individual modes. Thus FOST is correct
in one case, dv(x), but wrong in the other, 5u(f).

Curiously enough Soward and Roberts criticize our
solution for the normal modes when 8v is a function of
x (the one which agreed with FOST) on the grounds that
the solution is unphysical. They assert that the proba-
bility must be restricted to x>0, just as in an initial
value problem one works out the solution for #> 0. They
are correct, of course, that any one normal mode is in-
deed unphysical. As is well known, physical solutions a
are made up of a suitable superposition of normal
modes. We went only as far as the normal modes,
which is, of course, a legitimate mathematical
exercise.

But suppose that our solution for 6v a function of x is
incorrect, as Roberts and Soward assert. Then the in-
correct solution agrees with FOST, implying that the
correct solution must disagree with FOST. Then in both
cases FOST gives the wrong answer.

As a matter of fact, we' have reason to believe that
FOST may be reliable when applied to equations that
are fully self adjoint both before and after the trunca-
tion. If our conjecture is correct, then the agreement
when 6v is a function of x is not at all fortuitous. Alto-
gether, it appears that Roberts and Soward have joined
the ranks of those who have independently demonstrated
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errors inherent in FOST. They would be interested, we ACKNOWLEDGMENTS
are sure, in a recent paper by Jones and Birmingham?®
discussing in general terms when FOST is, and is not,
valid.
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A three-dimensional neutron transport problem*
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We study the stationary neutron transport Boltzmann equation as applied to a three-dimensional system D,
made by a rectangular multiplying core surrounded by a finite reflector, in both the Lebesgue space L,(D)
and the space C(D) (with the sup norm). As a result of this analysis, we prove some basic properties, such
as the continuous dependence of the neutron flux on the parameters characterizing both the geometrical
and the material properties of the system and the continuous and monotonic dependence of the average
number of secondary neutrons per collision in the core on these parameters.

1. INTRODUCTION

In a recent work, ! some techniques based on func-
tional analysis were used to study the properties of the
solution of the neutron transport Bolztmann equation
for slabs and spheres with finite reflectors. In this
paper, we are interested in investigating the case of
a three-dimensional rectangular multiplying core sur-
rounded by equal finite reflectors on opposite sides.

To be definite, let us consider in the three-dimensional
Euclidean space R? a finite closed rectangular system,
with the center at the origin and embedded in the vacu-
um, whose material properties are characterized by

¢ (c=1)and by y (0 <y <1), the average number of sec-
ondary neutrons per collision respectively in the core
and in the reflector, and by ¥ (¥ >0), the total macro-
scopic cross section for all processes both in the core
and in the reflector (fission, scattering, and absorption
in the core; scattering and absorption in the reflector).
Neutrons are supposed monoenergetic, and the process-
es are taken to be spherically symmetric in the labora-
tory system.

Let now 7;(7; > 0) be the optical half-thickness (= X
geometrical length) of the system along the coordinate
axis x; (i=1,2,3); if a; (o;>0) and B; (8;= 0) respec-
tively are the optical half-thickness of the core and the
optical thickness on each side of the reflector, along the
axis x; (=1,2,3), then

T=0 48, >0, B;20, £=1,2,3. 1)

By making use of the optical units 7; along the axis x;

(i=1,2,3), the domain of the system is D=[-1,1]*cR?;

on the other hand, if C is the domain of the core, then
C= [=xix4] X[=x2s x21 X[~ x3» x3],

x,=ai/'r,-, 0<X1$1’ i:172)3- (2)

Finally, let
T= (Tb Ty, 7-3)7 o= (Xiy X2> X3, V> C)’ b= (T’ 0) € P’ (3)
P=(0, +»)¥x(0,1]%(0,1)x[1, + =) C RS,
p is the parameter characterizing both the geometrical
and the material properties of the system.

For the physical situation illustrated above and in
the absence of external sources, the stationary neutron
total flux ¢, (x) in the system must satisfy the linear
integral Boltzmann equation’
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¢,(%) = [p Bo6") K (%, x7) ¢, (") dx’, (4)
where
K. (x,x")

3 172 3
=Ty Ty Ty €XP [— (,‘? i (x, _x‘)z) ]/17! 421; T, - xf)?
and (5)
c, x€C,
ho(x) = {'y, xeD\C. ©)

We shall study the Eq. (4) by making use of both the
integral operator valued functions 7, and S,, p€ P,
whose kernels (using the same symbol for the operator
and for its kernel) respectively are

T,(x, ') =h,(x") K {x, %), (¥,x')€DXD, (M
and the symmetrized one
SP(x1 x') =ku(x7 xl)K‘r(xy x')

Bolr, 2") = D) etz ) EPXD @)

2. PROPERTIES OF THE OPERATORS 7, AND S,

A. The first step is to choose the spaces to define
the operators T, and S,, p € P; since T, and S, are in-
tegral operators with a weak singularity [we recall that
the kernels (7) and (8), in which there is an unbounded
term such as K,{x,x’), see (5), are said to have a weak
singularity®], it turns out that it is possible to define
them as follows*: For any p € P, T, is defined on all the
space C(D) of the real valued functions defined and con-
tinuous on D (endowed with the sup norm); for any
peP, S, is defined on all the space L, (D) of the real
valued functions defined and square integrable (in the
Lebesgue sense) on D [endowed with the inner product
(f,8) = [, f®)gx) dx, f, g € L(D) and the Ly-norm
71l = (f,£)}/2]. R turns out also that,® for any pc P,
the linear operator 7, and the symmetric linear opera-
tor S, are completely continuous respectively in C(D)
and in Ly(D) [but S, is not a Fredholm operator, that is
its kernel is not square integrable on DXD, see (5)
and (8)].

Let us emphasize that we have defined T, in the space
C(D) [also it also would have been possible to define
it in L,(D)] and S, in the space L,(D): This choice is
motived by the fact that the eigenfunctions of S, are
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functions of the type V%, xf, f€ C(D), and hence T, and
S, have the same eigenvalues and eigenfunctions (except
the factor v%,). What we have said about the eigenfunc-
tions of S, can be seen by the two following arguments:
In the first place, the iterated kernels of a kernel with
a weak singularity, beginning at a certain one, are
bounded® and, hence, the eigenfunctions of S, are also
bounded; in the second place, the operator S, maps’ the
subspace of bounded functions of L,(D) into that of the
functions of the type Vi, %f, f€ C(D), and, hence, the
eigenfunctions of S, are also functions of this type.

Since the eigenfunctions of S, are bounded, while in
the kernel S,(x, x’) there is an unbounded term such as
K,(x,x"), see (5) and (8), it follows at once that S, is
not degenerate, p € P. We now show that S, is positive
definite, p € P, Since the Fourier transform of
exp(- Ix1)/4n1x12, xeR?, istan"lw|/lwl, we R?, from
(5) and (8), we get

(8,1, 1)

-t
= 2m) fR . —-—ta;’{fg,’)(“’) |F@ |*dw, ®)
where fe Ly(D) and
3 1/2
a0 =(L wy/) ", (10

F (w) =fD Vi, &) expliwx) f(x) dx. (11)
Since | F,(w)|%2#0 if f Ly(D) is not zero almost every-
where in D, the result follows.

At this point, we may state® that S, (and hence T,),
p € P, has a denumerably infinite set of positive eigen-
values forming a sequence A(p)= X (p)= **° converging
to zero (but zero is not an eigenvalue) and each eigen-
value is of finite multiplicity; the first eigenvalue is
given by

M(p)=max (S,f, f), fe Ly(D). (12)
Finally, we give a simple proof of the fact (generally
known) that the first eigenvalue A;(p) is nondegenerate,
p € P. Since the kernel S,(x,x") is >0 in DXD, pe P,
see (5), (6), and (8), it follows that (S,f,f) <(S,{f 1, | f1),
if f€ Ly(D) takes values of opposite signs over sets of
nonzero measure in D. Therefore, from the maximum
property (12) of A (p), we get that an eigenfunction of

S, corresponding to X(P) must be >0 or <0 almost
everywhere in D and hence A(p) is necessarily simple.
Likewise, an eigenfunction of 7, corresponding to

x;(#p) must be >0 or <0 in D,

B. Afterwards we must frequently consider the case
in which only one parameter, say 7;, x, and so on [see
(3)], is supposed to vary in p € P: we agree that, instead
of writing 7’, o/, or p’, we shall write merely 7/, x}
and so on. We now prove

Theorem 1: T, and S, depend continuously on p € P,
that is, if p’ —p, then (|T,, — T, |l —~0 and lIS,, - S, /| = 0.

Proof: Let fe C(D), || fil =1; beginning from the pa-
rameters 7; (=1, 2, 3) and recalling (7), we write

[(Tfi - Tp)f](x)

1841 J. Math, Phys,, Vol. 16, No. 9, September 1975

= Jp oK 5ilx, 2) = Kqlx, ) | f6") dx”. (13)

Since from the definition (5) of K.(x,x’) it follows that
7 Kylx, %) > T Ky (x,x"), if 7/ > 7;, and that

Jo Kow, x")dx" < [ 5 K (x,x")dx" =1 (14)

for any x € D and any 7, we get the inequalities
j;) lK'r;(x’ x") _K'r(x,x’) , dx’

<@-1/1) J, K,"(x, x')dx’
+ Jo[Bale, #") = (1/ 7)) Ky (e, 2) ] dx’

<201 -/t =27 - 7|/, (15)

which is true for any x € D and also for 7/ Z 7;. Since
|hy(x)| <c for any x € D [see (6)], from the well-known
definition of the norm of an operator and from (13) and

(15), it follows at once that
|7 -7, || <2¢| 7~ 7|/7h i=1,2,3. (16)

Let us now deal with the parameters y;, i=1, 2, 3; by
recalling (6) and (7), we write

[Ty = TYF1@] < [ [ 0) = ho ") | Ko, 2 dx'. (1)
By putting
1/2
A =2 (ﬁi rf) , (18)

if 2 <s <3, from the definition (5) of K,(x, x") we get
the following inequality:

’
LIKr(xax') ,s/z dx' < (1.11.21.3)(3/2)-1 (477)-s/2 f ax

Iwi<ar %718
= (147 T/ 4m) /D (4,)%5/(B - 5), (19)

for any x € D. By applying now the Holder’s inequality
to (17) and by taking into account (2), (6), and (19),
we have

| [(Tys - T,) A1) |
< (fp Ihx;(x’) - hq(x')l"dx')i /r (-[D |K1(x, %) ,3/2 dx,)z /s
<c(8|x) = xi /T (mymyT/Am) e /D122 /s

X [(a,)%5/(3 = s)/e,

which is true for any x €D and any fe C(D), Il fll =1,
and where 1/7+2/s=1. From (20) we deduce that

(20)

1T = Tyl <c@|xi —xi| ymare/m /7 [(80)%/ (3 ~ )J/2,
i=1,2,3. (21)

Finally, it is easily seen that

17e-T, i <le’=cl, ITp-1l<l¥-+. @2

In view of the inequalities (16), (21), and (22) it follows
that 7, depends continuously on p € P, We deal now with
S,. Let fe Ly(D), llfll=1; since |k (x)| <c for any xe D,
see (6), from the definition (8) we get
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165z - $,)F1(0) |2
<c®(fo [ K, ') - K e, 1) | )| d')?
<c? [ |Kyy o, %) = K (x, %) | dx’
X Jo |Koile, x7) = Ko, x) | 37 |2’ (23)

where we have used the Schwartz inequality. By recall-
ing the inequality (15), if we integrate (23) over D and
take into account (14), we have

” (S‘r: - Sp)f “2

<2c¥ (|7 - 7| /7)) fax' | fa)|?
X JolE (6, 5% + K (3, 8") | d

<4ct|r/ -7 |/7/, (24)
which is true for any fe Ly(D), | f| =1. From the in-
equality (24), we get

I ST; -, | <2c(| 7! -7 |/7D?, i=1,2,3. (25)

By means of analogous calculations, we can deduce
that

“SX; - Sp “
<c(®|xi—xi )2 (rymyry/mMT [(80%/ B = )P/,
i=1,2,3, (26)
Iso-S,ll<ler=cl, lIs,=s,l<ly=vl.

In view of the inequalities (25) and (26), it follows that
Sp depends continuously on p< P,

C. We now introduce the parameter
q:(a, B; ‘Y’C)EQ’ ﬁ=(ﬁiy BZ, B3)y
Q= (0, +=)*x [0, +=)x(0,1)x[1, + ) C RS, (27)

a = (0y, ay, o),

g, as p, characterizes both the geometrical and the ma-
terial properties of the system. By taking into account
(1), (2), (3), and (27), it follows at once that p € P de-
pends continuously on g € @: Therefore, Theorem 1 im-
plies that also the operator valued functions T, and S,
depend continuously on g € @, Moreover, as is well
known, since, for any g€ @, S, is a positive definite,
symmetric, and completely continuous linear operator
of the Hilbert space L,(D) into itself, we have the
inequality”®

[0(@") = %@ | <[|Se = S I, n=1, q,4'€Q, (28)

and, hence, the eigenvalues of S, (or T,) are also con-
tinuous functions of ¢ € . We now prove

Theovem 2: The first eigenvalue A (g) is a strictly
increasing function of each variable ¢y, 8;, v, and c,
i=1,2,3.

Proof: For any g € @ let ¢, € L,(D) be an eigenfunction
of S, corresponding to A(g) and normalized to unity; we
know that necessarily ,> 0 or ¥, <0 almost everywhere
in D. We begin by considering the variables «;

(i =1,2,3); from the definition (8) of S,(x,x’) and recall-
ing also (1), (2), (3), and (27), we write
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((Sa; = Sq) qu, qu)

= JoJp e (e, 2B 06, %) = Kol 5) 0y () Y ") dlx !
+fD<[D[kX"(x’ x') = koo, %) K (%, 2") ¥, (x) $,(x") dx dx’.
(29)
If a}> a4 from (1) and (2) we deduce that y}>x; and
hence, from (2), (6), and (8), it follows that kxi(x,x’)
2 ky(x,x’), (x,x’)c DxD, so that the second term in
(29) is surely > 0. Coming to the first term in (29), by

applying the same procedure used to prove that S, is
positive definite, see (9), (10), and (11), we get

Aj; kx"(x,x')[K,"(x,x')—K,(x,x')]zl)q(x)zpq(x')dxdx'

P tan"! Hy(w)  tan™!H,(w)
= (2m) 3-/123 dw( 1 ) - “Hiw) )

«| f Vo) expi) 4y (x) e . (30)
D

Since from o} > a; it follows that 7/ > 7;, see (1), and
hence that Hy(w) <H,(w), we R?, see the definition (10)
of H (w), by taking into account that tan™ |w|/lw| is a
strictly decreasing function of (w|, (30) assures us that
also the first term in (29) is > 0. Finally, from the
maximum property (12) of the first eigenvalue A (a}), we
we deduce that

)\1(052)2(80‘;4)“, ) >NMMg), af>ay, i=1,2,3. (31)

We consider now the variables §; ({=1,2,3) and, in
particular, the case 7=1: The same procedure is valid
for i=2,3. Let f}> B; and hence 7{ > 7y, see (1), and
let D}=[- /7, 7/7{1%[-1,1]x[-1,1]1CD. By putting

(Ti'/71)1/2¢q(T1,x1/T1’ X9, x3), X ED{,

f(x):{o, xeD\Dj, 82)

we get that fe Ly(D), ||l =1, because ¥, € Ly(D) and
llg, 1l =1; moreover, it is easily seen that

(Sg'ify f) = (qul}q’ zpq) = 7‘1(‘1)- (33)

Now, let us note that f=0 in the subset D\ D] which is of
measure #0, see (32); on the other hand, we know that
gbarl must be #0 almost everywhere in D and that A,(8}) is
simple, Therefore, (12) and (33) imply that necessarily
2;(Bf) > 2\ (q). Finally, by considering the variables y
and c, it is easily seen that

(Sy' qu’ z,)q) > (sad)q, wq) = )‘I(Q): Y ! >Yy (34)
(Sc' pr ‘pq) > (Sqlpw qu) = xl(q)’ ¢'>c,
and hence, from the maximum property (12), we deduce

that }\1(‘)/’) > Xl(q) and that Ai(cr) > li(q).

3. PROPERTIES OF THE SOLUTION OF EQ. (4)
A. Let us now consider the original Eq. (4). The
main results are summarized in

Theovem 3: Let u=(a, B,y) € M=(0, +=)*x[0, + )3
x(0,1); then:
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(i) For any p € M there is one and only one critical
value ¢(u) > 1 in the core and one and only one neutron
flux N, € C(D) in the system such that N,(x}> 0 for any
xeD, IN,=1.

(ii) The function c¢(u) is continuous in M and strictly
decreasing in each variable a;, B;, and y (i=1,2,3);
when B; =0 for any ¢, ¢ is independent of y.

(iii) ¥ p’ ~ u, then |IN,, — N || =0 and hence, the
neutron flux N, (x) is a continuous function in M xD.

Proof: Let us consider the equation
(@) 6,(8) = fj Bo(x") K o(x, ") ¢, (") dx’, (35)

where, for any gc @, ¢, C(D), ll¢ ll=1; by choosing
¢.(x)>0 for any x € D, then ¢, is uniquely determined.
Since |hy(x) | <1 for any x D, if c=1, see (6), by tak-
ing into account (5), from Eq. (35) we get

xl(u,l)Smax (/ K,.(x,x’)dx’)

f (- 1x’1)
47 x|

1x'l €A,

dx' =1-exp(- 4,) <1, (36)

for any p € M and where A, is given by (18). On the
other hand, by means of the function fe L,(D) such that

(1/8X1X2X3)1/2, xeC,
f#)= Y0, xep\C 57

it is easily seen that lim_.,.(S,f,f) =+, for any ucM;
therefore, since ||f]l =1 [see (37)], (12) implies that
also

3353)\1(”’0) =400, (38)

for any p € M, Now, let us consider the equation
Ms,€) =1, (1,c)€@=MX[1,+w), (39)

By recalling that A;(g) is a continuous function of ¢ and
strictly increasing in each variable a;, 8;, 7,, and ¢
(t=1,2,3), the points (i) and (ii) follow at once from the
implicit function theorem and from (36) and (38), by
putting

Nu=¢(u.c(u)): peM. (40)

Evidently, if =0, the results are that of a critical bare
rectangular system. We now prove the point (iii). For
this, it is sufficient to show that

b b if g’ —gq; (41)
indeed, the result then follows from (40), by putting
q=(p,c(p)), ¢’ =(u’,c(n’), c(pn) being a continuous
function of p. In order to prove (41), let (g,) be a se-
quence in  converging to q. Since T, is completely
continuous, the sequence (T,,¢, ) then contains a con-
vergent subsequence (7 ¢~"), that is,

To$3,~ @) §,, B,eCD). (42)

By recalling that A,(g) and 7, are continuous functions of
q, from the inequality

M@ || ba, - & |l

< M@/ M@ Ta, - Tl + [ Taty, - M@ b, 43)
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and, from (42), we get that ¢’a — ¢, But A\(g) is simple
and, hence, (42) implies that also

¢q = ¢q, T¢¢q" - Kl(q) ¢q° (44)

Since the sequence (g,) is arbitrary, (44) assures us
that

Tbe = M(q) ¢g, if ¢" —4q. (45)
Finally, from (45), (41) follows at once.

B. To finish, we now give three properties of c(u)
which have an obvious physical meaning. They are:

@ lim c(w)=1,
(i1) Ali{nOC(u) =+,

(iii) 11m+ c(u)>1,

where A, is defined as A,, see (18), (i) and (ii) being
true for any 8 and y, (iii) for any « and y. In order to
prove (i), let B=0; then, by recalling (1), (2), and (6),
from Theorem 3 and Eq. (35), it follows that

1<c(w)<cla,0,7)=1/M(e, 0, 7, 1), (46)
for any p € M. Therefore, it is sufficient to show that

Alim M@, 0,9,1)=1, for any y. (CY))
a+e

For this, from the inequality (36) and the maximum
property (12), we get

(Sfif) < M@y <1, g=(a,0,y,1), (48)

where flx)= \/'1—/— xeD, || fll=1. Now, by writing ex-
plicitly (S,f,f), it is easily seen that lim, s (S, /> f)
=1, for any y; hence, (48) assures us that (47) is true.
In order to prove (ii) and (iii), by taking into account
Eq. (4) and definitions (6) and (40), it follows that the
neutron flux N, (x) must satisfy the equation

N) =[e(1) - y] [ Kolx, ") N, (") dx’
+y fD K. (x,x') N, (x")dx’, (49)

B € M. By appling to Eq. (49) the same procedure as
used to prove the inequality (36), we get the following
inequality:

1= C(p.)[]. - exp(— Aa)] +y[exp(— Aa) - eXP(- A'r)]- (50)

From this, (ii) and (iii) are easily proved.
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Hamiltonian formulation of the classical two-charge
problem in straight-line approximation
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The Newtonian equations of motion expressing the interaction of electric charges correct up to terms of
order e, the product of the charges, is cast into Hamiltonian form. Lorentz transformations are canonically
represented to order e?, but as anticipated by the zero-interaction theorem, there is no canonical
transformation from the canonical variables to the charges’ physical positions.

I. INTRODUCTION

The equations

r- c'avl X (f‘xVZ)

m1ﬁ1 = ez(l —_ vg/cz)mn, (13.)
gty = — (1 — v /%) 7;‘;[‘1 ii"g(’;(::;’zl])a - (1b)

where the m’s are rest masses, r the separation of the
particles, and i;, the time derivative of (1 - v%/c?)/%,,
are the equations of motion for a pair of interacting
electric charges correctly written to terms of order

€%, the product of the charges. The approximation is
sometimes called the “straight line” approximation be-
cause the force on each charge would be the exact re-
sult if the other charge were constrained to move uni-
formly.!-3

Since many-body forces must always be of second
order in the coupling constant, the forces in (1) also
correctly describe, to first order in €%, the interaction
of a particular pair of charges within a system of N
charges.* Thus, for example, (1) can be used to provide
relativistic corrections to the mutual Coulomb and
Darwin forces [the first two terms in the expansion in
c”? of the forces in (1)%] of the interelectron interactions
in the classical atom. To pass from such a Newtonian
description to a quantum mechanical correction of atom-
ic energy levels—to introduce the improved Coulomb
forces in (1) into any quantum mechanical calculation—
is another matter altogether. Whatever snares await in
the maze leading to quantization, however, the unavoid-
able first step must be the rendition of the classical
dynamics (1), consistently to order €%, in acceptable
Hamiltonian form; that is, a form in which the trans-
formations of the inhomogeneous Lorentz group are
canonical to order 2. ® That first step will be taken in
this paper.

The Hamiltonian formulation of (1) cannot be obtained
by any textbook recipe, nor is there any property of the
forces that suggests a successful anzatz. Indeed, as
will be seen, and as foreseen by the zero-interaction
theorem, ” the forces in (1) are sufficiently relativistic
that the existence of an acceptable Hamiltonian of the
form H(r,, p;) is out of the question. Still, with the prop-
er definition of the canonical position variables, an
Hamiltonian formulation always exists for an even-order
system such as (1), ® and 2 method exists for the deter-
mination of that formulation.
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In what follows, after some necessary background,
the method is explained and applied to Eqs. (1). For-
tunately, the only substantial problem which appears,
the determination of a Lagrangian which produces (1)
in the form of twelve first-order differential equations,
is disposed of gratuitously by certain prior results from
generalized mechanics. In effect, the solution consists
in the recognition and rearrangement of quantities al-
ready available. A transformation of the position vari-
ables in this Lagrangian then produces the required
Hamiltonian formulation of (1). The result is tested,
then extended to N particles. Canonical transformations,
and expansion of the Hamiltonian and canonical vari-
ables in inverse powers of ¢? are the subject of the con-
cluding discussion.

Il. BACKGROUND

The equations of motion (1) may be either induced
directly from Coulomb’s law or deduced from the full
apparatus of classical electrodynamics.® The second
approach begins with a separate Lagrangian for the
motion of each charge in the field of the other. The mo-
tion of the first charge, for example, is implied by

- ayi/a _ 25 (=Dp)? -1
Li(ry, ) ==my(1-v¥)t/2_ ¢ 2_10 1 (L=vy - v)r,
p=

(2)

where the potential is just the Lienard—Wiechert poten-
tial originating at the second charge and expanded about
the present time /, and D, denotes a time differentiation
which acts on the variables of the second charge only.
The speed of light has been set equal to unity. Exchange
of indices produces the companion L,. When the exact
force is derived from L, its terms fall naturally into
two classes according to whether or not they contain
accelerations and higher derivatives of the second
charge’s variables. Terms which do are not less than
e* order; those which do not are of order e? and their
sum is the force in (1a).!° Since the force of radiation
damping, not contained in (2), belongs in any case with
the higher order terms, the Newtonian-type forces in (1)
constitute a consistent relativistic correction to the
Coulomb interaction of the two charges.

Only derivatives of v, are set to zero in obtaining the
approximation to the exact equation of motion of the
first charge. The approximation may therefore be made
directly in the Lagrangian; that is,

Copyright © 1975 American Institute of Physics 1844



a 0 2 d
i i imi = A\ (p Xt =
[ straight line limit (D oV, an) ( v ar,)
straight line limit| L, =0, (3)

where the limit operation consists in replacing D, in
the operand of the limit with v,-2/3r,. Now let a new
Lagrangian L, be prepared equal to L, but with odd p
terms deleted. Since these odd p terms vanish when D,
becomes v, - 3/9r,, the difference between these other-
wise distinet Lagrangians, and between their implicit
equations of motion, vanishes in the straight line limit.
The new Lagrangian, however, can be symmetrized,
for D% = D§(D - D,)* = (- D,D,) plus a disposable total
time derivative D. Consequently, the private Lagran-
gians Ll' and the corresponding one for the other par-
ticle Lé may be replaced jointly by the single
Lagrangian

L= my(1- o2 - my(1 - 031 /2

- ea :\ (“ D1Dz)p

Z g = v v @

and the equations of motion (1) looked upon as the
straight line approximation to an electrodynamics with
an authentic action-at-a-distance Lagrangian, hence
canonical, formulation. In fact, the electrodynamics
implied by (4) is just that of the half advanced, half re-
tarded interaction whose ¢®-order congruence with the
fully retarded interaction is well known.!! The equations
of motion are the Euler— Lagrange equations of “gen-~
eralized mechanics,” or Ostrogradski equations,

< . 9L .
tz;lo(—D) m-o, i=1,2, (5)

and the system (1) emerges just as originally, by set-
ting to zero accelerations and higher derivatives which
occur in the forces of (5).

The usual advantage associated with the Lagrangian
formulation of mechanics, the effortless construction
of constants of the motion, is also present when the
Lagrangian depends on higher time derivatives. For
instance, if time and space translational, and space
rotational, invariance are canonically represented with
respect to a Lagrangian depending on derivatives through
D'ry and D'r,, then the corresponding energy, total lin-
ear and angular momentum are respectively12

2 n-1
Eziziz—'\lopiu) +(D'vy) - L(ry, T3, Vi, Vzy . o, D1y, D'ry),
=1 1=

(6a)

P=P® + P, (6b)
2 nel

L=2, 2, (D'r) X P, (6c)

i=11=0
where the n “Ostrogradski momenta” are defined as
o) 9L(r; D'r,)
P — - D)= FIRRRN) K]
¢ 5231 ( ) (D V; ’
1=0,1,...,n-1, i=1,2 (N

If » is extended to infinity and the joint Lagrangian (4)
together with its partial derivatives
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L myw = (= Dy Di~s p+1
(D%~ (1 —of)t/e 850 ezgw (2p +1) s+1

X(1=vy -v)7®r

+ g2 i;—T(— D,)*D§~* (ls) ) vt

bus  (2p)1 (8

where J,, is the Kronecker 6 and (§) a binomial coeffi-
cient, for i=1, for example, are substituted in these
expressions, then the quantities in (6) are integrals of
the dynamics inhering in (4). Moreover, the components
of these quantities not depending on accelerations or
higher derivatives are integrals of the system (1) con-
sistent to order ¢%.!3

The joint Lagrangian (4) is thus useful for studying
the equations of motion (1), though it is a Lagrangian
not for those equations but for a much more complex
system, The Hamiltonian formulation aimed at in this
work, on the other hand, is a function of four indepen-
dent vectors only and properly contains the equations
of motion (1) to terms of order 2. As it turns out, the
problem of determining such a Hamiltonian is effectively
solved with the introduction of the joint Lagrangian (4).
The solution is not a simple matter of dropping accelera-
tions and higher derivatives in (4) and then forming a
“Hamiltonian” by Legendre transformation of the re-
mainder, for (4) does not admit the latitude expressed
by the relation (3): The straight line limit of L is not
a Lagrangian L(r, vy, v,) for the straight line limit of
the equations of motion (5) implied by L. Nevertheless,
a kind of true Lagrangian for the system (1) alone is
embedded in (4), and the first step which must be taken
before that system of equations can be Hamiltonized is
to extract it.

1ll. THE LAGRANGIAN

Kerner has elaborated a method for casting a system
of differential equations such as (1) into Hamiltonian
form. ! The first step is to find a Lagrangian linear in
the independent “velocities” r; and ¥; which will imply
the differential equations in the first-order form

12
;;Aij(qz)ilj =B,(q), i=1--+12,

where the twelve “coordinates” g; are the components
of r; and r, vy and v,. In this regime r; =v; is not an
identity, so r; and v; must not be confused. The general
form of any Lagrangian for a first-order system of
twelve equations must be

2.
L’(ri, Vi, i';, 'V;)=Z~;(Oti 'i‘i+Bi".,i)—h (9)

where «;, 8; and » depend only on the r’s and v’s. It is
easy to show that 2 has to be constant and must be the
total energy; the total linear momentum of the system
is @ + a,, and the total angular momentum is ry X oy
troXa,t+vyg Xp +V2X32_

Now these blanket requirements bear an obvious re-
semblance to the generalized mechanics results quoted
in (6). Moreover, the Lagrangian from (6a)
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-1
Pi(l). (Dlvi) -E
i=1 1=0

L(I‘i, Vis oo "D"ri) =

where v;, conventionally, is r;, and the P’s and E de-
pend on all the various derivatives of r;, may equally
well be taken as

Ll(rir Vis iy oo, r

2
. - — Al 0 4 -
55 Vi Agy o) =22(P0 1, + P Y,
i=1

+P® .4, +...)=E

where r;, v;,a;, ..., D*™r, are reckoned independent
“coordinates,” and the quantities with dots their “velo-
cities.” Half these velocities appear linearly while the
P’s and E depend only on the coordinates. The sets of
equations

1 o
g( D)B(—Dr— 0, i=1,2,
and
oL’ L'
Daq.in-aq«n:(l, a”=r;, af=v,...,
1
=1, 2,

are then alternate descriptions of the same dynamics.
The equivalence of these descriptions is proved for a

certain broad class of Lagrangians L(r;, ..., D'r;) in

Appendix A,

Without getting into the question of the soundness of
such a dual view in the case in which # extends to in-
finity, it is certainly true, formally at least, that a
structure matching (9), required by the Lagrangian for
the first-order rewrite of the straight line approxima-
tion to the second-order equations of motion implied by
(4), stands out quite clearly in the alternative, linear-
ized, expression of (4). It is L’ with all coordinates and
velocities beyond r;, v; and r;, V; set to zero:

7’ . .
Lr;, vy, 0, ..., 1;,9,,0,...)

2
ZE[P;(O)(rj, Vi, 0, .. .) : i‘{
i=1 (10)
+P/1(1)(rj, Vs 0, . ..) ""i]— E(r,,v,, 0, .o -)
..) is of course the straight line limit
..). In the following the

where f(r;, v;, 0
of the quantity f(r,, Vj, a5, .

straight line limit will be understood when A, 52, ...)

is written as f(r;, v;). The energy in (10) is given by

2
E(r,-,vj)IZino’(r,-, Vj) 'vi-—L(rj, Vj) (11)
i=
and the P{¥ and P®’ are determined from (7) with »
extended to infinity. When L is substituted from (4), and
its partial derivatives from (8), the Lagrangian in (10)
is explicitly written. It will be confirmed later through
the Hamiltonian that this proposal does work, that the
L'(r;, v;} which results gives back twelve first-order
differential equations which reexpress the equations of
motion (1). What remains in this section is to obtain
the straight line limit of the first two Ostrogradski
momenta and the energy. Since the calculation concerns
the form of these quantities, and not their dynamical
content, it is not yet necessary to implement the dis-
tinction between r; and v;, v; and a;, and so on which
was mentioned above.

1846 J. Math. Phys., Vol. 16, No. 9, September 1975

The Ostrogradski momentum P{» with i =1 chosen
for illustration will be studied first, When (8), the de-
rivative of (4) with respect to D%;, is substituted in
(7) and » is set to infinity, the exact P{" appears asa
complicated, double infinite series. Some manipulation
reduces it to

=

P{Y =myu +eZZ}——D§P A

i 11 p—O(Zp)! 2
‘1152(21) (20 = D1 = vy - vp)7®3r
%Q)('(Z; (20~ D1 = vy - vp)P*3r, (12)

The inverse D’s, which stand for time integrations, are
the cost of eliminating }’s in the last two interaction
pieces.'® Since it is the straight line limit P{*’ (r, vy, v»)
of (12) which is required, velocities may be treated as
constants and placed to the left or right of D operators
as convenient. The third interaction piece of (12) may
therefore be written

—e-vv) [ 2 (P‘O“(fj;ﬁz) ) a, (13)

The result derived in Appendix B that

- 0 ? p-1
L:’ ) ( N 'arl) ("2 a1, i
_ 1
(1= - pp = F (¥ )21 72
where l; = Xv,;, shows that (13) may then be replaced
with

(19)

2 2 1
—e¥(l-vwy -vz)f 8r<[l— e #z—%(hxﬂz)z]l/ﬁz”) dt.
(15)

It can also be seen from comparing the third interaction
term in (12) with the interaction term L‘*") of the
Lagrangian (4) that the former is

(int)
f oL i (16)

ar ’

while, from (14), the straight line limit of LY is
(1 -V Vz)

17
py = 5 (g X )2 Py (7

If D, is approximated by v;.2/9r;, then Dyf(») becomes
— Dyf(¥) upon changing v, into v,. Consequently, from
(14),

L(lnt) — - ez
(r, v, v3) - ™

| a3\ 44 1

S () " -wm (8
with the inclusion of the factor e?v,, becomes the
straight line approximation to the first interaction term
in (12). Finally, comparison of the second and third
interaction terms in (12) shows that the straight line
approximation to the former is

ez(l—vl-vz)[a (1 m )dt (19
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There are any number of ways of performing the in-
tegrations in (15) and (19) each of which may lead to a
different conclusion. This is an inessential ambiguity,
however, because, just as the integrations have been
introduced (to buy a little simplicity in writting P{»),
so they can be eliminated. A time derivative D can be
factored out of the last two interaction pieces of (12)
and “cancelled” with the denominator D to recover the
original double series representation of P{?’, the touch-
stone for the admissibility of any proposed alternative
representation. The test is as follows. The integrations
in (15) and (19) are carried out; the two results are
added, the missing 1/¢%’s are restored (by dimensional
analysis), and the whole is expanded in powers of 1/c®.
Each coefficient in this expansion must then be identical
with the straight line component of the term of corre-
sponding order (labelled by p), in the sum of the last
two interaction pieces of (12). It may be mentioned here
that the straight line approximation to the companion
PV, which will be found below, is also checked in this
way; its unambiguous series representation is derived
just as for P{*’ except, of course, ! must be 1 in (7).

In this way the authenticity of the final P{¥ (r, vy, V)
and P’ (r, vy, v,), which will appear shortly, has been
established and the validity of the following rules and
results confirmed.

The same rule applies to both (15) and (19). Replace
r in the square brackets with r + v, where v=v; - v,.
Then, in this sequence: integrate, take the gradient,
and set f equal to zero. If A stands for the square of
the bracketed denominator in either (15) or (19), then,
after the first step, the integrals of both expressions
have the form

3 1
J‘B_r((A +Bt+th)”z) a. (20

Though this may not be obvious in the case of (15) where
it might seem that a biquadratic in ¢ should appear, it
is true, nonetheless, owing to the fact that 2(u, X )

is invariant under r ~r +vi. When the remaining se-
quential steps are applied to (20), there emerges the
formula

3 f 1 1 3B _2dA
I'&(A”"’)dt_(mz«“_BZ)A”"’(ZA_aTB'aT)’ (212)
or, equivalently,

a(1 _2[a 2(AF)'/*+B
Jar(A”'~’>dt_a_r[F”5h‘ @AF-B97%) |- (210)

When v is dotted through the latter expression, one
has

po» , -~ V1 + _._._l_____
1(r, vy, v5) M BT v, A=y

lav;-v
+ezl—T—-——3—,].l72
v "(V1XV2)

and from either of the last two expressions

1 AF)/2
J‘Zil];rg di=;,rrz ln('(%ﬁ?_—Bg:;#g) (23)

which will give the correct straight line approximation
to the integral of the square brackets of either (15) or
(19).

The above formulas are perfected by substitution of
the particular A, B, F generated by the transformation
r—r +vt of A in either (15) or (19). These are

A=Ag= 1=ty - py= 2(py X )23, (24a)

B=B,=2v{f - v=3(1; + ) - (v, Xv,)], (24b)

F=02 = (v, Xv,)? (24c)
in the case of (15); and

A=A,=(1-pdr? (252)

B=B,=2¢f.v = ly- (1, Xv,)], (25b)

F=02= (v Xvp)? (25¢)

in the case of (19). The discriminant formed from (24)
is
A F — B2 =471 = vy - vy — £(vy Xvp) 2l 12 = (g X 2],
(26a)
and from (25) is
4A,F - B} =4r%(1 - v3)[1? = (g X 1)),

where R =FXv=j; - U,.

(26b)

The straight line approximation to P{® may now be
obtained by adding to m,u, the following pieces: (18)
multiplied by e?v,; either version of (21) multiplied by
€*(1-v, -v,), with A, B, F given by (25); and either ver-
sion of (21) multiplied by — ¢*(1-v,; - v,) with A, B, F
given by (24). The net result is

v 1
P{O(r, v, vp) = m1ﬁ:)1?)172 + eavzzé‘/z

1/2

8.

1/2
YA PN L. L) B

or, substituting from (24), (25), and (26),

(1= 1D 20 ~ (v XV 2R 2+ 2 v — 1y - vy Xvy)

3
X—1In
ar ([1 — My by = 5 (0 X B2 TR0 = (v X V)T T v — () (leva)) ) (28)

Both (28) and P{ (r, v,, v;) may be summarized with the single expression
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9 .
P{"(r;, v;) =myu,; + U, =R, i=1,2. (29)
!

Thus
2(A,F)'/2+B
= +
U1 ez.va e (1 VI VZ) [‘FTzln ((4A2F—Bz) )]
(30)
with U, gotten by exchange of indices; and
1-v,-v), [2(AF)1/2+B
Qz-ez( L aln(——'——z*[ﬁ . 31
IS eV w ey (31)
It is apparent from (17), (22), and (24) that
a Q
LY (r vy, v,) = Ve (32)

The U’s, defined by (30), have a property which must
be recorded. Take the straight line time derivative of
(30):

oy, 2 1 2 2
—== o — + 2 — . —y , —
Ve O arAz”E e(l-vy-vagveom

In 2(A,F)'/2+ B, )]
F”z @A.F-B) |-
The formula (22) shows this to be

LoU 1w .v)].2
vego=e [vov +1(1 = vy - v,)] ar AL

=—e? s (1-)[1(1-v -v) +vyny] -1

A3

which is the negative of the force F; on the right-hand
side of (1a). Therefore, to terms of order

2 /1 2 2

2 Fo gy 2y ) v+ 00 =0, (33
= J

i=1,2

which is to say that the first two terms of P{"(r,, v,)
form a constant of the motion in straight line approxi-
mation. These are peculiar constants, however, be-
cause, in the case ¢=1 for example, the constancy of
myy, + U, is independent of F,; but more will be said
about this later.

The comparable treatment of P’ is simplified by
beginning with an identity which follows directly from

When the exact P{" is replaced by (29), and the
Lagrangian (4) by its straight line limit,
- m,(l - vf)l/z_ mz(l — vg)l /2 +L(int)(r, Vi, Vz),

then the identity (34) becomes

] ] 3
(v1 a_r1 +v, "a?')Piu)(ri! v)=v 3¢ PP’(rj, v;)

o
==U -+

ErS av L®Y(r, vy, v,). (35)
1

i
It is evident from (35) that there is no part of P8 (r;, v,)
without a factor e2

Now, from (32),

2
A L(m“(r, Vi, Vz) -

FIy) 3 [oQ
57, ( (36)

ar, ¢ ar\av,

Next, multiplication of (22) by e*(1-v, -v,), with 4, B,
F as in (25), gives

2(l-vi.v)) o ,(1-v:v) (Z(AzF)”z"'Bz)]
¢ AL ‘V'ar[e 7 2\, Fo B

partial differentation of which with respect to v, gives

e ve (2@ _?_i ea(l-Vl'Vz)
— A=\ TV ey, Xl

Xln(w;xgﬁ')] . (37)

@A, F - B
KV, is defined such that
2 (1= -vy) Z(Az F)/2+B
V=3, [e _7“'72'—1“( (4A,F - BY) (38)

for i=1, for example, then from (30) and (37)
Uj=-v-—. (39)
When (36) and (39) are used in (35) the result is
(Pi Ar;,vy) =V, - a‘ff)— 0. (40)

The comparison test P{’ (r;, v;) mentioned above con-
firms that the solution of (40) is

7, 9
( P (r;,v) =V, + v, (41)
oL
pp=_p® 4+ 2% 3
P Py ov;’ =12 (34) which for i=1 comes out to be
3 (A-v -v,) [(l—v v, — 5(v ><v)z)”z
1) — 2 )2 1 1'Va—43lVy 2
Bi e v = (e
(1= ' 202 - (v XV 2+ § v = 1y - (vy XV,) )] (42)
[1 — Ky Hz— 1(py Xuz)z]l 72— XV T 2+ 2. v 2(51-1 +pg) (v, Xv)

Finally the energy, given by (11), is

2 o
E(r,vl,vz)=2(m¢u +U; +a ) v,—[-—ml(l vl)”z

l
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- mz(l - ,Ua)l /2 4 L(lnt)(r i, vz)]

o (?Tv?)m”‘ (U‘ or ))‘L““”(r’ v, %) (43)
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which, because of (32), is also

MN

(?1_771")’7’ +vy U,) . (44)

The square of P{*(r;,v,), from (29), is

mé + 2myu, - (U‘ +ﬂ) +0(eh), i=1,2,

m 1Y)
. +—
(1-v9 Vs (Ui a!'i)'

To within terms of order e? the right-hand side of this
expression is the square of

m o
oot (U' +a_r,)’

so, from (43), the energy may also be written

whence, to order €2,

2
m
POy, vy P+ mi=g"17 :}i

&
E(r: V1, Vz) = Zl {[Pi(m(rj: vj)]z + mf}'l /2 - L(lnt)(r, Vi, Vz)-
i=1
(45)

To summarize thus far: Equations (29) and (41) with
the U’s, V’s, and § defined through (24), (25), (30),
(31), and (38) are the first two Ostrogradski momenta,
P{ and P, corresponding to the joint Lagrangian (4),
with accelerations and all higher derivatives set to
zero. The energy E in the same limit, corresponding
to (4), is given by either (44) or (45).

It may now be proven that when these straight line
limits of the P{®, P{’ and E are substituted in (10), the
resulting L' contains a system of twelve first-order
equations equivalent to the second-order system of six
equations (1). Instead of carrying out the proof here,
however, the Hamiltonian formulation of (1) will be ob-
tained first. The advantage in waiting is that a proof
via the Hamiltonian will not only confirm that the equa-
tions (1) are implied as a first-order system, but that
they are implied through Hamilton’s equations.

IV. THE CANONICAL VARIABLES AND HAMILTONIAN

The usual scheme for fashioning a Hamiltonian from
a Lagrangian implying a system of second-order equa-
tions involves replacing each velocity with a new in-
dependent variable. The dynamics may thus be ex~
pressed by twice as many first-order Hamilton equations
as second-order Euler— Lagrange equations. Since these
characteristics of a Hamiltonian formulation are al-
ready present when a system like (1) has been packaged
in the form of the Lagrangian (9), the usual Legendre
transformation, which aims at halving the order and
doubling the size of the system, is inapplicable. In-
stead, the Hamiltonian formulation of the dynamics im-
plied by (9) is obtained by a point transformation of the
independent coordinates r;, v;:

ri = ri(pﬁ ﬂj), i= 1, 2;
vy =v¢(p,, ﬂ'j).

The transformed Lagrangian (9)

ap!) P
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i\ ey
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G e oy

where the dots join vectors with the same index symbol,
and the a’s, B’s, and % are now written in terms of the
new coordinates p; and 7;, is certainly a Lagrangian
for the transformed first-order equations of motion
since the Euler—Lagrange equation is true in any co-
ordinate system. If it can be arranged, however, that

2 or v
5 [o Srive i) -m
i=1 Py (46)
g, ar; Bv]
a, . —+8. .——i =0
1Z={ [{ omy s om )

then the Euler— Lagrange equations are, in fact,
Hamilton’s equations with the energy h(r;(p,m,), v,(p;, ,))
being the Hamiltonian. The determination of a trans-
formation satisfying (46) is the second and last step in
Kerner’s Hamiltonization method.

Of course the system (46) is a restatement in twelve
dimensions of Pfaff’s problem: to find a transformation
%; =x;(v,;) between sets of 2N coordinates such that for
functions f; of the x’s

o ¥
‘Zifi(xl) dax; =’L_;yu+¢ dyy.

The reduction is always possible and a method exists
for finding transformations which will effect it.1® The
formalism is not necessary in the present instance,
however, since the reduction can be carried out con-
sistently to order ¢ almost by inspection. The solution
is as follows.

The Lagrangian for the first-order version of (1) is

2
L,:Z{ [Piw)(rn Vi) er Pi(l)(l'j’ v;) « V] = E(r, vy, vp).
§=

Between ¥; and P{") insert the unit dyad in the form
1(1 =23 +v,v ]
1=[(1=2%1/2(1 . Vi ],
[(1 vi¥( V;Vi)] [—Jz"wz—(l 9
Now, the time derivative of y; is just
Vi I(l - U?) +V;V,] .
D= .
(1~ [ (1—11;; Vi

80

(I‘,, Vj) Vi P‘u ’(r,, Vj) [(1 1)%)1 /2(| - viv()]
=D[(1 - U{)‘ /ZP{(I )(rj, Vj) . (I - V{V;) . u,]
—u; - D[(1 - o3 20 —v,v) - P (x;, vyl
When this latter expression is substituted for
P{(r;,v,) - ¥, in the above Lagrangian, the first term,

the exact time derivative, may be discarded. The
Lagrangian L’ may therefore be written equivalently as

2
7 Y aﬂ .
L Z‘Z;ll [(m,u, + U‘ +a—r‘). ri

-u; - D[(1 =) 3l = vyv,) - Py, Vj)]]

- E(r, v1, vp) (47
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where the expression for P{"(r;, v;) has been introduced
from (29). Since, however, the construction need only
be consistent to terms in ¢?, and since U;, 2, and P®’
each have ¢® for a factor, u; in the second part of the
summation may be replaced with

1 t:19
—_ L+ U, )
- (m,u, U; 81‘,—)’

that is P{"(r;, v,) may be factored from both parts of
the summation in (47) to give

g‘.
L'=2; P, v;) Dlr; - m*(1 - v3)!/?
i=1
X(l -_— Vivi) * P,‘l’(rj, Vj)]— E(r, Vi Vz) (48)

which completes the reduction. The canonical variables
are immediately identifiable.

Canonical momenta:

P‘-ZP,-(O)(I‘,, Vj), l:1, 2. (493.)

[1— (P} +md 2(Pg + m! 2]

Canonical position:
1 .
Q;=r; __m—:(l B e (P AV P (ry, vy, i=1,2. (49b)

To obtain the Hamiltonian it is necessary to express
the energy in terms of the Q’s and P’s. From (45)

2
E=2; (Pi+mi)t /2= L9 (x, vy, vy),
i=1
so that it remains only to transform the interaction

term; but since LY“™(r, v, v,) has coefficient €%, only
the zero-order part of the inverse of (49),

P
v; =(?§-+—mi5m +0(e% (50a)
r;=Q; +0(e?), (50b)

is necessary in this last step. When (50) are used in
LY (ry, vy, v,), which is given by (17), the energy be-
comes the Hamiltonian,

2
sz (Pf + m?)l /2 + ez
i=1

where

_lQxP)x@%xPy)P
KGRz G

M =2y X )2 (52)
This latter quantity has been provided with a distinct
label because, as noted earlier, it is invariant under
r—-r +vf, Within an interaction term it therefore be-
comes a constant of the motion.

The statement made earlier about the constants of
the motion which can be derived from a Lagrangian
whose form is (9) applies also to (48). The total linear
mechanical momentum is therefore the sum of the ca-
nonical momenta P; +P,, and the total angular momen-
tum is Q; X P; +Q, X P,. It has been verified that these
quantities are respectively the total linear and angular
momentum for the system (1) which have been worked
out in an earlier study.!?

V. TWO TESTS

First, it will be certified that the equations of motion
(1) are properly contained in the Hamiltonian (51) just
given. The Hamiltonian is, in abbreviated form,

2
H=2,(P}+mi)' /2= L4V@Q, Py, Py), (53)
i1
and its derivative with respect to P; is
oH P, 9 . at)
—= -—1L . 54
3D, (BT mdET 3P, @Q, Py, Py) (54)

From (49a) and (29) the first piece on the right, to
terms in €%, is

1 R
v; +74?,-(1 - o) ¥~ v,y - (Ui +a‘ﬁ>'
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1@* - [@xp,)/ (P} +md)! PT-1@Q*Pp) /(P; +m3) 5] MZ/aP' 72

(51)
Since
3 1 2\1/2 2 2
2= (1- - A
3P, i(l 7 R () v, o(e?), (55)

then, to terms of order €% the right-hand side of (54),
written in the original variables r, v, v;, is

1 R
v; +_W7i(1 i (ER A AR tan

1

0
- w L“nt)(r) Vi, Va)]-

t

The use of (35) gives

oH d a3 1
—— — 4 Y — —_—— (1 - 2 1/2
BP, (V1 8r1 V2 3r2> (ri m,(l Ui)

XN —vvy) - P(x,, v,))

which is
oH 0 0
22y, L4y,
P, ("1 ar, 8r2>Q"

Since the additional piece (m{'F, - 9/3u; +m;'F,
. 3/3u,)Q,, where the F’s are the forces in (1), is of
order ¢*, the final results may be written

H _ 2 (1 3 ?
. R ety L .
aP; ﬁ (’”:‘ ¥ bu; arj)Q' (56)

Next, the derivative of H with respect to Q; is taken.
The derivative with respect to Q;, however, is suffi-
ciently represented by the derivative with respect to r;
when the operand has a factor €%, So,

oH d

E—Q_-: _-a—;L““"(r, Vi, Vg).
i i
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But, from (32) and (33) the right-hand side may be re-

placed with
b an
- F, - —+ -—) (m v, +U; + )
%{( l i 6\1, Vi il : ar;

without altering its e®-order value. Hence, from the
definition of the canonical momentum {(43a),

oH 2 /1 9 ?
Lo 3 =—F L ty,—
Qy i (m! Fs duy Ve arz)P" (57)

Thus, with the Q’s and P’s expressed now in terms
of the r’s and u’s, Hamilton’s equations,

. oH . oH
Qi __é-l_):, Pi"_ﬁ
become
WA 3 .
,z:ll[(u’-—mlij) “a%t"'(rj—Vj)"a'—] =0, (583.)
2 1 P, api]_
qu [(u, ——F;)-Fu—‘*' (rj j) 35, =0 (58b)

while the other coefficients are of order ¢?, the matrix
of coefficients in (58) has an inverse consistent to that
order of approximation. The original equations of mo-
tion (1) are thus uniquely implied by the canonical for-
mulation presented in the last section.

Second, it must be proven that the canonical formula-
tion is not tied to one Lorentz frame. For interacting
particles it is possible to express the Lorentz trans-
formation connecting primed and unprimed sets of par-
ticle variables, such that each set is taken at a single
instant of time in its own inertial frame. This expres-
sion of the Lorentz transformation, which requires that
the particles motions be used as a retardation condition,
is easily obtained for the infinitesimal transformation.
For in that instance, the separation of the time coordi-
nates in the new reference frame of world points simul-
taneous in the old is infinitesimal, and world lines con-
necting those €-separated time coordinates may be ap-
proximated by straight lines. Thus, for the case of two
particles, the infinitesimal Lorentz transformation of
their positions and velocities may be written

ri=r1+€lv (b ) -],
ry=r;~ €ilt,
V{=V1 +€{v1(ﬁ-v1)—ﬁ (59)
+[mit (1~ o) 2~ vyv) - FyJ( - 0},

Vo=V, + €[v,(h - vy} ~ i,
where ¢'=1¢- €fi-r, and €f is the velocity of frame §’
with respect to S.*" All quantities on the left are reck-
oned at ¢, all those on the right at £. Since F, is the
force on the first particle, the quantity in the square

brackets of the third equation is just the acceleration
of the first particle at time ¢.

The equations of motion (1) are form invariant in
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straight line approximation under the Lorentz trans-
formation (59), and may therefore be derived in differ-
ent inertial frames from the same form of Hamiltonian.
Nevertheless, these formally equivalent Hamiltonians
will not be canonically equivalent unless they admit the
Lorentz transformations as canonical transformations.
What must be shown then is that (59) is canonically re-
presented with respect to the Hamiltonian formulation
described in the previous section. To demonstrate the
canonicity of the Lorentz transformation and, conse-
quently, the covariance of the Hamiltonian formulation,
it suffices to show that under (59) the differential of the
action is form invariant to within an exact differential
up to first order in ¢® and ¢,

From (48) the differential of the action may be written

2
22 P; - dQ; - Hdt, (60a)
i=l

or, in the equivalent Pfaffian-expanded form,

2
;Z_{ [P{O(r; - v;) - dr; + P (x; - v,) - dv; ] = E(x, vy, v,) dt.
(60b)

The latter of these is the easier to work with. When
(29), (41), and (44) are substituted for the coefficients
of the d’s, (60b) becomes

2
£
Z[( U, +i._) dr; + (Vi+%iz>'dvi
i

i=1
ny
- ((1—v?)”"’+"‘ ‘ U‘) dt]’

which is

2
2 {tmu +0) ~dr + V- dvy = [m (1= o)/
1

+v,; . U;ldft +d9. (61)

Since dQ will transform to another exact differential,

it is only necessary to transform the term in braces.
The task is simplified by proceeding in stages. For ex-
ample, if the transformations of A,, B,, F and 3/2r
induced by (59) are worked out beforehand, then from
(30)

miuy + Ul + E[(n I')Fl - nml (1 - 'U))—1 /2]

& {vo + €[vy(h.vy) - -af}
{A +el(f-r)B,+2(R-v,)A, ]2

+ (5%- €fiv, .-a%>e2——3;172~(1 =¥y -y)
A 1/2 1/2
wfEi i ()}

When all terms are expanded to first order in €, and
the expression for Fy is substituted from the right-hand
side of (1a), the result is

myuy + Uy =

myuy + Uy =myuy + Us — €ilmy (1- 0912 +vy, . 4, ).

(62a)
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Similarly,

mzuz’+ Ué = mzuz + Uz b €ﬁ[m2(1 -— Uz)-I /2 + VZ Uz]

(62Db)
The V’s, given by (38), are transformed next:
Vi=V; - €[(f.v)Vy +ii(v, - V) + (- 1), (62c)
Vy=V,— €l(fi- vy)V, + (v, - V). (62d)
Finally,
mi(1= 0 24y U =m;(1 -3 2+y, .1,
- €ir. (myu; +U,), (62¢)

i=1,2.

The Lorentz transformation of the braces of (61) is now
a matter of replacing the terms in the braces using (62)
and the differentials of (59). The status of r; and v; as
independent coordinates in the differential form (60b)
must be recalled here to forestall erroneously cancel-
ling U, - (dr; — v;d?). The “simplification” is not admis-
sable in the action since dr; =v; d¢ is not an identity.
Each term in the braces of (61) is retained and trans-
formed to give

2
-Zi{(miu{ +Up) -de] + V] -dv; - [my(1 - v 2 +v] . U]ldt}

=5 {(mp; +U;) - dr; +V; - dv; = [m,(1 - 0172
i=1
+v; - U;ldt — d[e(d - r)my (1 — 031 /2].
This result confirms that the Hamiltonian formulation
of the straight line electrodynamics presented in the
foregoing section is an inertial-frame independent
description.

It is obvious from (49) and (51) that the other trans-
formations of the inhomogenous Lorentz group, time
translation, etc., are also canonical transformations.

V1. EXTENSION TO #¥ CHARGES

The forces in (1) obey the principle of superposition.
If F;; denotes the force on the {th charge due to the jth
charge alone,

Py = vy X (B Xv;)
=e%(1 - v ij l,. if F]
( J 7’?]—[1 — (r” xvj)z]a 72>

then

N .
mi{li:Fi:Ll F“-, z=1-°.N, (63)
=1
is the system of equations for N interacting charges
correct to first order in e?. The primed § means j #:
in the summation.

When all the formulas and expressions which have
arisen so far are similarly relabelled, ¢, j replacing
1, 2 in the arguments of all quantities, then it is a
straightforward exércise to show that if

3 (1 X,
P, = miui+21 [ et CR AT

(64a)
al‘; 2,1 R

Q=r; —;(1 -3 - vv,) -[Z)'P”“’] , i=1-.-N,
d il
1 (64b)
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and

N

N
H:Zi(P§+m?)1/2__ E . (int) (65)
i=

Do =

comprise a Hamiltonian formulation of (63) for N=2,
then they comprise a Hamiltonian formulation for all
N. The quantities in (64) and (65) are defined through
the N=2 case, Uy, is the Uy(r, vi, v5) in (30), €y, is the
€ in (31), and so on.

The infinitesimal Lorentz transformation of the posi-
tions and velocities of the N particles can be written

ri=r; +€[v;(fi-r;,) - it],

vi=v; +elv,(i-v,) - i+ [m(1 = 03! /2
X(evyvy)  FJ(R- 1)} (66)
i=1-..N,

where the world point of the kth particle is “unshifted.”
That is, the transformation of the time is given by

14 ~
t'=t—-€f-r,

while the motion of each of the other particles is used

to express r,(#;) in terms of r;(,) = r;(#). If this trans-
formation is applied to the differential of the action for
the system (63),

¥y N, N,
ZI [(miu{ +ZJ U,'j) -dry +<L/ V”>'dV¢
j_

i=1 j=1
et

then the term in brackets is form invariant, to terms
in € and €%, to within the exact differential

a¥4
Z/ Qi:) H

i,i=1

N
—d2eld-rp)m(1- 0312,
i=1

Thus the Lorentz transformations are canonical trans-
formations with respect to (65) for arbitrary values of
N.

VIl. DISCUSSION

If the speed of light is restored to its proper locations
in the formulas which comprise the canonical formula-
tion, then these formulas may be expanded in inverse
powers of c% Thus the variables P, and Q, to terms of
order c™* are given by

Z 3 ez A
P, =myvy (1 2—12 3 )*2—7.6'2[V2+1‘(1"Vz)]
v3lvy

8m

These same results may also be obtained directly from
the relation of the canonical variables to the primitive
series representations of the Ostrogradski momenta
P,© and P;*’. For example, the canonical momentum
of the first particle is given to all orders by the straight
line component of (12). The expansion of the Hamiltonian

§1’_cz{ +[2(vy - v) +2(R . v (E - Vo)
+ 0% = (£ . vp)? vy + [V3(F - vy) + 303(F - Vo) — 2(F - V) (v - V)
L 3(?‘ . Vz)z(f' -y +F. Vg) ]i‘}’ , (673.)
Q]_ =ry - LZC{{Z(f‘ . Va)Vz + [(i‘ . Vz)z - U%]f‘}. (67b)
1
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to ct is
p? p P ) o2
+_1_;‘ +
H =Z;; (zmi emgc 16m‘c Q Zm m CzQ [(Pl Pz)

o2
+@Q-P)Q-P)]+ m(Psz -P3Q-py)?

PYQ - P,)* +3(Q - P)*Q - Pp)% - 2(P; - Py)?
+4BPY(P, - Py + £ PP, - By), (68)

where the rest energy has been dropped.

The first two terms in this expansion in inverse
powers of c? of the canonical formulation of the &*-
accurate, two-charge problem will be recognized as the
approximately relativistic treatment originally present-
ed by Darwin.® Though it turns out in the Darwin ap-~
proximation that physical position can be taken for
canonical position, the zero-interaction theorem sug-
gests that that possibility can in no order of relativistic
approximation be taken for granted. Certainly, in the
next order of approximation beyond Darwin’s, the physi-
cal positions r; cannot be canonical; that is to say, a
c™*-order Hamiltonian equivalent to (68) for which the
contrary would be the case does not, in fact, exist. I
it were otherwise a canonical transformation could be
found which would remove the interaction piece in
(6'7b); but there is no such transformation, A proof goes
as follows. Let a canonical transformation be induced
by the addition of an exact derivative dA within the ac-
tion integral for the problem so that

i [(P, Wry, vy) +5— A) dr; + (P, (r,,v,)+ ) dv,]

i=1
( _% a,

for example, replaces (60b). Since the Pffafian reduc-
tion to canonical variables follows the same rule, the
new Q’s are, from (49b),

1 oA
Qi=r;- N (1= o221 - yyvy) - (Pia)(rh ;) +8—v,)

1 oA
=Qi- ‘77‘ (1- Uf)l /z(| -V;V;) 'é'v—! . (69)

If A has the coefficient e? then to first-order in 2 (69)
may also be written [using (55)} as

oA
Qi aP ’

which is the familiar rule for the infinitesimal canonical
transformation of the Q’s. Suppose, now, thatQ, is
given by (67b) and Q; is to be r;. Since the difference
between these has a factor of c™*, it is only necessary
that

oA

—5;}; (70a)

=—- 'B—C{{Z(f' . VZ)VZ + [(f‘ . Vz)z - Uz]r}

in order that r, be canonical to order c¢*. Similarly, the
condition for transforming the index-exchanged (67b) to
Ty is

oA

2
e
—_— T + (- 2 - 2%
an 5;{{2(1‘ V1)V1 [(I‘ V]_) vl]r}. (70b)
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The nonexistence of a generating function A, thus, of
canonical variables r; to order c™, follows now from
the incompatibility of these two equations for A.

Even for equal masses, the fact remains that there is
no A. This obvious point is of interest because a func-
tion of the form
—xf(r, Vi, Vo) —;g(r, vy, Va) +-4 )+ (v1 +23),
whose first term is the ¢ component of (17), was in
1956 offered, and continues to be referred to, as
L%Xr, v, v,), the fourth-order correction to the classical
Lagrangian for a pair of identical charges.!® Since the
identical-charge condition promotes the radiation to a

-* effect, it was thought, correctly, that an extension
of the Darwin Lagrangian to embrace all c™*-order
terms would be a consistent calculation in this instance.
The fault lay in the construction of the extension where
the lower order equations of motion of the particles
were used to replace accelerations in the c™* term of a
valid Lagrangian equivalent to (4). The upshot is that
while, for example, e'-order terms replaced terms of
the type e*V; - ¢(r, vy, v;) in the original Lagrangian,
they also annihilated ¢®-order terms in the correct equa-
tions of motion through loss of the D®3/9¥; contribution
from the Ostrogradski operator. The attempt points up
the pitfalls of constructing approximations to equations
of motion indirectly through the Lagrangian.

The mention of canonical transformation brings us
now to the final question: Why not drop the £, given by
(31), which has been carried from the very beginning of
this discussion? Even though € has not been introduced
“artificially” but derives from terms that already ap-
pear in each of the Ostrogradski momenta for the com-
plete dynamics implied by (4)—the gradient 32/9r, re-
call, is the straight line approximation to the antisym-
metric, last term in (12)—still, the tendency is usually
to drop such a quantity when it becomes clear, as it is
here even before (61), that it plays no part in deter-
mining the equations of motion to the required order of
approximation. An answer to this question is more
easily and effectively presented in the light of some con-
sequences, so, for this purpose, let Q be discarded.

If the new, Q~less canonical variables are distin-
guished by overbars, then

Pi=mu; + U, (71a)

which, for i=1, for instance, is
2 v,

N
r Q= pdI7?

P1 =my + )

(1 -~V 'Vz)

0
+—]e?
or [e I‘U —(V1sz)

(1~ D' 2[02 = (v XV 2 2 4 £ o v =y - (Vg Xvy)
X]_n( (21 )Ilz[ﬂ- *(ulx“z)zlllz 2°\V1 2)]

(72)
Corresponding to 1—3i is the canonical coordinate

- 1
Q,:r,-—;q—i(l—v%)llzd—v,vi) a“i;"{ }y (71b)

Frederick James Kennedy 1863



where {}, is that given in (72). These canonical vari-
ables look no different in kind from their counterparts
with € which have already been given. The new Hamil-
tonian, on the other hand, clearly suggests what has
happened. The new H, which may be obtained by either
transforming (51) or, more easily, by rederiving (45)
with Q suppressed, is simply

H=(Pf+m)' /2 +(Py+md)' 72, (73)
a pair of free-particle Hamiltonians!“® This sort of re~
sult, though, has been anticipated. It has already been
observed in (33) that each of the momenta P, is a con-
stant of the motion to order ez, and Eqs. (62) show that
under an infinitesimal Lorentz transformation

P;=DP, - €i(P} +m})!/?,

D’ sy a
(PE+m 2= (P} +m) 2= €n- Py,

!20

the usual free-particle relations.

The two-charge problem is thus uncoupled somewhat,
and quite legitimately, but this uncoupling may not be
very useful. The act of “dropping” &, after all, amounts
to an infinitesimal canonical transformation of P;, Q;
generated by ~ 2; for from (29) and (49a), (41), (49b),
and (55)

P,=p, +5%(— Q), (74)

Qi=Q;- (— Q).

Inasmuch as t_[!e new Hamiltonian function H(Q,, 1_3,) will
be just H(Q;, P;) with an additional, “infinitesimal”
(i.e., e®-order) piece (the generator not being a con-
stant of the motion), it is evident that the interaction
term in the original H is in a position to be cancelled.

The following illustration will be useful. Here is the
simplest of canonical formulations:

H(x,p)= st kp(x), p=mx, (75)
where k denotes the strength of the force, If p=p+x(m/
p)¢(x), then H(p) =p*/2m to first order in k. The latter
function is still a Hamiltonian, H now, because the
transformation from p to p is an infinitesimal canonical
transformation. The corresponding transformation of
position is ¥ =x + k(m/p?) [ ¢(x) dx, and the generator is
k(m/p) [ ¢(x)dx. It can be verified by inspection that,

. to first order in x, the new momentum P is constant and
equal to mx, as required by Hamilton’s equations.

This instructive example also points up the fact that
in first order the free-particle format is a procrustean
bed; the description of a particle’s behavior will always
fit providing most of it is chopped off. Since ¥ = (p/m)?
+x,, the transformation equation for position imme-
diately provides x(f) as a first-order correction to uni-
form motion. This kind of truncation is precisely what
happens with the two-charge problem treated in this
paper when the @ is dropped, only in that case it happens
in the nonrelativistic limit. Since £ does not vanish in
the limit ¢ -, the transformation (74) does not then
reduce to the identity. Thus, for example, while Py
goes to m,v;, the transformed P;, from (72), goes to
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myvy — (€2/7) u3(# X ). The results exactly parallel those
illustrated from (75); the exact nonrelativistic
Hamiltonian

p) = __1_+_’LL+

H(r’ P P2 2m, 7

is replaced by the approximate one,
— —
7 2
" 2my  2m,

and so forth.

=H(r, py, p) + O(e*),

To sum up: The Hamiltonian given by (51) with P,,
Q, given by (49) is an approximation to order e? imply-
ing the approximate dynamical equations (1). The non-
relativstic limit of that canonical formulation happens,
however, to imply exactly, i.e., to all orders of €%
the nonrelativistic limit of (1), the Coulomb interaction.
Canonical transformations, which can be carried out
consistently to order €%, lead to new e®-order canonical
formulations, which still imply the dynamics (1), but
then in the limit, the Coulomb interaction may only be
implied with O(e*) error. The Hamiltonian (51), there-
fore, or any canonically equivalent Hamiltonian which
also contains the Coulomb limit exactly, provides an
e®-order correction to the Coulomb interaction. Hamil-
tonians canonically equivalent to (51) but which do not
contain the Coulomb limit exactly can only consistently
provide an e®-order correction to the uncoupled, uni-
form motion of the charges.
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APPENDIX A

Here it will be shown that there can be two ways to
construe a Lagrangian.

It will be convenient to begin with some additional
remarks on the generalized mechanics generated by
L(g;, ..., D"q;)®. The Ostrogradski momenta

oL

n=1
) _ _ p)si - -
P; —SZ‘:I( D) W, 1=0,...,n=-1, (A1)

satisfy the identities

oL
a(D™q,)’
oL
o(D%q;)’

where of course P means DP. The equations of motion
are

P =_pHr+ 1=0,...,n=2, (a2)

OE—P‘("-!')+ (A3)

pm=2L

g
If the dynamics is nondegenerate (so that L implies 2n-
order differential equations for each dimension 7), then
it follows from (A2) and (A3) that P{"’ depends on the
same variables as the Lagrangian, that

(A9)
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P =P®q;, ..., D" g, 1=0,...,n=1, (A5)
and that the Hessian of L does not vanish, that is,
aZL | 2P [(B) “
— 1)n-i-1 =d ———-’—-r-— #0
det“( 1) 7—3 anj)(_an—‘) ” et ,] a(DZn- - qj) |[ ) (AG)

1=0,...,n=-1.

The coordinate 7{’’ from the first half of the set of
independent coordinates
' =D*q;, k=0,...,2n-1, (A7)
is the canonical mate of P{’’. When the Hamiltonian ig
written

nel
H=L P - L™, ..., af* ), n{), (A8)

i=0

repeated subscripts denoting summation, and the non~
canonical 7{" is eliminated through (A3), then Hamilton’s
equations

oH

PO = —py, (A9)
k on;
. oH
"5”:ap, , 1=0,...,m-1, (A10)

are equivalent to
h{(;)z,’h(llrl), l:O,._.,Zn—z
. oL
(0)(1(0) b)) = s
Pi (T]j 5 ...,771 ) an{ )

an alternative expression of the dynamics implied by L.

It can now easily be shown that the Lagrangian
n-i
L', n) =2 PFRE ~HPM, 9@, ..., nf*d),  (A11)
=0

where H is the one in (A8), embodies yet another ex-

pression of that same dynamics. The equation of motion

for each n{"’ is the Euler— Lagrange equation; the set is
0H oP® ¢H

P®) "szapﬁa”.m_l_;—-\l
T Mi w0 PP anT g

1=0,...,n-1,

where the derivative on the right is only taken with re-
spect to H’s explicit 1 dependence, and

=lap®) =l 3H P®
-Z/_a_n{nhj(k)'i-z—aﬂ-g'a—nla’j:o, l=n,...,2n~1,
1 k=0 ¥ i

k=0

These are

n-l ®)

= aP . @y OH —pW) 4 oH _

ﬁﬁ?ﬁ(’h _an =P| —aﬂn’ 1=90,...,n~1,
(A12)

o (.., OH

2o = ﬂ;)——m =0, Il=n,...,2n=1. (A13)

ws0 O oP;

Clearly, if the Hamiltonian equations (A9) and (A10) are
satisfied, then so are these equations; but this is mere-
ly necessary. The reverse must algo be true if

L'(n®, 7)) is to be a Lagrangian equivalent to the ori-
ginal L(g,, ..., D"q;). That this is indeed the case can
be seen by writing out the set (A13) in reverse order
starting with the highest I, and recalling from (A5) that
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the derivative of P%’ with respect to %"’ vanishes when
k exceeds 2n-1-~1. Thus,

ap® ((0)_ aH\)=0
R Ny 3 ’

ony

P (m oH \ , P (.., 8H \_
mz‘,’r.z; b ~Pm "'a—mén—-zs KT =0,
and so on down to !=n. Hence, for the matrix of differ-
ential coefficients in (A13) to have an inverse it is only
necessary that the submatrices which appear in the last
term of each of the » equations of this triangular sys-
tem (A14) have inverses. That is,

det“a—%%naéo, 1=0,...,n-1,

which is just the condition (A6). The system (A13) there-
fore implies (A10), and (A12) in turn implies (A9).

(A14)

The result then is this: Suppose
n=1 .
L(q,, ceey anj) :IZ‘OPia )(qj’ v Dzn-z-1qj)qui

- E(qjy . -’Dzn-lq,')

implies one 2n -order differential equation for each di-
mension Z. It follows that

n-1
L'("b(”, hja ) =ZaP;(”(TI}O), cer, n]gz:n-z..l)):,h(l)
1=

- E(n;m’ ceny nj(Zn-l )),

where the P’s are the Ostrogradski momenta (A1) gen-
erated by L, and the ©’s independent coordinates given
by (A7), implies the same dynamics through 2z first-
order equations for each i.

The proof given here is quite simple owing to the as-
sumption (A6). A look at sBome examples, however,
will show that the conclusion can hold even if (A6) does
not,

APPENDIX B

The object here is to sum the straight-line compo-
nents of the series

~ (= DDy 22

w0 (2P0
I A is *! and B is 7* in Leibniz’s expansion

(_ D1D2)9+2AB= (_ 1)#+2§§(P + 2) (17 + Z) [D$+2.kDg¢.2_lA]

1=0k=) l k

(B1)

x(DhD}B]
and ®, denotes the pth term in (B1), then

(2p +1)(2p +2)D D%,y = - ¥’DiD}®, - 2(p + 2)(r - v;) D, D33,
+2(p +2)(r - v))DiD,®, - (p + 1)(p + 2)0D33,
- @+ 1)@ +2)v3D}d, +2(p +2)%(v; - vo) D1 D, 3,

+ terms involving the higher derivatives of vy, v,.

(B2)

Now, direct calculation of the opening terms of (B1)
indicates that the straight line portion of &,, which may
be called ¢,, is given by
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[p /2]
bp=t B ey (s -, (83)

1=0
where [p/2] has the customary meaning, p/2 for even

b, or the lower of p/2’s neighboring integers if p is odd.
As in the test, M, stands for £Xv,. The substitution of
(B3) in (B2) demands exceedingly tedious calculations
but the result confirms the conjectured form of ¢, and
provides a recursion relation in which q,(?) is given in
terms of the a,’s with lower integers I, and the neigh-
boring set a,4(0), a,4(1).-.a,,([p/2]). Observations

of the actual values of these coefficients from the first
few terms in (B1) leads to the solution

_ p!
&) =g yap — T - (B4)

Substitution of (B4) in (B3), and (B3) for the pth term of
(B1) gives then

15) teL2 p! 2 21 521
7’,,=0 ar 252D (112 — ZZ)!(Hxﬂa) (py - B, (B5)

s0 the problem reduces to determining the sum of (B5)
which is quite easy to do. First (B5) may be rearranged
as

}_ii (p+20)!

2,20 (0. .0\
7’0-01:0_2_““@25—!(”1#3) (b - 1), (B6)

which contains standard forms for the sums on p and [.
If the sum on p is taken first, (B6) becomes

1 e (ufud)’
702 (D 11— 3(p, - Mz)]z“1
whose sum is then

1 (Y vk )
7’[1— %(Pq ‘Uz)]( 4 1-%(“1'”'2)]
The final result may therefore be written
il 2 \? o \?
Lambwoag) (wa) >

1

[1 Ll TR R %(qu “2)2]1/21, )

-1/2

(B
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On properties of the singularity of the ground state in
certain classical Heisenberg models

Walter F. Wreszinski

Instituto de Fisica, Universidade de Sdo Paulo, Sdo Paulo, Brazil

(Received 25 March 1975)

We prove that for both the classical ferro- and antiferromagnetic Heisenberg models the infinite volume
limit of the ground state energy per unit volume of the system (Hamiltonian plus A times an operator) is
not differentiable at zero in A for some operators. This characterization of the singularity at T =0, which
corresponds to Fisher’s for positive temperature, adds to a number of others, which are to some extent
analogous to the several characterizations of phase transitions at T> 0. A comment is made upon a related
open problem concerning the ground state of the quantum antiferromagnetic Heisenberg chain.

As far as we know no explicit examples of Fisher’s!
characterization of a phase transition in terms of the
nondifferentiability of certain infinite volume correla-
tion functions with respect to external parameters
exist. In this note we study the analogous characteriza-
tion for T=0, in the case of some classical Heisenberg
(anti-) ferromagnets® and prove that it holds. This re-
sult on ground states of classical systems (for general
ground- state representations, see Ref. 5) adds to some
ather features of the singularity at T'=0, known for the
one-dimensional chain with nearest-neighbor interac-
tions, namely divergence of the susceptibility X, as g2
as B~ =, % existence of long-range order,? (infinite)
asymptotic degeneracy of the highest eigenvalue of the
transfer matrix as f—, % which are to some extent
analogous to some of the several alternative determina-
tions of a phase transition at T> 0 (see, e.g., Ref. 9).
To display one more property in this set of alternate
descriptions, whose interrelation is not entirely clear,
and the clarification of which is a major problem in the
theory of phase transitions, is the motivation of this
paper. For notational simplicity, we write out the proof
for the one-dimensional case and nearest neighbor in-
teractions. However, the result and proof of the forth-
coming theorem hold in any number of dimensions,
with a Hamiltonian for the region AC Z" (v arbitrary
integer) given by

Hy=-~ MEEAJ(i ~Dtet, (1)

where t;, ic A, are unit vectors, §;c=,ld(i) i< = by
stability!® such that A may be divided into two “sublat-
tices” A and B (AU B=A), with J(i~ j) <0 if ¢, both
belong to either A or Band J({~j)20ific A and je B
or vice versa. If A is the set of nearest neighbors of
B, the above conditions correspond to antiferromag-
netism, and if A or B are empty, we have a ferromag-
netic system (see Ref. 11).

Let t;, ic [0, N- 1], be vectors in §={xc R®;x*=1},
with ¢, =1, (periodic boundary conditions), with com-
ponents [, =(9,, ¢,)]

t(Q,) =t} = sinb, cos¢,,
t(Q,;) = = sinf, sing,,
£(Q,)=8=cosb,. (0s6,<n, 0<¢,<2n)
On A =¥ L¥(§,dQ,), with dR,=sind,d6,d¢;, let
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3, Q)= 23 i, )
Nay
Cylr, Q)= E tit%w (2b)
N-t
HPQ)=2J I b B=ty, J>0 ®3)

with + (resp. —) corresponding to antiferro- (resp.
ferro-) magnetism. The precise way in which a large
class of classical spin systems {including (3) and the
more general Hamiltonian (1)] is the limit, “as the spin
tends to infinity,” of the corresponding quantum spin
systems is described in Ref. 12,

Let
in 1
gy =20 3 L @ +aci @) (@)
and let
7700 = lim g, (). )

For fixed v, this limit exists by a simple adaptation of
the proof in Ref. 5.

Note that g}, is a concave function of X. Hence gt*
is also a concave function of A, whence (e.g., Ref. 13)
it has both a right-hand derivative d*g!*’ (\)/dx and a
left-hand one d"g'*’ (A\)/dA\.

Theovem: [d*g'® (\)/d\] (A\=0) # [dg'** \)/dr] (\=0).

Proof: A possible choice for our “sublattices” is
A={0,2,...,N}and {B=1,3,..., (N~ 1)} if Nis even,
or A=1{0,2,...,(N-1D}and B={1,3,...,N}if N is odd.
Clearly, for all N,

gg,*,), (0)=-2J.

Now consider the state given by =£}=0, wic[0,N~1],
and ti=+1, wic {0,N~1], in the ~ (ferromagnetic)
case, and f1=1, ¥ic A, and ti=~1, wic B, in the +
(antiferromagnetic) case. In this state and any 2,
(1/MHP (@) + 1C (r, Q)] takes the value (- 2J); hence
&) < ~ 2J for any A and for all N. Hence,

a/Mes, M) - g3,,(0)]<0 wa>0, wN.

Hence, (1/M[g#(0) ~g2(0)1<0, wA> 0, from which we
get
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d'g; (V) <
d7\ (=0)s0. {6)

Now,

- (*)(A)

—H =0

- 1im 1870 ~ g (- V)]
a0 A

.1
=lim <} lim min
ri, M| Hew gESH

(5 m0 @)

~ym min (L@ acpean)] @

A
Now, we clearly have

min
ac §¥

3 P @l=-1 ®
while
W/mIEP @) -

and this minimum value is attained, e, g., for
H=f=0 Vic[0,N-1], and =1 ¥ic[0,N-1]in
the - case, and fi=1 Wic A, and =-1 Wic B, in
the + case. Hence, we have

ACE(r, )]z - 11,

e P @) ~ AP, D)= 11, ®
By (8) and (9) in (7) we get immediately
"'g;h ™ n—g)= tim S SRS TN RS (10)

The results (6) and (10) imply the assertion of the
theorem. ®

Remark: Consider the one-dimensional isotropic
antiferromagnetic Heisenberg chain for spin S and
periodic boundary conditions, described by the
Hamiltonian (on 4/ =151,

2J
Hy= ;E (Si*Sie)s So=Sw, SP=30{",
o®, ke [1, 3], being spin matrices for spin S, and

J > 0. The ground state Q% of HY is unique, !! and we
define

L, =lim inf im inf(Q%, $353,95%)/S%.
r~ @ Newo

If L,=y>0, we may take this to mean that the one-

dimensional antiferromagnet exhibits “long-range order”

in the ground state.

Define
N-y

Cylr) = g;l 53820 So = Sy,
C (5,7, Q) =82CY (r, Q),
Hy (8, Q) =80 (Q),
fu,-(0,6)
= ‘fréi)p,, {(1/MHy(B, Q)+ AC 4 (5, 7, D}

- ;gij(‘” (1/N) Hy(1, Q).
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Now fy, (X, 8) is a double sequence of functions concave
in A, Hence

70, 0)=lim inf Limint fy,,(, 0)
P 0 >
is also concave in X. Now, fy,,(}, 0} is uniformly con-
tinuous (in (», N) as a function of 6. Hence,
S =f(0) ~F0) = 11m f, 6)=liminf hm 1nff,, S, 1)

7o

=liminf h}fvn inf {fN,ro" 1) 'fN,r(oy 1)}-
oo el

From the rhs of inequality (6.5) of Ref, 12, trans-
cribed to vacuum expectation values, we easily get

G es) /5

= X" 17(\) = lim inf lim inf{x‘ o2, 1)= liminf Jim inf }
rewo i ' rew i

liminf liminf l}vm inf ( 2

S w P wo

X UmXify, .0, 1), (11)
feoo

where

1
Faray 1)=- NB

o 189 exp- BlHY(1, Q) +ACu(L, 7, D]}
[a expl- BHy(L, ©)]

If

lim lim inf hm mf 11m Mify s 1)

*0, reew

@ )hmlnihmmfhm hm)»‘f,,,s(h 1)=%

7.0 Ne

by Refs. 6,7, which would follow if, e.g., for A in a
sufficiently small neighborhood of zero one had

[B((CN(IJ v, Q) - <cN(ly v, Q))l)zl]/]\]; const
(independent of », N, 8), (13)

where

<AN(T’ Q»A

fdsz”{exp BlHy(1, Q) +ACH(1, 7, Q Ay, Q)
JTas¥{exp - BlH,(1, ) +ACy(1, 7, 0]}

then we would clearly have L > ¥ > 0 for sufficiently
large S, on putting (12) into (11). Unfortunately, we have
have been unable to prove (12) {or (18)] to date. w
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A toroidal solution of the vacuum Einstein field
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This paper presents a new solution to the vacuum Einstein field equations for the static external
gravitational field of a toroidal singularity. This solution is unique among known toroidal solutions in that
the singularity is locally cylindrically symmetric; near it the spacetime geometry becomes that of an infinite

line mass (“Levi-Civita metric”).

. INTRODUCTION

Infinitely long, cylindrically symmetric systems have
played a useful role, since 1919, as tools for gaining in-
sight into general relativistic phenomena. For example,
much of the pioneering work on gravitational-wave
theory dealt with cylindrical systems;! and in recent
years cylindrical systems have been used as a testing
ground for ideas about highly nonspherical gravitational
collapse. ?

A key difficulty with all cylindrical analyses is the
fact that spacetime is not asymptotically Minkowskiian
far outside a cylindrical system: Just as the Newtonian
potential of a cylinder diverges logarithmically at large
radii (® = constXIn¥), so its general relativistic analog,
¥ =41nl gyl, diverges logarithmically. As a result, the
physical interpretation of cylindrical spacetimes is often
uncertain.

One way to remedy this problem is to deal with sys-
tems that are locally cylindrical, but are confined to a
finite region of space—e. g., needles (finite cylinders)
and thin rings (toruses). Unfortunately, such systems
are far more difficult to analyze than are infinitely long
cylinders. The purpose of this paper is to present a
tool that may be helpful in future analyses of bounded,
locally cylindrical systems. That tool is a static, two-
parameter solution of the vacuum Einstein field equa-
tions representing the external gravitational field of a
torus. Unlike other toroidal solutions, very near the
ring singularity this one is cylindrically symmetric.

Il. THE SOLUTION IN GENERAL
A. The Weyl formalism

In presenting the new solution, we shall use Weyl’s
formalism® for axially symmetric, vacuum solutions of
the Einstein field equations. The Weyl formalism is
couched in the mathematical language of a flat “back-
ground space” with cylindrical coordinates (p, z, ¢) and
with metric

do?=dp?+ dz% + p*d¢°. (1)

Two gravitational potentials with axial symmetry reside
in the background space: ¥(p, £) and ¥(p, z). They
satisfy the field equations

d).pn + p-lwm + l,b',,: 0’
Y,o=p,.2 =¥,

(2a)
(2b)

1860 Journal of Mathematical Physics, Vol. 16, No. 9, September 1975

e =200, 0 (2¢)

where commas denote partial derivatives. It is often

useful to rewrite these field equations in terms of the
gradient operator V and Laplacian V? of the flat back-
ground space (1):

'12_‘_)2 + 92

te, s Ve —
’ P apop 82’

ad
V:epg €37

(2a’)

V=0, |vr|=p(VP), {207

If Vi makes an angle 8, with the radial (e,) direction,
then Vy makes an angle 26, with the radial direction
(2¢”)

Corresponding to any solution of the field equations
(2) or (27) in the flat background space (1), there exists
a static, axially symmetric solution of the vacuum
Einstein field equations with the metric

ds® = — exp(2y) di* + exp[2(y — )] (dp® + d2)
+ p? exp(- 20) d>. (3)

Different solutions are obtained by choosing different
singular souces for # in the background space (point
sources, line sources, surface sources). If the sources
are confined to a finite region of the background space,
then both p and y will approach constants as (p? + z%)*/2
— o0 those constants can be chosen zero without loss of
generality, and the resulting physical spacetime (3) is
asymptotically Minkowskiian.

B. Toroidal solutions that are not locally cylindrical

The easiest way to construct toroidal solutions is to
choose, as the source of ¥ in the background space, a
singularity at p=»5, z=0 (ring singularity around axis
of symmetry). The simplest ring singularity is a pure
“line monopole, ” for which*

#=constXIn{(p - bY’ + z°]'/? near singularity,
i.e., at [(p-b)?+ 212 «b. (4)

Unfortunately, when 3 has this locally eylindrical form,
y and the physical metric are not locally cylindrical near
the singularity; Eq. (2¢’) forbids it. One cannot remedy
this problem by any other choice for the ring source

of ¥ (any superposition of line multipoles at p=5, z=0).°
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This situation is analogous to the case of spherical
symmetry: No type of point singularity in the back-
ground space (no superposition of point multipoles) can
lead to a spherical physical metric; Eq. (2c’) forbids it.
To get a spherical metric (the Schwarzschild solution),
one must choose as the source of y a “line mass” on the
axis of symmetry, with “mass per unit length” } (so
% =+%1np near it), and with finite length Az =2M
= (“Schwarzschild radius”). ®

C. The potentials ¥ and v for the new toroidal solution

It turns out that the background-space source for a
locally cylindrical, globally toroidal metric is even
more peculiar than that for the Schwarzschild solution.
The desired source is best understood by thinking of
the background space as filled with an incompressible
fluid that undergoes steady-state potential flow with po-
tential y and with momentum density p,v= V9 (p,, not
to be confused with p, is the mass density of the fluid).
The fluid is created in a line singularity on the axis of
symmetry (Fig. 1), and flows outward from there. The
singularity has a finite height, z=2q; and it pours out
fluid at a constant rate m. Once created, the fluid does
not freely expand into the background space. Rather, its
flow is constrained by two solid disks that are attached
to the ends of the source (2= +a) and that have radii b
(Fig. 1).

By the time the flowing fluid gets far from the con-
straining disks, » =(p?+ 2?)}/2>>p, its flow has become
nearly spherical with mass flow rate

m=4ur?p = 4mr®yp,, (5)
and potentials

Y=~(m/4n)r}, y=0(m?r2). (6)

Hence, the physical spacetime metric (3) has the
asymptotic form

FIG. 1. The flow of fluid in the (fictitious) background space.
The flow lines {rajectories of Vy) are shown dashed.
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FIG. 2. The toroidal topology of physical spacetime. The
events /© and/\ are located, in coordinate space, on the inside
faces of both the upper disk and the lower disk:¥ and ) are
located on both outside faces. The closed curves{ ; and Cz are
topologically linked through the ring singularity; the singularity
prevents them from being contracted to a point. The closed
curves 3C4 do not link the singularity; they can be contracted
to a point,

ds? = =[1~ (m/2n) 1 dE® + [1 + (m/2n)r*]
X (dp® + dz* + p* d¢®), (mn
from which we can read off the total mass-energy M of

the gravitating system in terms of the mass flow rate
m in the (fictitious) background metric:

M:ﬁ@/41y. (8)

Near the singular source the flow is in the e, direc-
tion (see Fig. 1), with

4nM =n = (2a)(2mp)0,, 9
and thus with
p=(M/a)Inp + const at |z|<a, p<max(a,b).

(10a)
The solution for  can be summarized mathematically
as follows: (i) y has the asymptotic form (10a) near the

singularity; (ii) i satisfies the boundary conditions
P,,=0 at z==2qa, for0<p<b (10b)

(“fluid flow constrained by disk”); (iii) everywhere o
satisfies

Vzd) =0 (IOC)
(“potential flow”); (iv) ¢ vanishes at spatial infinity
b==M/r as r=(p%+2%)/2— o, (10d)

The corresponding solution for y can be summarized
by: (v) y satisfies Eqs. (2b, ¢) everywhere; and (vi) y
vanishes at spatial infinity.

D. Topology of the new solution

The above discussion fixes the metric coefficients of
physical spacetime [Eq. (3)] but does not determine the
topology. The topology is fixed by two identifications:
(i) the outside face of the upper disk consists of the
same events as the outside face of the lower disk:
li‘xgl (t,p,2=a+e¢, ) is same event as
lim (1,p,2=~a-6,0 o<t
€

(11a)
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(ii) the inside face of the upper disk consists of the same
events as the inside face of the lower disk:

lim (t,p,2=a—-¢, ¢) is same event as
0 if 0<p <b.
lim (¢, p,z2=~a+e, ¢)
€=0
(11b)

These {wo identifications endow the singularity of physi-
cal spacetime with a toroidal topology; see Fig. 2.

E. Local cylindrical symmetry near the singularity

Near the singularity, i.e., for p «max(a,b), ¥ and y
have the form

d):(M/a) 1np+wo’

(12)

cf. Egs. (10a) and (2b). The corresponding spacetime
metric (3) is

ds® = - exp(2¢,) p** /2 at®
+ exp(~ 21!)0) [exp(Z‘yo) p2 Wia)H /a -2 )(dpz + dzz)
+pP /a de?).

y=(M/a) Inp+v,, b,and v, constant;

(13a)

In this region of spacetime, z is a periodic coordinate
that encircles the singularity

—-a<z<+a, z=-a is same set of events as z=+agq,

(13b)

and ¢ is a “longitudinal coordinate” stretching along

the singularity. Since the metric coefficients depend only
on the radial coordinate p, the geometry is cylindrically
symmetric. In fact, except for topological closure of

the ring (periodicity of longitudinal coordinate ¢), the
spacetime geometry (13) is that of an infinitely long,
cylindrically symmetric line mass {Levi-Civita’s”
solution of the Einstein field equations).

F. Free parameters in the solution

At first sight there are three free parameters in the
solution: M, b, and a. However, for arbitrary choices
of M, b, a there exists a singularity at the common edge
of the disks (p=b, z2=1a). One can see this as follows:
The field equation (10¢) and boundary condition (10b)

guarantee that near (p =5, z=zxa) P has the form
p=A+ B 7Y/2 cos6/2, (14a)

where 7 and § are polar coordinates centered on the
edge of the disks (Fig. 3):

7={(o- 0P +(z~aPP’?, @ =tan?{(a~2)/(b-p)]

near (b, a);
(15)

r=[p-by+(2+af/?, F=tan*[(~a-2)/(b-p)]+2n
near (b, — a).

The form of ¥ near the edge of the disks, as fixed by

Egs. (14a) and (2b’, c¢’), is

vy =C - 1B In7. (14b)
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The constants A, B, C are unique functions of M, b, a—
functions which one can determine by fully solving Eqs.
(10) and (2). Expressions (14) and (15), when inserted
into the physical metric (3), yield

ds? = ~ exp(24)[1 + 2B7 /2 cos(8/2)] di® + exp(- 24)
x{1~2B7*2 cos(6/2}]
% [exp(2C)7 -8 /2 (d7 2 + 72 dP) + (b ~ 7 cosB)? d¢?].

(16)

‘This metric with its square roots and half angles is ugly.

However, the coordinate transformation
R=7%2 ©=0/2
brings it into the nicer form
ds? = — exp(24)[1 + 2BR cos6]df + exp(~ 24)[1 - 2BR cos6)
x[4 exp(2C)R* B**(dR? + R? de?) + (b — R? cos20) d¢?).

(so © runs from 0 to 2%) (17)

(18)

The spacetime geometry described by this metric is
perfectly well behaved if B®=2/b; otherwise it possesses
a physical singularity at R =7=0—i.e., on the edge of
the disks.

Thus, by demanding that spacetime be nonsingular at
the common edge of the disks, we impose the constraint

LB(M, b,a)P =2/b (19)

and thereby reduce the number of free parameters from
3 to 2, 1t is easy to verify that in this case spacetime is
completely free of singularities, except for the locally
cylindrical ring source at p=0, |z2]<a.

I\, THE SPECIAL CASE OF A THIN-RING TORUS
We now specialize our solution to the case

b>a (20)

i.e., (radius of constraining disks in background space)
> (separation between disks). The spacetime geometry
in this special case will turn out to be that of a thin-ring
torus with (total mass-energy)=M <« (radius of ring)
=1b; see Sec. IVA, below.

In this special case we shall solve explicitly but ap-
proximately for the metric coefficients. The errors in
our solution will vanish in the limit a/p~ 0. Our solu-
tion will have different forms in three different regions
(see Fig. 4):

Region I: [{p ~ b)Y + 22]t/2 = (ab)/? always, and

|z| >a when p<b, (21a)
Region II: [(p = b)Y+ 22]*/2S (ab)*/? (21b)
Region III: lz| <a, (b-p)Z (ab)’ (21¢)

Note that Regions I and IT overlap and Regions II and III
overlap.
A. Region |

Region I is the “external region” that lies outside the
constraining disks and is bounded away from their edges.
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FIG. 3, Various coordinate systems used in the background
space. Note that

p=rsind=b+% cosd =b—7 cosd,

Z=7 cosf=7 sinf
_{ a-7gind for z>0, 0<8<2r,

“Y—a-7sind for z<0, 2r<B<4r,

In solving for i and y here, we pretend that the disks
are fitted tightly together so that the “fluid” in the back-
ground space emerges from a ring singularity at p=25,
z=0. This approximation produces

(fractional errors in ¥) S a/(ab)*/2=(a/b)*/2,

(fractional errors in y) S (a/b)*/?In(a/b)*/2P. (22)

The solution to the potential-flow equation vZy=0 with
a ring source at p=>, z=0 and with asymptotic form
(104) is

~(2/7WM B 4bp 1/2
ol (e RO (e o R G

=_2_4[ 1""0(%:')] it r=(p®+2*)/2>p

z-_—-gi ln(g;) [1+O(§)] if ¥=[(p =52+ 2%]'/% «b.

(23¢c)

(23b)

Here K(k) is the complete elliptic function. The corre-
sponding solution to Eq. (2) for y is®

1‘42k4 [ K2 2 y 2 2vpr2
y:m Ll +4(1‘k)KK+4k(1—k)K]
M2t v 5
+ T [—K® + 4(1- BAKK - 4(1 - 1)(2 - K],
K =dK /d?, (24a)
2.2 2
= - a2 [ﬂ%‘i +O(%,—)] if r>>b (24b)

M? { cosb 1 b\2 -
& 17—2-1)_{7—+0[3 (ln ?) ]} if » «b. (24c)

The coordinates (7, 6) used near infinity and (7, ¥) used
near the ring are shown in Fig. 3. The metric is ob-
tained by inserting expressions (23) and (24) into Eq. (3).

1863 J. Math. Phys., Vol. 16, No. 9, September 1975

B. Region I

Region II is the “intermediate region” near the com-
mon edge of the constraining disks. When solving for
¢ and ¥ in Region II we shall pretend that the edges of
the disks in background space are straight rather than
curved; i.e., we shall replace the axially-symmetric
potential-flow equation 3 ,, + p ', +¥,,=0 by the plane-
symmetric potential-flow equation

Voot =05 (25a)
and we shall set p=25 in the derivatives of y:

Ve=00,5=0,.%), 7,,=209,0,, (25b)
In doing so we make

(fractional errors in )< (ab)/2/b=(a/b)*’?, (26)

(fractional errors in ¥)S (a/b)/?[In(a/b)* /2.

Equation (25a) for i must be solved subject to the
“flow~around-the-edge-of-the-disks” constraint (10b).
The solution can be found by using the conformal trans-
formation

|v| <.
(27)

More specifically, in terms of the function u(p, 2) the
solution is

¥ =(M/7b)u — In(8rb/a)]

=-£m(§~’1) 1+0(2)] i #>a and |z|> 2Ly
g/ 7 ¥ |b=-pl

p+iz=>b+(a/m)[1+u+iv+ explu +iv)],

(28a)

(28b)

- n(5) ) oo g)prol) ]
if ¥<a (28¢)
z--ﬁi (b—b_—’3> -% [ln(?) + 1+ O(expl - w(b-p)/a])]
if (b-p)>a, |z|<a. (28d)

See Fig. 3 for definitions of the coordinates 7, 5, 7, 0.

By comparing Eq. (28¢) with Eq. (14a), we obtain the
explicit form of condition (19), which makes the physical
geometry nonsingular at the common edge of the disks:

I FIG. 4. Three
o regions, I, I,
20 | Q o I, in which
t \CD three different
L ~/ab ap]?roximate 80~
lutions are valid
for the case of a
thin-ring torus,
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B:=2/b«M*=nab. (29)
Henceforth we shall regard M and b as independent
variables, and a as the algebraic combination

as=M?/mb. (30)

The solution for y can be obtained from Eq. (28) for y
by integrating Eq. (25b) and imposing the boundary con-
dition (24c) at the outer edge of Region II:

M explu + iv)
V= rab Re [ln (1 + exp(u + iv))]

2 Yl 2 ”
s M [ac~os9 +O(;—21n£)]if’7">>a,{zl>———b-p

(31a)

~Tab 7 lb=pl ¢
(31b)
M2 a /2
& omab [1]’1(2—1[‘;—> +O(j7§"> ] if r«a (31c)
. M*§b-p a a (b~p)r
N'TF{ 5 +O[b exp( )]
ifb-p>a, |z|<a. (31d)

C. Region 11

Region ITI is the “inner region” between the disks and
bounded away from their edges. In solving for iy and 7
here we ignore the existence of the edges, thereby
making

(fractional errors in o and v) < a/(ba)* /%= (a/b)/?
(32)
and thereby obtaining the cylindrically symmetric ex-
pressions (12). The constants i, and y, in those ex~
pressions are fixed by matching onto Region IT [Eqs.
(28d) and (31d)]:

¥ =(M/a)In{p/b) - (M /nb) In(87b/a),
y = (M/a)’ In(p/b) — M?/nab.

(33)
(34)

1V. DISCUSSION OF THE SOLUTION
A. The vacuum solution

The asymptotically flat region of spacetime (the re~
gion of redshifts small compared to unity and of nearly
globally Minkowski geometry) is that region in which
4] «<1and |7] «1, For the thin-ring case (Sec. III,
where M?=1ab and a <« b) all of Region I is asymptotical-
ly flat; the strong-field regime begins in Region II. This
allows one to perform Newtonian analyses in Region I,
using Y =31Inlgy| as the Newtonian gravitational po-
tential. Straightforward examination of Eq. (23) shows
that a Newtonian observer in Region I will regard the
source as a thin ring of total mass~energy M and ring
radius b.

Notice that the relation M? =rab can be rewritten as

2M __ (“Schwarzschild radius” of ring) _ i@_) /2
) {“actual radius” of ring) -

b

~ (fractional errors in thin-ring formulas). (35)
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This says that, for rings of fixed mass M and ever de-
creasing ring radius b, the “thin-ring approximation”
a < b breaks down when b becomes of order the
Schwarzschild radius 2M of the ring. In this limit the
general solution of Sec. II remains valid, but the thin-
ring formulas of Sec. I fail.

B. The join to an interior solution

The author’s PhD thesis? develops mathematical tools
ior the analysis of infinitely long, cylindrically sym-
metric systems. Those tools should be applicable, with
fractional errors $0[(a/b)!/?}=0[M/b], in Region III
of our thin-ring toroidal solution. One tool of particular
interest is the following theorem, which can be inferred
from Sec. 8-M of the author’s thesis:

Consider an infinitely long, nonsingular material
cylinder which is momentarily static and which has, as
its external gravitational field, the Levi-Civita line-
mass metric with “spacetime character” D), ®1° De-
mand that the cylinder have nonnegative energy density
T on its hypersurface of time symmetry. Then at the
surface of the cylinder (point where T®#— 0) the “C-
energy” scalar U must be positive, 101

In the D“’ Levi-Civita metric, U is -« at the singu-
larity and increases monotonically as one moves radial-
ly outward. At some radius p,, U becomes zero; and
thereafter it continues to increase, approaching +% as
p —~=. The above theorem says that any material cy-
lindey with T°° >0, which generates the D’ Levi-Civita
metric, must have its surface outside the “critical
radius” p, at which U=0.

Region I of the thin-ring toroidal solution is endowed
with a Levi-Civita metric of character D%, The C-
energy scalar at radius p can be calculated by combining
that metric [Eqgs. (3), (33), (34)] with Eq. (7. 8) of the
author’s thesis ! the result is

U=3{1~(/p)l (36)
Thus, the critical radius is
p,=b. (37)

But this radius lies outside Region III—i, e., it is so
large that the line element is already showing noticeable
deviations from that of Levi-Civita! Thus, one is forced
to conclude that any nonsingular, momentarily {or
permanently) static torus which generates the thin-ring
metric and which has nonnegative energy density must
have its surface outside Region IlI—i.e., in Region Il
ov Region I.

This surprising (and, to me, unhappy) result is
intimately tied to the fact that the thin-ring toroidal
metric of this paper has only two independent param-
eters. Since the general Levi-Civita solution has two
free parameters (“mass parameter” and “canonical
radius”), ' one might hope to construct a locally cy-
lindrical, globally toroidal vacuum metric with three
independent parameters—two characterizing the Levi-
Civita singularity and one characterizing the radius of
the ring. By adjusting one of the singularity parameters
appropriately, one would then be able to build interior
solutions with given M and b and with arbitrarily small

Kip S. Thorne 1864



surface radii. However, such solutions will not be
possible unless one succeeds in adding a new free
parameter to the two-parameter vacuum metric of this
paper. I have tried, and failed.
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In the present series of papers we have been trying to bring out the unifying role of groups of canonical
transformations in the understanding of problems of accidental degeneracy in quantum mechanics. In Paper
III of this series we achieved our purposes for two-dimensional problems with discrete spectra. In the
present paper we turn our attention to problems with continuous spectra. There is the well-known case of
the free particle in the full plane in which the accidental degeneracy is due to the Euclidean group in two
dimensions, E(2). We show that in this problem the accidental degeneracy can also be explained by an
O(2,1) group of canonical transformations which provides a clue of the approach to more general
problems. We also derive explicitly the group 0O(2,1), and not only its Lie algebra, associated with the
accidental degeneracy of the Coulomb problem in two dimensions. The procedure followed in the above
problems is “sui generis” and does not provide a general approach. For the latter we discuss two new
problems with continuous spectra that have accidental degeneracy: the free particle in a sector of angle 7/g,
q integer, of the plane and the Calogero problem with continuous spectrum. For both of these problems we
find the canonical transformations that map them on the free particle in the full plane. It turns out that
their accidental degeneracy is explained then by the O(2,1) group of the latter problem, that we mentioned
above, rather than by E(2). The procedures developed seem general enough to encompass other problems
of accidental degeneracy in configuration spaces of two or more dimensions.

1. INTRODUCTION

In the present series of papers we have been try-
ing to bring out the unifying role of groups of canonical
transformations, in the understanding of problems of
accidental degeneracy in quantum mechanics. In partie-
ular, in paper III of this series, ® we indicated the gen-
eral approach one could follow in obtaining these groups
for two-dimensional problems whose spectra was of

the type
E y=C(kin+Fk,N)+D.

1,2,3

(1.1)

In (1.1) C, D are arbitrary constants and %y, k, rela-
tively prime integers. The energy E,y is then a linear
function of the quantum numbers » and N. Most two-
dimensional problems with accidental degeneracy, '8
that have a discrete spectrum, can be reduced to ones
in which the latter takes the form (1.1).

While the detailed discussion in paper III concerned
the problem of the oscillator in a sector of angle /¢,
g integer, or the Calogero problem, ® the structure of
the analysis clearly showed its validity for all spectra
of the type (1.1).

There are cases though, in which we have problems
with a continuous spectrum that show a remarkable de-
generacy. Again, for the sake of keeping the physical
ideas more clearly in focus, we shall restrict our-
selves to the lowest possible number of dimensions in
which degeneracy is present, i.e., two. Two problems
with continuous spectrum come immediately to our
attention. The first one is the free particle in which for
a given energy we have an infinite number of levels
corresponding to the angular momentum m =0, +1,
+2,-+-+. The second is the Coulomb problem where for
positive energies we have the same type of degeneracy.

In the case of the free particle the degeneracy cannot
be termed accidental” as there is in fact a group of
point transformations in the space x;, x5, the
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Euclidean group E(2), responsible for it. We shall show
in the next section that there is a simple group of trans-
formations in momentum space, which is a realization
of 0(2,1), that can be also associated with the degen-
eracy problem of the free particle in the plane. The
latter group will be particularly significant when we
proceed to develop a more systematic approach to
problems with continuous spectra that present
degeneracies.

For positive energies, the two-dimensional Coulomb
problem has a symmetry group O(2, 1) whose Lie
algebra is well known.® A simple way of deriving the
group itself will be given in Sec. 3 where first by the
standard dilatation technique we reduce the problem to
what we call the “pseudo-Coulomb” form® and then by a
point transformation it becomes a two-dimensional re-
pulsive oscillator. The latter admits a symmetry
group O(2, 1) which is a subgroup of the symplectic
group Sp(4) of linear canonical transformations related
with the dynamical group of the problem.!’

The procedure followed in the literature™?® for the
analysis of these two probléem has been “sui generis”
and we are left in the dark on what to do in other cases.
But are there other cases? We wish to draw on the ex~
perience in article II of this series to immediately sug-
gest two problems of interest.

The first one concerns a free particle not in the
plane but in a sector of angle =/q, g integer, whose
wavefunction vanishes at the edges of the sector. The
solution is elementary as it coincides with the function
describing the vibrations of a membrane in a wedge.
For a given energy we have an infinite number of states
associated with the eigenvalues u?q? (we take #=1) of
the square of the angular momentum p% where
=1,2,.--. Thus degeneracy is present and its explana-
tion is not as trivial as that of the free particle in the
full plane. The problem is discussed in detail in Sec. 4
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where we show how to find a canonical transformation
that maps the problem on the full plane, but then it is
not the E(2) of the latter that is responsible for acci-
dental degeneracy but rather the O(2, 1) that is dis-
cussed in Sec. 2.

The second concerns a particular case of the Calo~
gero problem® discussed in III. It had to do with three
particles in one dimension interacting through poten-
tials proportional and inversely proportional to the
square of their distances. Eliminating the center of
mass we have a problem in the plane with discrete
spectrum, But if we also eliminate the force propor-
tional to the square of the distance, i.e., the harmonic
oscillator part, the eigenstates of the Hamiltonian form
a continuous spectrum.!® As we show in Sec. 5 the
levels have an infinite degeneracy again characterized
by a quantum number j that can take the values L
=1,2,3, --. In a similar way that we did for the sec-
tor problem, we proceed to derive the generators of
the Lie algebra of O(2, 1) which relates all the degen-
erate states and thus provides us with an explanation of
the accidental degeneracy of this problem.

The approach and techniques followed in Secs. 4 and
5 seem to be applicable to other problems with ac-
cidental degeneracy and, in the last section of the pres-
ent paper, we outline what could be a general procedure
for situations of this type.

2. SYMMETRY GROUPS FOR A FREE PARTICLE
IN THE PLANE

The eigenstates of the free particle in the plane can
be expressed as

(2.1)

where J, is a Bessel function and, in units in which #
and the mass of the particle are 1, the energy is
E=3k?, (2.2)

The degeneracy in this case cannot be termed acciden-
tal as one normally attributes it to the Euclidean group
E(2) of point transformations in the space %, %,. The
generators of this group are

pu Ex1p2 = x2p1) b =D ifpz,

{Bm) =i™J (kY) exp(imp), m=0,+1,£2, -,

2.3
P=f5. 1=L2 9
which satisfy the commutation relations
[po,p=2p., [p.,p]=0. (2.9
In fact, using polar coordinates, we can write
p.=exp(xig)(p,xirp,), p,= zl 58;, po= zl 35
%, =3 (% Fix,) =37 exp(Fi9), (2.5)

and from the properties of Bessel functions*? we have
puEemy=k|Em 1), p,|km)=m|Em), (2.6)

thus seeing that the generators p, of E(2) will connect
all states (2.1) associated with a given energy 3%°.
We note also, for later use, that the states can be
written as
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|E+ imly=k""pl"™ | &y,

which is the reason for the choice of phase in (2.1).

2.7

The Euclidean group E{2) whose generators are (2. 3)
gives then the following transformation in classical
phase space

x,=exp(sia)x, —a,, p.=exp(Fia)p,, (2.8)

where @, a, are the parameters associated with ele-
ments of the group. In quantum mechanics we are in-
terested in the matrix representation of the generators
(2. 3) of the group E(2) with respect to the states (2.1)
of definite energy. To indicate a problem that we will
have to face in the sector and Calogero case, we write
these matrices explicitly taking for convenience k=1
and denoting by m’, m the row and column indices. We
have then

2= ||

m* ™ -3 -2-10123
e |
)
» v e -l
-8 fe+ o .. :
-2 1... 1 0 0 0:
=<1]--+ 0 1 0 0 (2.9a)
0 |.-.._0_0_ 1 O _________
1/...0 0 0 1000 -
2 0j1 00 .
3 0010 --
.
i, . o
]
p-= H 6m‘,m-l H
m ™| _3-2-10 123
1
A
-3 ... 1 0010
-2 ... 0 10:0
-1 1... 0 01,0
= 0 0 ooL1oo (2. 9p)
1 1010 « ..
2 j001 ..
3 1000 - ..
|
.
1 . . .
Do =M
mr ™ -3 -2-10123
1
]
-3 -3 0 00
-2 0 -2 o0
-1 0 0-10
= 0 ______9__2__0_(5 _________ (2.9¢)
1 1100
2 1020
3 ;003
]
]
]
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The matrices p,, p_ of course commute, as must be
the case from the operator relations (2.4), but had we
taken the submatrices in the lower right corner for
which m’,m=1,2,3, ..., they would not commute as in
fact they give a 1 for m’=m =1 and zero for all other
terms. This is as it should be, because otherwise the
states (2. 1) would not constitute a basis for an irve-
ducible representation (BIR) of E(2). But when we go to
the sector problem, where the quantum number u takes
only positive integer values, the possibility of iniroduc-
ing the E(2) group as a symmetry group raises
paradoxes such as the lack of commutation of p,, p..

This situation leads us to ask the question whether E(2)
is the only symmetry group we can associate with the
free particle in the plane. The answer is that there is
in fact an infinite number of ways in which we can in-
troduce symmetry groups in this problem, but some
are particularly simple. The one we wish to discuss is
the 0(2, 1) group whose generators are given in the
quantum mechanical picture by

L=l +il,=pp,(p.p) % I=h—il,=(p,p.)?p,p.,
IS:pw—%' (2.10)

we note that p,p_ is both the Hamiltonian of the free
particle and the Casimir operator of E(2) and thus it
commutes with the generators (2. 3) of this group and
therefore also with the operators (2. 10) which are
essentially a part of its enveloping algebra. The
matrix representation of the operators (2.10) with re-
spect to the states (2.1) is given by:

1= " m 6m‘,rru—l “

m ™ _3-2-10123

-3 ). .

~-21--=-3 0

-1} 0 -2
0 0

LB =

L= (m= 18,0 syl

m " -3 -2-1 0123

-3 0
-2 .. 0
= ~1]-- 0
0 0

O = fo10 o
i
I
|
I

(2.11v)

2
3
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13: H (m - %)5m‘m ”

m " -3 -2-1 0123
. . . . A
7 |
-3 |- =3 0 0, 0
-2 4. 0= 0 0
-1{.. 0 0-~-3 0:
= 0 -+ 0 0 0 -3, (2.11c¢)
______________ it
1 12 00
2 10 20
3 10 0 3
P . .
]
]
These matrices clearly satisfy the commutation
relations
(4 L]=+L, [L,L]=-2I, (2.12)

and Ij, I, Ij are Hermitian. Thus they are associated
with the Lie algebra of O(2, 1). We note though that,
contrary to what happens to p,, p., p, of the Euclidean
group, they are reducible into the upper left and lower
right blocks, This we expect as the Casimir operator
becomes

P=IJ -I(I;+1)=4%, (2.13)

and thus it contains'® the two representations D}/2, D'/2,

One can then argue that while the group 0(2, 1),
whose generators are the operators (2.10), is a sym-
metry group, it is not the one that explains accidental
degeneracy as it does not associate a single irreducible
representation with all the states of a given energy.
This problem can be avoided if to the infinitesimal
transformation associated with the generators I, I; we
add the finite reflection transformation R on the x, =0
axis, i.e., the change ¢ ~ - ¢@. The matrix representa-
tion of R on the basis (2. 1) has then 1 on the anti-
diagonal and 0 elsewhere, and thus the states (2.1)
from a single BIR of the group generated by I,, I,, and
R. This is in entire analogy with the situation of the
orthogonal group14 0(2) which includes reflections and
whose BIR are two-dimensional, and its O*(2) subgroup
under which the representation is reducible.

We have found an alternative way of explaining the
accidental degeneracy present in the problem of the
free particle in the plane. Its interest lays not so
much in its relevance for this problem but rather in
the fact that if we disregard the reflection R the rep-
resentation is reducible. Thus when we discuss the
particle in the sector 7/q, q integer, where the quantum
number p=1,2,3, - is restricted to positive integers,
we will be able to use the lower right matrix in (2. 11),
to show that the states belong to the single irreducible
representation D}/2 of 0(2, 1).

Before turning our attention to the other problems we
want to discuss in this article, we actually like to ob-
tain explicitly the O(2, 1) group whose generators are
given by (2.10), as a group of canonical transforma-
tions in classical phase space. For this purpose we
note that, using the correspondance principle, we have
to think of p, as associated with large quantum num-
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bers and thus we disregard the 3 in the definition of I;.
We have then

II :plpo(ptp-)-l /2, Izzi’apv(i”l)-)'l /2’ Is =pw

(2.14)
and the group can be obtained by applying the operator!®
expl ally),,] explB(I,),,] expl(l5),; ] (2.15)

to the vector in phase space. The classical operator
(I)opy 7=1, 2,3 is defined by

& (a0 al;, )
W= 23 G~ 555 ) (210
and thus
(IJ)onF ={I!9 F}; (2.17)

where the last parenthesis is the standard Poisson
bracket.

The application of expla(l;),,] is trivial and gives for

the momenta the transformation
pi=p, cosa +p, sina,

pz=—p; sina +p, cosa. (2.18)

For exp[B(l,),,] we note that from the Poisson bracket
relations

{h,Ly=-1, {I,n}=1, {5, L}=1, (2.19)
we have
L I c 0 s||L
I | =explBl),]| L |=|0 1 0f|L,], (2.20a)
I I s 0 ¢l
where
c=coshB, s=sinhf. (2.20b)

Taking the definitions (2.14) both for the primed and the
original I;, we finally obtain
pr=/I)(p12 +p2) 2 =[epy +s(pf +p9 /2]
x[spy(pF +p3)1 /2 + I,
b= L/1)(ps% + 0270 2 = polspr (P} +09) /2 + ],

where we made use of the fact that as the Poisson
bracket of p,p_ with I; is zero we have py2 +p,2 =p? +p3.
We can check this directly both in (2. 18) and (2.21).

(2.21)

The canonical transformation associated with the
generators (2. 14} of 0(2, 1) is then a rather simple
point transformation in momentum space. To get the
corresponding transformation in the configuration varia-
bles we only note that we can use the quantum relation

r_ .9 2 opr , 0 2 Py _
xl_lap/_,éia lla_‘—kzgl'é—/xk: 1—172:
{ D1 Opn D1

and thus derive them straightforwardly.

(2.22)

We have obtained the group of classical canonical
transformations associated with the symmetry group
0(2, 1) of the free particle. We now proceed to derive
the corresponding group for the Coulomb case in the
continuous spectra, before turning to the new problems
th~t suggest a general type of attack in these situations.
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3. SYMMETRY GROUP FOR THE COULOMB
PROBLEM WITH CONTINUOUS SPECTRUM

The two-dimensional Coulomb problem with continu-
ous spectrum requires solving the Schrodinger equation

(P2 RYy=(2vA)1y, (3.1

where R, P are coordinates and momenta in atomic
units in which the energy can be denoted by

E=(2v%)" (3.2)
with v being any real number.

As is customary for this problem®® we introduce the
dilatation transformation

p=vl'R, m=vpP, (3.3
so that the equation (3.1) becomes
sp(r? = DyY=v. (3.4

We have denoted the operator on the left-hand side of
(3.4) as the Hamiltonian of the pseudo-Coulomb prob-
lem. Introducing polar coordinates p, 9, for the vec-
tor p, Eq. (3.4) becomes

1 19 0 1 22 ) _

zp(’pappap“ﬁasz"l Y=vi, (3.5
which by the point transformation

p=37% 9=29, (3.6)

reduces to that of the repulsive harmonic oscillator,
i.e.,
1 19 @ 1 22
H‘”=§(— 7o T P —’2)4’:2”-
Thus we concentrate on the latter problem when we dis-
cuss accidental degeneracy and the symmetry group
responsible for it.

3.7

From (3.7) it is clear that for each value of v [that
determine through (3. 2) the energy of the Coulomb
problem] we have an infinite number of states charac-
terized by the eigenvalues 0,+1,+2, ... of the angular
momentum p,.

What is then the symmetry group of the repulsive
oscillator and, more specifically, what are the gen-
erators of the Lie algebra of this group?

In Refs. 10 and 15 we showed that dynamical group
of the two-dimensional attractive oscillator was the
four-dimensional symplectic group Sp(4) whose gen-
erators are

xixja pipi’ %(xipj +pjxi); i’j: 1’ 2,
10,15

(3.8)

As these operators from a Lie algebra, and as
linear combinations of them give p% - #* (the Hamilto-
nian of the repulsive oscillator), we expect that the
generators of the Lie algebra of the symmetry group
of our problem will also be linear combinations of
them.

To construct these generators explicitly we first in-
troduce creation and annihilation operators in spherical
components by the definitions

1
N =Xz=12 Py,

’Sﬁ:x*'}'iépw 8.9
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where we use the expressions (2. 3) and (2. 5) for p, and
%x,. The 7’s and £’s commute among themselves and
furthermore

[gt! nt]z 1, [gﬂ n#]: 0. (3.10)

From the definition (3.7) of the Hamiltonian H for the
repulsive oscillator, we have also

H==(nn.+EE), (3.11)

We can now show trivially, using (3.10), that the
operators

T,=Ty +iT,= B+ 83, T.=Ty-iT,=3(F+£),

Ty=%(ME. - N.E) =3P, (3.12)
satisfy the following commutation relations

(8, T.]=0, [H,T;]=0,

[Ty, T.}=+T,, [T, T]=-2T;. (3.13)

As furthermore Ty, T,;, Ty are Hermitian, we con-
clude that they are the generators of a Lie algebra of
0(2, 1) corresponding to the symmetry group of the re-
pulsive oscillator.

To find out to which irreducible representation of
0(2, 1) belong the eigenkets of the Hamiltonian, we first
define them fully by the equations

(3.14)

As T, is half the angular momentum we can expect m
to be integer or half integer, but because of the rela-
tion ¢ =(9/2) given in (3.6), we see that the dependence
on 9§ will be precisely exp{im9) and thus the pseudo-
Coulomb problem will be single valued only if m takes
the integer values m=0,+1,+£2, ... Furthermore, we
normalize the states through the relation

H|vm)=2v|vm), T,|vm)=m|vm).

(3.15)

To find out the effect of the operator T, on the kets
|vm), we note that from the commutation relations
(3.13) we have

T, vm)=Av, m) [vm 1),

@'m’|vmy=06(v' = v)6,4,.

(3.16)

where we still have to determine the coefficients
A,(v, m). For this purpose we note from (3.11), (3.12)
that the Casimir operator of the 0(2,1) group is given by

Te=T,T, - Ty(Ty+ 1) =L(H2+1).
We obtain then
W'm'| TeTs|vmy = | A (v, m) |26 = v)6 o,
=(u'm’| T+ Ty(Ty £ 1) | vm)

|

=[P +3) +mim+ 1160 = v)6,,... (3.17)

Thus, making the usual choice of phase factor, 13 we
have

Ay, m)=[(A+) +mm =13 (3.18)
and identifying v? +§ with'®

E+i=a(1-)), (3.19)
we obtain for A the value

A=3%iv, (3.20)

which indicates that the states |vm) are BIR of 0(2,1)
in the principal series.'®

We have proved that the Lie algebra of 0(2, 1) whose
generators are the Ty, i=1,2, 3, is responsible for the
accidental degeneracy of the repulsive oscillator and
thus also of the pseudo-Coulomb problem. What is the
group itself of canonical transformations in phase
space? Again we have to apply the classical operator
(2.15) to a vector in phase space replacing the I; by T}.
It is more convenient to discuss the transformation of
the vector (7., &, 7., £) of creation and annihilation
variables. Expressing (T;),, in terms of these variables
[see Eq.(3.1) of Ref. 2] we immediately obtain that the
application exp[ a(T,),,] to the vector gives

n=exp(Fia/2)m, £.=exp(xia/2)E,. (3.21)

For exp[B(T,),,] we note that the operator can be written
as

(T2)op = —2!:; [(T+)op - (T-)op]

1 ] a \_ 1 0 2
2 ("’a&f g*am) 2 ("'agf 5 an.>’ 8.22)
and thus we obtain

% N 0100

un
4 £} 41000 £,
T’: =(T2)op 7. =§ 0001 7. (3. 23)
34 £ 0010 £.

The exponentiation of (Ty),, is then immediate and com-
bining the effect of all the operators in (2. 15), we
obtain

(g§)=M(a, 8, y)(’g:), (2, €)= (., £IM™(a, B, ),

(3.24)

where the matrix M(q, 8, y) is given by

M(a, B,v) =

exp(—iy/2) cosh3p exp(- ia/2) exp(iy/2)sinhi8 exp(-ia/2)

(3.25)

exp(— iy/2) sinh3Bexp(ia/2) exp(iv/2)coshzBexp(ia/?)

Clearly, when we write the Hamiltonian (3. 11) as

H=- (1., s-)(’,;?:),

we obtain its invariance under the linear canonical
transformations (3. 24). It is interesting to note that the

(3. 26)
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| transformation affects (,, £,), (., £.), independently
and for each of them it corresponds to the 0(2,1) [or
equivalently the SU(1, 1) or $p(2)] dynamical group of
the one dimensional oscillator, !¢

From (3. 24) and (3. 9) we can express the symmetry
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FIG. 1. Trajectory of a free particle in a sector of angle n/3.
The actual trajectory is given by the full lines. The straight
lines formed by a full segment and its extension by dotted seg-
ments, represent the trajectories given by the method of
images. All three of these straight lines map on a single line
in the plane X;, X, related to the motion of a free particle in
the full plane. Point 1 is the image point of 0 with respect to
the reflection line at angle /3. Point 2 is the image point of 1
with respect to the horizontal reflection line.

group in terms of x,, x_, p,, . and, using (2. 5), in
terms of , ¢, p,, p,. If we want to have this group in
terms of the phase space vectors of the pseudo-Coulomb
problem, we have to make use of the point transforma-
tion (3. 6) and the corresponding relation for the
momenta®
Ty=2Dy, PT,=37D,. (3.27)

4. THE FREE PARTICLE IN A SECTOR

We consider a free particle in a sector of the plane
of angle 7r/q, q integer. In Fig. 1 we draw the sector
for the case g =3 and also show a classical trajectory
(the full line) which was obtained by using the method
of images.

The eigenkets of this problem are given by
|kp) =441, (k) sin(ug )
= 3k (pLI - pt9) | R0,

We designate them by round brackets to distinguish
them from the angular kets associated with the states in
the full plane. The last expression in (4. 1) comes from
(2.1), (2.7) when we remember that J,(x) = (- 1)"J_, (x)
for m integer.

p=1,2,..-, 4.1)

To each energy £+ 2% we have again an infinite number
of states corresponding to the values (1=1,2,3,---. We
note that because of collisions with the edge of the sec-
tor the angular momentum changes sign there, but pf,
remains an integral of motion and in fact

P2 kp) =q?u?|ku).

We wish now to find the symmetry group that is
responsible for the accidental degeneracy of this prob-
lem and, more specifically, the generators of the cor-
responding Lie algebra.

(4.2)
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As a first step in this direction we proceed to derive
operators, which we designate by p,, p., p,, whose
effect on |ku) is similar to that of p,, p., p, on lkm),
i.e.,

Pulku)=k|kpx1), B,|ku)=ulkp). (4.3)
To achieve this purpose we introduce the auxiliary
operator

a*=pl+pl, 4.4)
and note from (4. 1) that

o |kp)=k%{|kp +1) + [k - 1)}, (4.5)
where this equation holds for all u=1,2,3,-- if we in-

terpret the undefined round ket|20)=0.
Combining (4. 2) and (4. 5) we get that
(%, o*]|ku) =k%g2(2n +1) [kp +1) = %% @p - 1) | hp - 1).
4.6)

Using (2. 4), the commutator on the left-hand side can
also be written as

(83, @)=p,[b,, @' ] +[D,, ¢']p,
=0, [0, &N +2[p,, *p,

=q%a* +29(p% - PP, 4.7)
so it follows from (4. 5), (4.6) that
H(PT+09 = (2= pD(ua)p, ]| fp) =k [ku £ 1). (4. 8)

As in paper III’ we can now define the operator |p,|
as the one whose eigenfunction is |2u) but with eigen-
value pg, i.e.,

[po| k1) =qu|kw). . 9)

Furthermore, as k%! is the eigenvalue of (p,p.) @V /2,
we can write

Du=3{(p4+0D % (63=9) |1, [P, .0 4072, (4.10a)
po=a"p, . (4. 10b)

At first sight it would seem that the set of states
Iku) of the sector problem are BIR of the Euclidean
group E(2) as from construction the Eqs. (4. 3) should
hold. But this is not true, because from the remark
after Eq. (4.5) we have that for u=1

p.|r1)=0, (4.11)

and thus with the operators (4.10) the Eqs. (4. 3) are
not satisfied in all cases. The reason for the paradox
can be seen immediately when we turn to the matrices
P+ P-, D, of (2.9) when we are dealing with the parti-
cle in the full plane. As we indicated in Sec. 2, the
lower right submatrices associated with indices m, m’
=1,2,3,--. are not a representation for the Lie algebra
of E(2).

At this point we can turn though to the 0(2, 1) group
discussed also in Sec. 2. The submatrices there do
follow the commutation relations associated with the Lie
algebra of 0(2,1) as the representation is reducible,
Thus if we introduce now the operators

ir =5+§w (5*5.)'1 /2y i- = (5-@5-)-1 /2505-’ fS =Ew - —é_,
(4.12)
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their representation on the states iku) will be given
precisely by the lower left submatrices of (2.11), i.e.,
the representation would be D1/2,

Classically the group of canonical transformations
responsible for accidental degeneracy of the sector
problem is then given by (2. 18), (2.21), (2.22) when we
replace py, ps, %y, x; and pi, pj, x{, x5, by the corre-
sponding variables with bars above. In turn the rela-
tions between p,, p., %,, % and the p,, p_, ¥,, ¥. can be
obtained from (4. 10) when we go to the classical pic-
ture. In there we have two cases to consider p, = |p,|
>0and p, == |p,1 <0. In the first case we get

5’ :piiw)ﬂp:l-a) /2’ 5_ :pil-a )/Zp.(-iﬂl)lz (4.132)

(4. 13b)

and, as these are functions of p,, p_ only, we can make
use of the relations ¥, =13/8p,, x,=19/9p,, to obtain

- q+1 iL_(a-i)/? q-1 p__)(m)/z
R
- f[q-1 & (a+1) /2 (q+_1)(&>(q-1)/2

x-—(—'——zq p_> s\ N5 x.. (4.130)
For the case p, <0 a similar analysis gives

E+ =pii-q)/2p£1w)/2’ (4. 14a)
B =pas /2pt-a /2 (4. 14b)
_ q—1 &(hq)/Z q+1 (& (q~1)/2

x*‘( 2q >(p_) x++< 2q P-) Xoy (4. 140)
_ g+1 &(q-‘l)/'l ( _1)(& (q+1) /2

x-—(—"zq Xp) . e I

Equations (4. 13) and (4. 14) provide, respectively,
the canonical transformations that maps the problem
of a free particle in a sector on the problem of a free
particle in the full plane, for p,>0 and p, <0.

We shall show explicitly for the case g =3 that the
mapping has all the features we expect, Without loss of
generality we can start our classical motion at a point
(indicated as 0) on the x, =0 axis a distance 7, from the
origin. The angle of the momentum with this axis could
be denoted by 6 and thus our initial conditions at point
0 will be

(4. 15a)

To use the method of images, we need to know the mo-
tion starting at the point 1, which is a reflection of the
point 0 with respect to the line ¢ =7/3, and also at point
2 which is a reflection of point 1 with respect to the
line ¢ =0. The initial condition at point 1 is then

Xy = 37y, b=k exp@if).

xly =57, exp(Fi2n/3), pl, =k exp(¥i6) expi2n/3),
(4. 15b)
and at point 2 it becomes
xly =37, exp(i2n/3), pl =kexp(:if)exp(Fi2n/3).
(4. 15¢)

At the starting point 0, p, > 0 and so we have to use
the transformation (4. 13) to get the initial values of the
new coordinates and momenta
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P =kexp(xi36), x,=[Zexp(¥i26)+3exp(F 146))%7,.
(4.16)

Now p, continues to conserve its initial value in its
motion until the particle hits the wall at ¢ =7/3. Then
the momentum is the one indicated at the point 1, but
as now we use formula (4. 14) as p, <0 we continue to
obtain p, =k exp(+£36). Finally the particle hits the wall
¢ =0 and its motion originates now from point 2. We
use then (4.13), with the values of (4. 15¢), to get again
the same value for p,. Through the motion, and inde-
pendently of the collisions with the walls, we get

b=k exp(x £36). 4.17)
Furthermore as we see from (4. 13) and (4. 14) that

H=3p,p.=3D.b., (4.18)
we have from the Hamiltonian equations of motion
dx: oH - — -, —
_dfz_é-ﬁ_ =3Py OT X, =3P +%4. (4.19)
*

Thus the trajectory illustrated by the solid line in Fig.
1, translates in the configuration space x;, x, into the
straight line given by the parametric equations

%y =kt cos36+(3cos26+3 cosdd)r,,
%, =kt sin36 + (2 8in26 + 3 sind )7, (4.20)
As a last point we consider some relations between
polar coordinates and momenta in the old and new sys-

tems. Using Egs. (4.13) or (4.14), we have

.’vap‘r =?€,§++§_5_=x*9++x_p_=1’P,, (4- 21)

g =i (x,p,—x.p.) for p,>0
g (= i)x_p.-x.p,) for p, <0

=q|p, | 4. 22)
7=+ (1 - ¢ 2% 1P} (p.p.). (4.23)

The transformation that maps the free particle in a
sector into a free particle in the full plane is thus a
fairly complicated one, There is though a particularly
simple case when g=1, i, e., the half plane. We have
then from (4.13) and (4. 14) that

Zw =—z'x+5,,—7_1_>_):{

(4. 24a)
(4. 24b)

P.=b,, P.=bp., X.=x, x.=x_, for p,>0,
szp-y T’-:pﬂ }*zx_, ;-:xﬂ forp«,<0.

Having found a realization of the O(2,1) group on the
states lkp) and the canonical transformation that maps
the problem of the sector on the full plane, we turn to
the Calogero problem.

5. THE CALOGERO PROBLEM WITH CONTINUOUS
SPECTRUM

As a last example of accidental degeneracy we dis-
cuss the Calogero problem with continuous spectrum
that was mentioned in the Introduction, The Hamilto-
nian, once we eliminate the center of mass motion and
the oscillator force, takes the operator form™ 1!

_iii,e 1), errl) .1)
TTo\rar ar 2 og?) 2r'sin®3g’ ’
which still admits the integral of motion
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97(r~1) 193
=42 g INT=2) =9
M=p,+ Ty * Pe=i%g
In (5.1), (5.2) the strength of the inverse square poten-
tial, denoted by £ in Ref. 3, is replaced by 7(7-1)
where 7 is any real number larger than 1.

(5.2)

The nonnormalized eigenstates of H, M* corre-
sponding respectively to the eigenvalues®!!

kY, 9(N+1), (5.3)
are then given by
|EN) = Iy usa (k) 8in"3Ch(cos39), N=0,1,2,---,
(5. 4)

where C} is a Gegenbauer polynomial'? and JaNegr @
Bessel function of the orders indicated. We denote the
state by a square bracket to distinguish it both from the
free particle in the full plane and in the sector.

From (5. 4) we see that associated with the energy
E = 3k? we have an infinite number of states character-
ized by N=0,1,2,-- where this last quantum number
is related, through (5.3), with the eigenvalue of A2,
From the experience that we had in the previous prob-
lems, it is clear that an essential step for finding in
this case the group responsible for its accidental de-
generacy (and specifically the generators of its Lie
algebra), is to determine operators that take us from
the state |kN] to states |ENz1].

In the previous section we found for the sector prob-
lem an operator &* that gave a linear combination of
{2u +1) and |ku —1). It is therefore necessary to find
a corresponding operator for the Calogero problem.
Fortunately in the bound state Calogero problem this
type of operator was provided by Perelomov® and we
designated it by B* in Eq. (4.12) of I, The present
problem differs from the bound one by the fact that
there is no harmonic oscillator potential. Thus it
seems convenient to write the operator B* not in the
dimensionless units used in II but only with Z=m =1,
keeping the frequency w as a parameter. This implies
only replacing » by w'/%, p, by w/%, and ¢, p, re-
main the same. Also using the notation for p,, x, given
in Sec. 2 of the present article, we can write B* as

B*= (wz/zx__ iz /2p*)3 + (wuzx’ - i%w-t /21,_)3

N 27 _7(r-1)

1 ortsin3y [(w!/%r —iw1 /%) cos3 e

+i(37) w1/ %, sin3¢], (5. 5)

where again we replaced the strength g of the inverse
square potential by 7(r— 1) where 7 is any real number
larger than 1. In the present units the Hamiltonian // of
the bound state Calogero problem can be written as

H=zwp,p +3wr? +97(7T- 1)(2wr? gin?3 )™, (5. 6)
and as shown by Perelomov™®
(#,B*]=3B", (5.7)

If we multiply // by @ and B* by (- 40/2), of course,
still we have, the relation

[0, - 4w3/2B*] = 3w(- 40*/2B"),

but now passing to the limit w — 0 we see that

(5. 8)
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Hmwl/ =H (5.9
w=0

and
£ =lim (- 4w3/%B*)
)

== i3(p3+p3) ~ 277(7— 1) (#? 8in*3¢)" [~ ip, cos3 ¢
+1(37)"p, sin3 @], (5.10)

where H is the Hamiltonian (5. 1). From (5, 8) we con-
clude then that

(7, 81=0, (5.11)

and thus we have found a new constant of the motion for
the Hamiltonian of the present problem.

The application of 8* to |kN] then should give neces-
sarily a linear combination, with respect to N, of the
same type of states. As the radial derivatives do not
exceed order 3 we have from the properties of the
Bessel function!? that we only expect at most combina-
tions of 1kN+1], 1EN], 1EN-1). In fact a straight-
forward though lengthy analysis, using properties of
the Bessel functions!? and Gegenbauer polynomials, 1
leads to the equation

B.Ikleka[_(zx:;T) |kN+1]+<EziNa+%l> [eN - 1]]
(5.12)

In (5.12) we have an expression that is the equivalent
for the present problem of Eq. (4. 5) of the sector prob-
lem. In fact, it essentially reduces to it for the case
g¢=3 when 7=1,

The next step also parallels the procedure of the
preceeding section. From the integral of motion M? of
(5. 2) we have®?®

M?|EN]=9(N + 7)?|RN], (5.13)
and thus we immediately obtain
(1%, 4] N = 96" | ]
N+1
- 92N+ 2T)k3[(m)lk1v+ 1]
N+27-1
+ (W) !kN— 1] J (5. 14)

Combining then (5. 12) and (5. 14), we finally have
{9(2N+27-1)8" +[M, B'TH EN] = - 18E3(N + 1) [ kN + 1],

(5. 15a)
{9@N+27+1)8" - [M2, BT} RN] = 18R3(N +27~ 1) |EN = 1].

(5. 15b)
Before proceeding to determine from (5. 15) operators
whose effect on the ket|kN] are similar to those of p,,
P, on lku) of the sector problem, we note that the
|kN] are not normalized in the angular part., We shall
denote by |2u} the normalized ket and from II* 12 we
have
e 3(p-Dlu-1+17)
|feu}=2 F(T)[Z T(p-1+27)

where now we use an index u instead of N that takes the
values p=1,2,3,---,

i/2
] |ku-1], (5.16)
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We transform Egs. (5.15) relating 12N} to |kN=1],
into similar equations relating |2p}to |2p+1}. We in-
troduce the operator [M|( as in U1, i.e., its eigenfunc-
tions are |ku} and its eigenvalues are given by®

(M) ]ep}=3(n~1+7)|ku} (5.17)
We make use of this last operator to define
po== @p. 2 (M (|M| - 37)(|M]| +37-3)
x(|a] - )2 3p"2 | M| - 3) +i {02, 7], (5.18a)

.= 60,0 (| MV M| - 37+3)(| M| +3)
x (M| +3011/23p% 2| M| +3) i {M?, B}, (5.18b)
Po=3([M[-37)+1, (5. 18c)

where {2, 8*} is the Poisson bracket which quantum
mechanically is

{2, 8 =~ i[M2, B, (5.19)

but that also has the standard classical meaning if we
are in this last picture. In that case though by the cor-
respondance principle® we can think of 13| as a large
number and then all terms |M| +a where a is any num-
ber, reduce to |M|. Furthermore, in the classical
picture | M| is the square root of the M? given by (5. 2).

From their construction, the effect of the operators
7., P, on |ku} is exactly the same as that of the opera-
tors (4.10) on tky), i, e., it is given by (4.3). Thus
again we are tempted to consider the E(2) group as the
symmetry group of the Calogero problem. But the
paradoxical property

p.|k1}=0, (5. 20)

also holds in this case and thus Egs. (4.3) with |kp)
replaced by |ku} are not satisfied in all cases, From
here on the analysis of the Calogero problem parallels
exactly the discussion of the sector problem given in
the previous section after Eq. (4.11). We conclude that
the symmetry group responsible for accidental degen~
eracy in the present case is again 0(2,1) and its gen-
erators are given by (4. 12) where p,, p, now take the
form (5. 18).

Having determined the Lie algebras and groups of
canonical transformations responsible for accidental
degeneracy in the problems analyzed in this paper, we
proceed to discuss critically the results and outline
what could be a general procedure in these situations,

6. CONCLUSION

The discussion of the previous sections raises a num-
ber of questions in relation with groups of canonical
transformations responsible for accidental degeneracy
for problems with continuous spectra. We restrict our
remarks to problems in a two-dimensional configura-
tion space though they seem, at least in principle, gen-
eralizable to more,

We found that in all the examples we discussed we
could introduce a symmetry group O(2,1) or, equivalent-
ly, the SU(1,1) group homomorphic to it. * This situation
raises the question whether, at least classically, the
SU(1,1) is a kind of universal symmetry group related
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to problems with continuous spectra that have accidental
degeneracy, in the same way as SU(2) plays this role in
the case of discrete spectra, 17

At the same time we found problems, such as the
free particle in the plane, where more than one type of
symmetry group can explain the accidental degeneracy,
in this case E(2) and the O(2, 1) with reflections. This
raises the question of the uniqueness of the groups of
canonical transformations that were obtained. The
answer seems to be that they are not unique, i.e.,
there are many ways, in some cases a possible infinite
number, in which we can construct the Lie algebras of
these groups. As an example we consider, for the free
particle in the plane, the operators

L=pp, (P, +1) +fX(p.p )+ 512D, p )12,

I=1If, I3=p,, (6.1)

where f is an arbitrary function. From the analysis
preceeding (3. 19) we see that the matrix representa-
tion of these operators, when acting on the states (2.1)
of the free particle, will give an irreducible represen-~
tation of the O(2,1) group in the principal series, as-
sociated with

X =32 if(R2), (6.2)

In the classical limit, by the correspondance princi-
ple, we can disregard the %, 1 appearing in (6.1) and
we have

L=LizL=p[p%+f p.p ) b2 )V, L=p,, 6.3)

whose Poisson brackets are given by (2. 19) and thus
the corresponding group of classical canonical trans-
formations could still be obtained with the help of the
operator (2.15), The application of the latter, except
in the case f=0 discussed in Sec. 2, will be complicat-
ed, but at least it is feasible in principle. Thus we can
obtain for each function f a different group O(2,1) of
canoniecal transformations. It seems therefore that when
speaking of a group of canonical irvansformations re-
sponsible for accidental degeneracy we should add the
qualifying word simple,

How can we systematically obtain groups of canonical
transformations, as well as their corresponding Lie
algebras, for problems other than those discussed
here? We start from a given Hamiltonian that has a
continuous spectrum and whose states are degenerate.
We first find an operator, function of course of the co-
ordinates and momenta, that characterizes the differ-
ent states. We call this operator the weight operator
and examples are p, for the free particle and repulsive
oscillator, Ip,!| for the particle in the sector, and | M|
for the Calogero problem. We then look for operators,
which we can denote as ladder operators, that take us
from one eigenstate of the weight operator to the next
one above or below. We then take functions of these
weight and ladder operators that form a Lie algebra,
both from their matrix representation on the states of
our problem and from the standpoint of their classical
Poisson brackets. From the latter by exponentiation,
as was done for example in (2. 15), we can obtain the
classical group of canonical transformations responsi-
ble for accidental degeneracy.

M. Moshinsky and J. Patera 1874



The program seems feasible in principle but, as
MacIntosh!? points out, there may exist problems in
which the weight and ladder operators exist but that
we may not form from them a Lie algebra.

In any case it would be of interest to find other ex-
amples of accidental degeneracy in problems with con-
tinuous spectra, particularly in the simple case of
two-dimensional configuration space, to test the gen-
eral procedure suggested here,

ACKNOWLEDGMENT

One of the authors (J. Patera) wishes to thank the
Consejo Nacional de Ciencia y Tecnologia (CONACYT)
of Mexico that has made his stay in Mexico possible,

He also wishes to thank the Instituto de Fisica, Univer-
sidad de Mexico for its hospitality. Many persons con-
tributed with fruitful discussions to this paper and we
want to mention in particular C. Boyer, P.A. Mello,

J. Plebanski, K. B, Wolf from Mexico and P, Winter-
nitz from Montreal. We are indebted also to the referee
for pointing out that E(2) could not explain the accidental
degeneracy of the sector problem essentially because
Eq. (4.3) must be supplemented with Eq. (4.11).

*Member of the Institute Nacional de Energia Nuclear and El
Colegio Nacional.

TPermanent address: Centre de Recherches Mathématique,
Université de Montréal, Montréal, Canada.

1J.D. Louck, M. Moshinsky, and K.B. Woli, J, Math, Phys.
14, 692 (1973).

tJ.D, Louck, M. Moshinsky, and K. B, Wolf, J. Math. Phys.
14, 696 (1973).

5M. Moshinsky, J. Patera, and P, Winternitz, J. Math.
Phys. 16, 82 (1975).

‘M. Moshinsky, The Harmonic Oscillator in Modern Physics:
From Atoms to Quarks (Gordon and Breach, New York,

1875 J. Math. Phys., Vol. 16, No. 9, September 1975

1969); M.J. Engelfield, Group Theory and the Coulomd
Problem Wiley Interscience, New York, 1972); P. Kramer,
M. Moshinsky, and T. Seligman, “Complex Extensions of
Canonical Transformations and Quantum Mechanies,” in
Group Theory and Applications, edited by E. Loebl
(Academic, New York), Vol. III (o be published 1975), V.A.
Fock, Z. Phys, 98, 145 (1935); V. Bargmann, Z, Phys, 99,
576 (1936); J.M. Jauch and E. L, Hill, Phys. Rev. 57, 641
(1940); Yu, M. Demkov, Zh, Eksp. Teor. Fiz. 44, 2007
(1963) [Sov. Phys. JETP 17, 1349 (1963)}; I. Fris, V.
Mandrosov, Ya. A, Smorodinskii, M, Uhlir and P,
Winternitz, Phys, Lett. 18, 354 (1965); F. Duimio and G,
Zambotti, Nuovo Cim. A 48, 1203 (1966); P. Winternitz,
Ya, A, Smorodinskii, M. Uhlir, and I. Fris, Yad. Fiz, 4,
625 (1966) [Sov. J. Nucl, Phys, 4, 444 (19671, A.A.
Makarov, Ya, A, Smorodinskii, Kh, V. Valiev, and P,
Winternitz, Nuovo Cim. 52A, 1061 (1967); A.Cisneros and V.
McIntosh, J. Math, Phys. 11, 870 (1970).

F. Calogero, J. Math. Phys. 10, 2191 (1969).
6A.M. Perelomov, Teor, Mat, Fiz. 6, 364 (1971). [Teor.
Math. Phys. 8, 263 (1971)].

'J.D. Talman, Special Functions. A Group Theoretical Ap-
proach (Benjamin, New York, 1968), pp. 189—214,

K. B. Wolf, Suppl. Nuovo Cim. 5, 1041 (1967),

M. Moshinsky, T.H. Seligman, and K.B. Wolf, J. Math,
Phys. 18, 901 (1972).

10M, Moshinsky and C. Quesne, J. Math. Phys. 12, 1772
a971).

11y Calogero and C. Marchiore, J. Math, Phys, 15, 1425
1974).

W, Magnus, F, Oberhettinger, and P.P, Soni, Formulas
and Theorems of Special Functions of Mathematical Physics
(Springer, New York, 1966), pp. 16, 77.

13y, Bargmann, Ann. Math, 48, 568 (1947).

UE_ P, Winer, Group Theory (Academic, New York, 1953),
pp. 142—148,

15M. Moshinsky, SIAM J. Appl. Math, 25, 193 (1973).

16M, Moshinsky and C. Quesne, Proceedings of the XV Solvay
Conference on Symmetry in Nuclei (Gordon and Breach,
London, 1974).

174, McIntosh “Symmetry and Degeneracy” in Group Theory
and Its Applications, edited by E.M. Loebl (Academic, New
York, 1971), Vol, II,

M. Moshinsky and J. Patera 1875
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The purpose of this note is to establish the relation (A, A, u; p; IAM). = (- 1)F2 "2 /DM + A, -7, - 1),

/20 (M4 2= = 1), (172)(y — py + A+ A, — 1), (172)( — oy +A + A — DIA — LA, +A, — 1D, where the left-hand side is
a Wigner coefficient of the noncompact group SU(1,1) and in the right-hand side appears a standard

Wigner coefficient of SU(2). The parameters A,, A,, A characterize unitary irreducible representations in the

positive discrete series of SU(1,1), and thus they take positive integer or half-integer values. The other

parameters are restricted by p; = A A+ LA +2,, iy = AN+ LA+ 2,00, M = A,A+41,A+2,... Besides we

have p;+p, = M and A =N+ AN +A,+1,-. A similar result is obtained [cf. our Eq. (3.28)] for Wigner

coefficients involving unitary irreducible representations of the negative discrete series of SU(1,1).

1. INTRODUCTION

In a recent paper? two of the authors discussed radial
one and two body matrix elements using the Wigner—
Eckart theorem for the SU(1,1) group. For two body
Coulomb matrix elements the Wigner coefficients of
SU(1, 1) that appear?! contain only discrete positive rep-
resentations? of the SU(1, 1) group, i.e., the lowest
weight of the states involved is a positive integer or half
integer. In the present paper we shall proceed to show
that these particular Wigner coefficients of SU(1, 1) are
standard Wigner coefficients of SU(2) where the irre-
ducible representations (IR) of the latter are charac-
terized by numbers which are some linear combinations
of those appearing in the coefficients of SU(1, 1). Thus
the Coulomb two body radial matrix elements?® have all
the well-known selection rules and symmetries of the
SU(2) Wigner coefficients.

To carry out our identifications we shall first indicate
the double meaning we can associate with the eigenstates
of the n-dimensional oscillator, i.e., that the states
are characterized by the IR of either the chain of groups

{{(®) > O(n), (1.1)
or
Sp(2)X O(n), Sp(2)> O(2). (1.2)

We then particularize our results to n=4 and discuss
the chains of groups

0@ o

J@> 0@)> [ ; 0(2)] , oy
N K m s
and
u@ o 0@ o
Né‘-/lg‘l«*)rv:)[ 0 L/(2)] > [ 0 0(2)] ’ (1. 4)

where underneath each group we have put the quantum

number that characterizes its irreducible representation.

The kets for the chain (1. 3) can be denoted by |[NKm m,)
and those for chain (1.4) by IN,N,m,m,). We shall prove,
through the equivalence for characterization purposes of
four-dimensional oscillator states of the chains of
groups (1. 1) and (1. 2), that the transformation bracket

(N, N,m,m, | NKm m,), (1.5)
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is in fact a Wigner coefficient of Sp(2) and also, there-
fore, of SU(1, 1).% We then proceed to evaluate (1.5)
showing that it actually reduces to a Wigner coefficient
of SU(2). Thus we establish the connection of some of
the Wigner coefficients of SU(1, 1) (associated with
discrete positive IR) with those of SU(2). We note in-
cidentally that m,, m, are nonnegative integers as they
are related with IR of O(2) and not O*(2).

We start our analysis by discussing in terms of
creation and annihilation operators the generators of
the chains of groups (1.1), (1.2) and then proceed to
characterize the states of n-dimensional oscillators by
their irreducible representations.

2. STATES OF THE n-DIMENSIONAL OSCILLATOR
AND GENERATORS OF THE GROUPS ASSOCIATED
WITH THEM

Following Moshinsky and Quesne* we introduce the
creation and annihilation operators

1 . 1 . .
n= g (amip), Ge= g atin), jk=1...m

(2.1)
The generators of the dynamical group Sp(2n) of the n-
dimensional oscillator become then*

MMe zME.TEMN),  Eifp (2.2)

which form a Lie algebra as can be immediately checked
from the commutation relation

[gjy le]zﬁu-

The group Sp(2n) admits, among others, the following
chains of subgroups:

Sp(2n) > (/(n)> O(n),

Sp(2n) 2 Sp(2)X O(n), Sp(2)> O(2).
For the chain (2. 4) the generators are*
U =~ 3 E,+En)=m,8,+ 38, 00— nf,—méE; (2.6)
while for Sp(2) they become***

T,=-m+n, Ty=in-6+§m), T.=-38-§

where the dot indicates the scalar product in n-dimen-
sional space. The generator of the subgroup O(2) of
Sp(2) is T, and 2T, is also the first order Casimir
operator of //(n).

(2.3)

(2. 4)
(2.5)

(2.7
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The states of the n-dimensional oscillator charac-
terized by the IR N of //(n) and K of ()(n) are the eigen-
kets |INK) of the operators*™*

2T, |NK) = (N +n/2) |NK), (2. 8a)
[2|NK)=K(K +n-2)|NK), (2. 8b)

where /2, the Casimir operator of ()(r), is given by®

£2=-% ‘Zl: (ﬂ;’é,—n,’é;)(ﬂ&;-‘f}jig)

== E)+ M- +(n-2)(n"&).
In turn the Casimir operator of Sp(2) is
T?=T T -THTy-1)
=Hn-mE- & -m-t+n/2)n &+ (n-4)/2)}
=— Y /2 +n(n-14)/4], (2.9)

which is related to / . Thus the state |NK) is then also
an eigenket of 7%, T, and we have shown that the chains
of groups {2.4), (2.5) provide two equivalent ways of
characterizing the states of the n-dimensional harmonic
oscillator,

The states |NK) are homogeneous polynomial of
degree N in the creation operators applied to the ground
state, i.e.,

INKy=P,,(n) |0). (2.10)

From the form (2. 7) of the generators of Sp(2) and the
relation (2. 9), we see that the Eq. (2. 8b) is satisfied by

Py m)=(n-m)¥ B/ P, ), (2.11)
where
&P )[o—(i‘ O P ) [0)=0 2.12)
68 Pn|0)=(5; 5w Prdn)) [0=0, (2.

and N =K is even.

For the state of lowest number of quanta N=K con-
sistent with a given value of K, i.e., |KK), the eigen-
value of T, is

(K +n/2) (2.13)
and, because of (2.12), |KK) is the lowest weight state
of Sp(2) and thus the eigenvalue (2. 13) characterizes the

IR of this group. If n is even we note that the eigenvalue
will be integer or half integer as K is an integer.

From the discussion carried out above it is clear that
the states |NK) can also be written as

INKy= [3(K +n/2), YN +n/2), (2.14)

where the round bracket ket is characterized by the IR
of Sp(2), i.e., its lowest weight (2. 13), and the IR of
0(2), i.e., the eigenvalue (2. 8a) of T,.

Starting from the results discussed in this section,
we show in the next one how we can choose different
subgroups of U(4) so that the transformation brackets
between the basis of irreducible representations (BIR) |

IN Namymy)

(ni)( Nyp+my) /2(,’.'{) (Nl-m.l)/Z (Tﬁ)(Nzunz)/B (nz-)(Nz-mz)/2

related with them will be the Wigner coefficients of
Sp(2).

3. SUBGROUPS OF (/ (4) AND TRANSFORMATION
BRACKETS RELATING THEIR BIR

We now consider the chain of subgroups (1. 3), (1.4)
of //(4) discussed in the introduction and the states
INKmm,), |NNymym,) related with them. From (2. 14)
we conclude that we can also write

|NEmm,)y= | 5K +2), HN+2);m;,m,), 3.1)

so we deal with the IR 4(K + 2), (N + 2) of Sp(2) and
0(2), respectively. For the chain (1. 4) we have

lN1N2m1m2>.—. Nymy) lszz>:

(3.2)

in which each ket is related with the //(2)> ()(2) chain
and thus we can also write, if we use $p(2)> 0(2), that
|N1N2m1mz>= '%(m1 +1), %(Nx +1)) I%(mz +1), %(Nz +1))
= [30my +1), $0m, +1), N, +1), 3(N,+1)).
(3.3)
Thus we have the relation
(N Nym m, ,NKm1m2>
=(30m, +1), 3my+1), 3N, +1), 1N, +1)|$(K +2),
NV +2));e (3.4)

where (| ), is the Wigner coefficient of the noncompact
group Sp(2) or equivalently SU(1, 1), in which the nota-
tion (A A, 0, i), is followed with the A’s being the IR
of Sp(2) characterized by their lowest weights and the
u’s being the IR of the subgroup 0(2) of Sp(2).

We now turn our attention to the evaluation of the
transformation bracket (1.5). For this purpose we in-
troduce creation and annihilation operators

e, £f 4,i=12, a,8=1,2,

where the upper indices distinguish between the two
(/(2) groups of the chain (1. 4) while the lower indices
relate to the two components within these groups. The
generators of //(4) are now

(3.5)

z(MgE+ £ ). (3.6)
Those of (}(4) are given by
UHIEL HI A 8.7

while the generators of //(2), ()(2) are given, respec-
tively, by (3.6), (3.7) when a=8=1o0or a=8=2.

Let us introduce creation and annihilation operators
in spherical components

1 ) . 1 )
ni= Orams), &r=ng =75 &g, (3.8)

In terms of them the states |N,N,m,m,) are expressed as

=N, +m) 2N (N, =m ) /2]T (N, + my /201 [(N, =m,)/2]1 P72

We note that the chain (1. 4) of subgroups //(2) of //(4)
has the generators
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|0). @3.9)

JE=n%E%, JE=i(nYEr —-not?), Je=nlte,
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Nesnzer+nsts, o=1,2, 8.10)

and that the Casimir operators (J®)* of S//(2) are related
to the number operators N through
(TP =T + JHIS + 1) = LNe(Ne + 2), (3.11)

Thus the states (3.9) are the eigenstates of the oper-
ators (J')?, (J%), J3, J5 with eigenvalues that are, respec-
tively,

NN /N N,\ /N, m m
2a) (2 2} (22 &, "3,
<2>(2 “)’ (2)(2 +1)’ 3 2
To bring out more explicitly the fact that the states

(3.9) are eigenstates of (J')?, (J?)?, J%, J2 we shall also
denote them by the square bracket ket

(3.12a)

N, N, m, m
—2'19 —22, E"" E‘z] = lNlszme. (3.12b)

We now turn our attention to the states |NKmm,). We
easily check that the six independent generators (3. 7)
can be written as linear combinations of

A, =nle2-n%tl, A =n2tl-nt?
Ay=3(nle! —nlEl —n%E2 + 2%,

(3.13)
B, =n2tl-nlt%, B_=n'£-n2E,
By=3(ntEt -0l +02E2 —n2EY),
where we have the commutation relations
[A.., A.] == ZAo, [Ao, At] = iA*’
(3.14)

(B.,B,]=-2B,, [B,B,==B,,

and the generators of type A commute with those of
type B. Thus the generators of (){4) in (3. 13) correspond
to the locally isomorphic group )(3)X O(3).

The Casimir operators of these ()(3) groups are
AP=A A +A A, +1), B*=B_ B +By(B,+1),

(nl)(N'ﬂn' )/2 (_ n?)(N'-m' )2 (nf)(N"qm" y/2 (nf)(N"-m” /2

and we can show directly that
AP=B*=4/% (3.18)

The ket INKm m,) satisfies, from (3.13), (3.16), the
following equations:

N |NKmym,)=N |NKm pm,),
B?|NKmym,) = (3K) (3K + 1) [NKm,m,),
(Ao + Bo) | NKm,mo)y =m, | NKm,m.,),

(— Ao+ B)|NKmym,) =m, |NKm,m,), (3.17)
where the operator N is given by
N=N+A?, (3.18)

We shall construct the states (3. 17) explicitly through
the following reasoning. We start by noticing that be-
sides //(2) groups whose generators are the ones given
in (3. 10) we have another chain of unitary subgroups of
(/(4) whose generators take the form

L=-mg?, G=ime-nitd), R=-nitl,
Mi=nlgl+n2e,

P=nZgl, I=imis-nlth), L=nl,

M2+ tel, (3.19)
It is easy to check that these generators have the stan-
dard commutation relations and that their Casimir
operators (I*)? are related with the M* through expres-
sions similar to (3. 11). The construction of the eigen-
states of (I'Y, (I*)?, I}, I2 corresponding respectively to
the eigenvalues

ml m”
l), 3 3

(3) G0 () (5

follows in a way similar to (3.9) but now, from (3. 12b),

(3.20)

(3.15) | the corresponding ket takes the form

(3.21)

IN/ N” m' m”
|27 2 2"’ 2_]= M|

YT RN T RN TR N

where it is important to note the phase factor (- 1) in front of 2, as the replacement of Bt~ -n?, £2——t2 puts the

generators I1, I} in a canonical form.

The purpose of the states (3.21) becomes immediately clear when we notice that

B,=I+%, B,=I+I..

(3.22)

Thus if we want an eigenstate of B?, such as discussed in (3. 17), we can construct it through the ordinary Wigner

coefficients of SU(2), i.e.,

Nl (4 1 H K + N’
AR R R F )T
m/2,m" /2 2

NII ml

m”
,mom 3.23
w, ] (3.23)

where, again using (3.17), we have denoted by 3(m, +m,) the eigenvalue of the eigenstate of B;. Furthermore, we

notice that

A, =3(M,-M,), N=M,+M,.

(3.24)

Therefore the state |NKm,m,) which satisfies Egs. (3.17) is given by (3.23) if

Y7 - N" =3(my ~m,), N’ +N7=N.,

{3.25)

We are now in a position to derive the relation between the Wigner coefficients of SU(1, 1) that correspond to
discrete positive representations and those of SU(2). We note from (3. 4), (3.12b) that

(%(m1 + l)s %(mz + 1), %(N]. + 1); ‘;‘(Nz + 1) !'12_ (K+ 2): %(N+ 2))nc = <N1N2m1m2 'NKm1m2>
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b4
tn ? g 77

[&,& my my \N’ N om
it L2 2

K N"m'm”

m" N' N m’' m” |K
A e rrls

ml+m=>
2’2 127 2

m_’m_”li_g_am+m>)
T2

2 ( 6Nl""x"”""" 6’Vl'"'l-’""' -m* 6”2”"2'”"“""' 6"2""z*”'"""' (= 1)¥=m /2 27272 2 2

=(=1)Wz-m2)/2 <%(N1+N2+m1—m2), N+ N, +my—=m,), 1{N,=N,+m;+m,),

K +
x%(Nz—N1+m1+mz)i2—: ﬂl.i_m&>,

where we made use of the explicit expressions of the
kets

N LZ

’ " ’ ”
Ny my m | NN ml m?
27 2 2 2 2 2 2

given in (3.9), (3.12b), and (3. 21) to evaluate the
scalar products.

The expression (3. 26) provides us with the relation
we are searching. Had we used the more common
notation (A A, 1,1 AM), for the Wigner coefficients of
SU(1,1) where X;;),, A are integers or half integers as-
sociated with the lowest weight of the discrete positive
representations, then the relation (3. 26) becomes

U VST ‘ M),
=(=1)"272 G(M +2, -2y = 1), HM +2,-2, = 1),
Xy = Hp+ Ay +25=1), S(lp=py+2A+25=1)
[A=1, A, +2, = 1), (3.27)
where we remember that M =, + y,.

It is easy to check that the phase convention used in
(\ o1 1, | AM),, coincides exactly with that proposed by
Holman and Biedenharn. 2

By a procedure essentially identical to the one fol-
lowed to arrive at Eq. (3.27) we can obtain a corre-
sponding result for unitary irreducible representations
of the negative discrete series of SU(1, 1). The basic
modifications one must do in the analysis are the inter-
change of the upper indices 1,2 in the n’s and ¢’s of
Eq. (3.19), and the use of new generators T! of Sp(2)
related to the T, of (2.7) by

T!=T., T!=T,, T}==T,.
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(3.26)

The result that we obtain is
(7\17‘2“1“2 'AM)nc
=(=1)* 1 MG (=M =2 2, = 1), 3(=M+x;=2,~1),
X5y =ty FA 0 =1), 3(=fy+ Hy+ A 2y = 1)

[A =12 +2x,-1), (3.28)

where now
By==p, =X =1, = ny =2, vee
Po=m=Xgy =dp=1, =Xy =2, eee,
M=py+

The phase convention is again the same of Ref. 2.
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Marginally singular integral equation with divided-difference

kernel: A problem in N/D theory*
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We describe a method for solution of a linear integral equation of the form ¢(s) = f(s)}+(1/#w)

STHB(s)— B(DY/(s— 1)} q(D)d(1)dt, where g(f) = (1—4/1t)"% The specified functions f{s) and B(s)

have the asymptotic behaviors f(s)~ f, (Ins)~°, a>1, B(s)~ b(lns)~", s—co; in addition, B is subject to
smoothness conditions. The equation is analyzed on a Banach space S of continuous functions ¢(s) which
have asymptotes of the form ¢,(Ins)~°. It is found that the integral operator K is bounded but not compact
on the space S, so that the equation is not of Fredholm type on S. We separate K into a noncompact part
K, and a compact part K,, and construct explicitly the inverse of 1— K, by solving an associated

differential equation. We then convert the original equation ¢ = f+ K¢ into an equivalent Fredholm equation

$=(1—-K)"'(f+ Kr9).

1. INTRODUCTION

In the past, physical models in $ matrix theory have
usually been such that the linear integral equation of the
N/D method is a regular Fredholm equation in some
standard Banach space (for instance, L? or a space of
continuous functions with supremum norm).! Recently,
we have studied a model of meson—meson scattering in
which the N/D equation is irregular.? The integral op-
erator is bounded on a Banach space S which naturally
suggests itself, but it is not compact on that space, or
on any other space which comes to mind. Consequently,
we have not been able to apply Fredholm theory to the
equation in its original form, but we have been able to
find a simple way of transforming the equation to an
equivalent regular Fredholm equation on the space S.
In the following we describe this transformation, with-
out attention to the particular model that inspired it. It
is likely that a similar technique will be necessary in
models more general and realistic than that of Ref. 2,
especially if “realistic” means that the total cross sec-
tion rises logarithmically at high energy.® As further
motivation for this work, we mention that an analogous
case of a noncompact operator occurs in a study of the
unitarity equation.*

Singular N/D equations have been discussed before in
the literature (Refs. 5—'7 and other papers cited there-
in). Earlier authors have chosen the same general ap-
proach that we have taken. Namely, they separate the
troublesome part cf the operator from the rest, and try
to find its inverse by a non-Fredholm method. The as-
sumed characteristics of the troublesome part, and the
methods of finding its inverse, have been quite different
from those of the present paper.

Integral equations with divided-difference kernels,
having essentially the same formal structure as the
N/D equation, arise in the analysis of singular integral
equations with Cauchy kernel.® Notably, they occur in
the theory of the Hilbert problem in several unknown
functions, ® which has been taken as the basis for a proof
of existence of the many-channel ND™* representation. °
The proof of Ref. 9 might be carried out under weaker
hypotheses by using the method described here; original-
ly, the scattering amplitude was so restricted as to
supply a regular Fredholm equation.
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In Sec. 2, we specify the integral operator K of in-
terest, and show that it is bounded on a certain Banach
space S. In Sec. 3, we separate K into two parts, K,
and K,, and show that K, is compact on S, but that K,
does not enjoy that property. In Sec. 4, we show that
the inverse of 1 - K, always exists on S, and that it may
be constructed explicitly by solving a simple differen-
tial equation. Multiplication of the original equation by
1- K1)'1 then yields a regular Fredholm equation on S,
with a compact kernel.

2. DEFINITION AND BOUNDEDNESS OF THE
INTEGRAL OPERATOR

The investigation of Ref. 2 led to an equation of the
form

s =11+ [ 2L=B 4500 ar. @.1)

In the following, we regard f and B as being given, al-
though they are nonlinear functionals of the unknown ¢ in
the complete problem of Ref. 2. The function ¢ is re-
lated to the numerator function of the N/D representa-
tion, and q(¢) is the phase-space factor, proportional to
the momentum:

q@)=[(@t~a)/t]}/?,

The variable s is the squared energy in units of the
squared meson mass, so that s=4 is the threshold for
a two-meson scattering state.

(2.2)

The following properties of the real functions f and B
will be assumed:

(i) f is continuous, and has the asymptotic behavior

A=

[1+0(1)], s==, a>1. (2.3)
(ii) B has a continuous second derivative, and as s

tends to infinity

B(s) 21—5{5 +0(n%s), b>0, (2.4)
B'(s)=0{sIn"%s), {2.5)
B"(s) = 0(s*?In"%s). (2.6)
Copyright © 1975 American Institute of Physics 1880



The constants f, and b are arbitrary, aside from the
restriction > 0. In Ref. 2, one hag b=271/9 and o
=5/3.

It seems appropriate to seek a solution of (2.1) ina
Banach space S, such that the function f is contained in
S. Accordingly, we take S to be the set of all real, con-
tinuous functions ¢(s) on the half-line 4 <s <« such
that the following limit exists:

¢o=1si‘n: In"s¢(s). 2.7
The norm in S is taken to be
llpll= sup |In*s¢(s)]. (2.8)
4%5<{w
We now write Eq. (2.1) in abridged notation as
¢=f+Ko, (2.9

and prove that the integral operator K maps S into it-
self. The integral defining K¢ obviously exists for any
¢ in S, and K¢(s) is clearly bounded for all s less than
any S;. We may then restrict attention to the case us
>4, where [ is some constant less than 1. We also
choose a constant A greater than one and write

K¢(s>——(f o[ D)=

Xq(t)p(dt = (J, +d, + ). (2.10)

With the help of (2.4) and (2.5) it is a simple matter to
bound the J;¢, when ¢ € S. 1’'Hospital’s rule yields the
asymptotes of logarithmic integrals, and we have

el _ f ( ) dt
g (1- uis lns In%¢
< MIn™-1s, (2.11)
JEA- 1 f ( 1\ dt
n¢u (1 A 0 hs 1nt> fin*t
< Min™s. (2.12)

For J,¢, we use (2.5) and the mean value theorem to
obtain

Il . M Aot

Tor < hths J,, W <M (2.13)

In these equations and elsewhere, M is a generic con-
stant which may have different values in different in-
equalities. To show that K¢ € S, it remains to show that
K¢ is continuous and that limln*s K¢(s) exists. The
estimates (2.11)—(2. 13) establish that the three inte-
grals in (2. 10) are uniformly convergent in s for 4 <s
<S8, for any S<=, Since the integrands are continuous
functions of s, it follows that K¢ (s) is a continuous func-
tion of s, for 4 <s <%, We shall now prove that K¢ is
in fact differentiable, with derivative satisfying the
bound

(Kp)'(s) < Mgl /slnt*es.

The formal derivative of K¢ is
w S As ©
(f +f +f)(B'(s)_§-(-S-)_—B—@)
4 us rs st

1881

(2.14)
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ol +1, + ).

q{t)o(t) dt _
XT‘ (2.15)

We shall now prove that (2. 15) is uniformly convergent

on any finite interval of s, so that (2,15) is in fact egual
to the derivative of K¢ and is continuous at finite s. We
may assume that s >4, and apply (2.4), (2.5) to obtain

1 1 dt
"1'<—f 16 ms“‘m;)]rﬁ

S

(2. 16)
s s

To bound I,, we use the mean-value theorem with (2. 5)
and (2. 6) as follows:

! ’ ’ dt
IIZISMI,‘SE'B (S)—B (Sl)ll—na—t
(t<sy<s)
As
1 ’ ’ dt
+ —_— - et
M'L- t—sIB(S) B(Sz)llnat
(s<s,st).

S o_w dt
$M’/‘:s IB (SS)IEG}_

As ” dt
+MJ: | B (&)]m (s<syss,<9)

(t<sy<sgs5)

s dt M s qt
< + ——m
<M | FET T ), e
M
<
P (2.17)

Finally, we estimate /3 by applying the mean value the-
orem to the second term in the integral:

/1 1 dt
< +
Ll<m ﬁ . (s % s, hFE,)U_ s) In"

(SSSlgt)

< M b dat
“sin¥s s = S)n® (- 9)

_M WmO-Ns__ M
Tsln®s T a~-1  slnls

This completes the proof that (K¢)' is given by (2. 15),
and satisfies the bound (2. 14).

To finish the proof that K¢ belongs to S, we show that
In"s K¢(s) approaches a limit. Only the term J; in
(2.10) contributes to the limit, as is evident from
(2.11), (2.12), and (2.13). It is readily seen that only
the asymptotic parts of B(s) and B(t) are relevant, so
that we analyze the integral

(2.18)

q)e) at
J(s) f(ms lm) . (2.19)
We first note that
In®tq(t)e () = ¢+ 0(1), (2. 20)
so that
_ 1 1 dt _€
oo (mm)m e e
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where € may be made arbitrarily small for sufficiently
large s. Thus, only the first term of (2.21) contributes
to the limit, and we evaluate its limit by ’Hospital’s
rule. The first term of the integral is

L f P (2.22)
Ins Joa,s » In®(s +u)° *
By comparison of the integral in (2. 22) with In'"s
through 1’Hospital’s rule, we see that (2. 22) is asymp-
totic to ¢¢(a—1)"Ins. The second term of the integral

in {2.21) is treated in the same way, and the result is
that

=boy

ma(a-1)In%s "’

Ko¢(s) ~ (2.23)

It follows that K¢ € S.
3. SEPARATION OF COMPACT AND NONCOMPACT
PARTS OF THE OPERATOR

Noncompactness of the operator K is due to a part of
the integral in which / may be much greater than s.
Such a part of the integral defines the operator X;:

bt L 1\e@®at
K1¢(s)”nfs (lnt_lns) ;e

We shall first demonstrate that K, is not compact on S,
and then show that the remainder, K,=K-K,, is
compact.

(3.1

Our definition of compactness is the usual one: An
operator L mapping S into itself is called compact (or
completely continuous) if and only if for every bounded
sequence {¢,} CS, {L¢,} bas a subsequence convergent
in S. As is well known, 10,11 predholm theory applies to
an equation of the form ¢ =f+ L¢, where fecSand L is
linear and compact on S, in the sense that Fredholm’s
“determinant-free” theorems hold. For instance, either
(1= L)? exists, or the homogeneous equation =Ly has
a nonzero solution. A compact operator may be approxi-
mated uniformly by an operator of finite rank; that cir-
cumstance allows one to compute approximations to the
solution of ¢ =f+L¢, by solving a finite system of lin-
ear algebraic equations, '?

To prove noncompactness of K;, we employ the
Ascoli—Arzeld criterion. With every function ¢ in §
we may associate a function ¥(x) =1In*s¢(s), where x
=4/s, The functions ¥ are continuous on the closed in-
terval [0, 1]. The space S is equivalent to the space C
of functions ¥ continuous on [0, 1] with norm

lpll = sup [ |. (3.2
D=x<
We define the operator L, on C as
Lid{x) = In"s K, ¢(s). (3.3)

To show that K, is noncompact on S is equivalent to
showing that L, is noncompact on C. The Ascoli—Arzeld
theorem!® asserts that an operator L, is compact on C
if and only if every bounded sequence {$} < C is mapped
into a uniformly bounded, equicontinuous sequence
{qu&n}. Therefore, L, is noncompact if there exists a
sequence {#,} of elements of C with uniformly bounded
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norm such that the set of all functions L, ,(x) is not
equicontinuous on {0, 1]. We display a sequence {y,} with
the following properties:

(i) ¥, C, lly,ll=1, and L,3,(0)=0 for all n. (3.4)

(ii) For some € >0 and any &< (0, 1) there is an n
such that

| La,(8) = Ly (0| = L1, (8) | > €. (3.5)
From existence of such a sequence it follows that L, is
not compact on C, and hence that K, is not compact on S.

The 3, are defined as

i, s< s,

P (X)=x,(8)= (25,~8)/s,, s,<s<2s, (3. 6)
0, s>2s,,

where {s,,} is any monotonically increasing sequence of
numbers such that lims,=. Evidently, the conditions
(3.4) are satisfied. For any 6c (0, 1) we write s,=4/3,
and choose % for (3.5) in such a way that s, >s;®. The
integrand of (3. 1) is strictly negative when ¢(s) = ¢ (s)
=1In""sx,(s), so that we have

| Z43,(8) | =10 K1 0 (50) |
>b1n°‘s0fso3 dt ( 11
o J t10°¢ \Ins, " In?

b1 a
“2r In™s J,2 HIn®t

b 1 1
“2(a=T) (F-?T) 6.7
This verifies (3.5), and the noncompactness of K, is
proved.

To establish that the operator K, is compact on S, we
show that the corresponding operator L, maps every
bounded subset of C into a relatively compact set. In
analogy with Eq. (3. 3) above, we have defined L, by the
relation

L,p(x) = In*sK0(s). (3.8)
We shall need to establish that

[(K,¢) ()| < Mllg 1l /5 In**s (3.9)
and

|K,(s) | < Mll o1l /1n% s, (3.10)

with the generic constant M independent of ¢.

We have already obtained the bound (2. 14) for |(K¢)’ 1
and one may easily establish the same bound for |(K;¢) |
from the relation

(96 = [ 40,

The bound (3. 9) follows. In establishing (3.10), we note
that, in the decomposition (2.10) of K¢, the terms J,¢
and J,¢ are subject to the bounds (2.11) and (2.13), re-
spectively. Consequently, we need only establish an an-
alogous bound for the term (J; - K;)¢, which we may
write in the form

(3.11)
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(J,-K,)¢=% j: atg(®) - 1)M¢(t>

dt B(s) - B{t)
+= l T s=t (1)

T s-
1 [~dt b b
+;j); s (B(t) ~ i B(s) +-l;1;) ()

42 f Mt (ms )¢(t)

="¢||(H1+H2+H3+H4)- (3. 12)

From the bounds

B(s) - B(#) Mgy 1

.___s___¢(t) e T P2 (3.13)
and

lg®) - 1]<4/t, (3.14)
we obtain

s dt M
E:AR le'SMl—n—s- . P ST T (3.15)

Furthermore, from the asymptotic limit (2. 4) we obtain

le(\—rf T ST - (3.16)
Finally, we bound H, through a change of variable {=7s:

M
|H4|<M[ r lnsln" lnanzg-

The result (3.10) is thereby established.

(3.17)

From the bounds (3.9) and (3. 10) concerning K,¢, one
may infer the following bounds involving L,:

[Lzp(x) | < Nllll/(1 + {Inx|) (3.18)

and

| (L) () | < NIl /x(1 + | 1nx ). (3.19)

Let D be any bounded subset of the space C; i.e.,
there is a d such that y < D implies Iy <d, We shall
use the estimates (3. 18) and (3.19) to demonstrate that
the set L,D={L,¢(x) : ¢ € D} is equicontinuous on [0, 1].
In other words, we shall show that, for any € >0, there
exists a number 0 such that if x,, x,<[0,1] and |x; - x,]
<9, then

| Lo (xy) = Log(xp) | <, (3. 20)

the number &(¢) being independent of ¢. (It then follows
from the Ascoli—Arzeld criterion that L, is a compact
operator on C.)

We shall verify (3. 20) with 8(e) given by
5(¢) = min[(¢/Nd)?, 5 exp(- 4Nd/€)]. (3.21)

We make the choice x; < x, and treat separately two
distinct regimes of x,.
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(i) x, < 6*/2, so that x,< 6+ 8 /%, From (3.18),

1
* i, l)

<eg. (3.22)

1
| Lydlxy) = Lyglry) | < Nd (Tln—xj
< ANd_
11n46]

(ii) x, > 8'/2. Let us use the bound (3. 19) along with
the mean-value theorem to obtain

[ Loilay) — Lyyly) | < Nd|xy = x5 | /%y <Nd&* < e.
(3.23)
The inequality (3.20) follows.

4. CONSTRUCTION OF INVERSE OF 1-K,

We shall construct the inverse of 1 - X, as a bounded
linear operator on S. Once the inverse is available, our
integral equation (2. 9) may be cast into the form

¢=(1-~K)(f+K,9). (4.1)

The equation (4. 1) is susceptible to Fredholm theory,
and it is equivalent to (2.9). Thus, (4.1) is the regular-
ized integral equation by which our problem is solved.

To find the inverse, we obtain an explicit solution of
the equation

(1-K)y=h, (4.2)

for an arbitrary # in S, by means of an associated dif-
ferential equation. We let

x(s) =K y(s), 4.3)

take note of the definition (3.1), and differentiate for-
mally to obtain

X’(S)=;—£—lz;f ﬂl;)—dz, 4.9
(slnzsx'(S))'=:ﬁTMs—), (4.5)
b
8 == (4.6)
Substitution of these results in (4. 2) yields
s(sIn®sx'(s))" +Bx(s) == Bh(s). (4.7

We shall find that among the solutions x of (4.7), there
is one that gives the unique solution of (4.2) in S through
the formula

Yp=x+h. 4.8)
The homogeneous form of (4.7),
s(s In?sx"(s)) " +Bx(s) =0, (4.9
has two linearly independent solutions of the form
x{s)=1n"s, (4.10)
the exponents ¥ being the roots of the equation
Yy +1) +8=0. (4.11)

Since B is positive, the roots v, of (4.11) may be either
real or complex, but their real parts are always great-
er than - 1:

Yo v.=-3[1% (1~ 48)1/2], (4.12)
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In the case that arises in Ref. 2, 8=2/9 and the roots
are real. We can now see that if (4. 2) has a solution in
S, it must be unique. Equation (4.7) is a necessary con-
dition on any solution of (4.2) in S. If (4.2) had two solu-
tions ¥, ¥, € S the homogeneous equation (4. 9) would have
the nontrivial solution

§(s) = Ky (% — ) (s). (4.13)

[It is clear that ¢ is not identically zero, since

s(s In®s£’(s)) = = Bl (s) = Yp(s)] £0). Since £ belongs to
S, it cannot in fact be a solution of (4.9), since the gen-
eral solution of the latter is

x(s)=a,In"*s +a_ln"-s, (4.14)

where Rey, >~ 1. A nonzero solution of the form (4. 14)
is not in S, since it does not vanish rapidly enough at
infinity. It follows that a solution of (4.2) in S is neces-
sarily unique. Notice that the situation would be differ-
ent if B were negative; then (4. 9) would have a solution
in S if y, were greater than or equal to «, and our uni-
queness argument would fail,

To solve the inhomogeneous equation (4.7), we apply
the method of variation of parameters. That is, we seek
a solution of the form

x(s)=m"+sT,(s) +In"-sT_(s), (4.15)
where the I', are restricted so that
In"+s L(s) + W™-s[(s)=0. (4.16)

When (4. 15) is substituted in (4.7), and Eqs. (4.11) and
(4.16) are invoked, we obtain a second linear equation
for the I',. By solving the latter equation and (4. 16) to-
gether, we find (provided v_#7v,)

rl(s)=2Bnr(s)/(v.- v,)s(lns)*+, (4.17)

When the 7, are complex, the function I} is the complex
conjugate of /. The case v.=7, (8=1/4) requires a
different calculation, which we defer for the moment.
We can now obtain a solution of (4.7) as

x(s) = (Ins)"*[ [T () du +c.]

+(Ins)"[ 2T (@) du +c_]. (4.18)

There is a unique choice of the constants of integration
¢,, ¢. such that xS for an arbitrary k< S; namely,
(4.19)

To show that (4.19) is sufficient for xe S, we simply
apply ’"Hospital’s rule to obtain the asymptotes of the
integrals:

S _£Bhy f S du
L T du Y= Vs Jo u(lnpg) 7T

_ F Bhy 1
T (y.- v @ty (Ins)* 7’

c,=c_=0.

(4.20)

where
k(s) = (h/In*s)[1 +o(1)].

Thus, x(s)=(xo/In*s)[1+0(1)], and x is clearly real, even
if the v, are complex. Hence, xS for any 2 S, when
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(4.19) holds. Equations (4.19) are clearly necessary as
well as sufficient for xS, since Rey, >-1.

To complete the argument, we must show that the fol-
lowing function actually satisfies (4.2):

¥(s) = (Ins)™* [° L' () du

+(Ins)"- (3T () du +h(s). (4.21)

Heretofore, we have only demonstrated that if (4.2) has
a solution in S, it must be the function (4.21). We must
prove that

b ¢
B/s- %(Tr}_t—ﬁl's') ((lnt)“L Ci(u) du
t
+ (In2)"- f () du +h(t))

= (lns)y*‘[sl‘f(u) du + (Ins)"- fs C(w) du. (4.22)

The proof consists of reversing the order of # and ¢
integrations on the left-hand side of (4.22). After the
reversal, the ¢ integration may be performed explicitly.
The identities v,y.=f and 7, +v.=-1 are used in a sub-
sequent calculation to verify (4. 22).

We have now proved (in the case 8#1/4) that (1 - K;)?
exists and has the explicit representation

(1=K n(s)

Y ‘iy f‘%(%—%)h(twh(s), (4.29)

where
vo=-3{1£(1-4p)""%],

B=b/T+%.

The inverse of 1 - K, exists just as well in the case
=1/4. It is easy to guess the formula for this case, by
formally taking the limit v, ~7».=-3 in (4.23). We find

1 < dt

-1 —

1-K) h(S)—4lnx;sz fIn' 7%
S

X (lnlns - In k@) + k(s), B=3. (4.24)

One easily verifies that the right side of (4.24) is a

member of S. One can also show, by changing integra-
tion order as before, that this function satisfies (4.2).
It remains to show that this solution of (4.2) is unique.
We demonstrate uniqueness as before, by proving that
(4. 9) has no nonzero solution in S. To find the general
solution of (4.9), we must find a solution in addition to

x(s) = 1n"!’2s. We substitute

x(s)=1n""2s £(s) (4. 25)
in (4. 9) to obtain

(1+1ns)¢’(s) +slnst"(s) =0, (4.26)

which is satisfied by £(s)=1Inlns. The general solution
of (4.9) is then

x(s) =a; In"*/%s + @, In"! /%s - In Ins. (4.27)

Since the only function of this form in S is identically
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zero, it follows that the inverse of 1 - K; is indeed given
by (4. 24).

Our explicit construction of the inverse of 1- K, de-
pended on the special circumstance that there was an
equivalent differentijal equation (4.7), which had a sim-
ple solution in closed form, It would be worthwhile to
have a more general method, which could be used for
singular integral equations not precisely the same as
the one discussed here. One method that comes to mind
immediately is a simple iterative solution of (4.2):

ZP():h, %:Klwo'{-h’ ceey, wn=K1¢n4+h: cen
(4. 28)

According to the contraction mapping theorem, !’ the
sequence (4.28) converges to the unique solution of (4. 2)
in S, provided that

Kl <1, (4.29)
where

[1&, 1| = sup (IIK 11/l D). (4. 30)
ocS

To find a sufficient condition for (4. 29) to hold, observe

that
- . Y _}_)_smd_q
=g o (- ) 2
“(1 1 dt
<P "¢” sup ln“s[ (R—-Trrg) -t'—m ’
-8
=ala=1) ol (4.31)
The iterative method certainly succeeds if
B/(a(a-1) <1, (4.32)

In the problem of Ref. 2, one has g/a(a-1)=1/5,

Finally, let us return to the rearranged integral equa-
tion (4.1). The inhomogeneous term, (1-K;)h, isa
member of S. Also, the operator (1- K;)'K, is com-
pact on S, being the product of a compact operator and
a bounded linear operator. Consequently, the Fredholm
alternative theorem?!’ applies to (4.1), so that the latter
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has a unique solution unless the corresponding homo-
geneous equation has a nontrivial solution. The homo-
geneous equation is equivalent to

o =Ko = (K +K;)¢, (4.33)

so that we can say that at least part of the Fredholm
alternative theorem is true for the non-Fredholm equa-
tion (2.9). Namely, (2.9) has a unique solution unless
the corresponding homogeneous equation (4.33) has a
nontrivial solution.

*Supported in part by the National Science Foundation.
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This work is a first step in a program for construction of meson-meson scattering amplitudes with
analyticity, crossing symmetry, and unitarity. The construction is to be carried out by solving a nonlinear
integral equation for the partial wave amplitude a(l,s) at complex ! and physical s. The program is
intended to overcome the difficulties encountered in the traditional approach based on the Mandelstam
iteration of double-spectral functions. An important initial step is to analyze nonrelativistic potential
scattering from this autonomous S-matrix viewpoint, in which the Schridinger equation is replaced by a
nonlinear equation for the partial wave amplitude. In the present paper, it is demonstrated that the partial—~
wave equation has a locally unique solution, provided the potential is of a suitably restricted Yukawa type.
This result indicates the feasibility of a pure S-matrix approach to dynamics. In the present report, the
potential is so restricted in strength as to preclude bound states or resonances. The extension of the method
to the case of strong potentials will be pursued in a later publication.

1. INTRODUCTION

This paper pertains to the construction of scattering
amplitudes with Mandelstam analyticity and unitarity.
The construction proceeds by solving a certain non-
linear functional equation for the partial-wave scatter-
ing amplitude a(l, s), in which the angular momentum
! is complex, but the squared-energy s is restricted to
its physical region. 13 In Ref. 2 and the present work,
the partial-wave equation for nonrelativistic potential
scattering is studied. The discussion of potential scat-
tering by the partial-wave equation is more complicated
than the usual treatment based on the Schridinger equa-
tion, but it is interesting as a preamble to a discussion
of crossing-symmetric, relativistic scattering. In the
relativistic case, the approach via the Schridinger
equation is, of course, not available, but the S matrix
equation for the partial wave can still be formulated.
The equation is quite similar to the corresponding equa-
tion of potential scattering, so that it is reasonable to
study the simpler case of potential scattering first. In-
deed, one of the most difficult terms in the relativistic
equation differs only by a kinematical factor from the
corresponding term of potential theory.

The program of constructing crossing-symmetric
unitary amplitudes through partial-wave equations was
initiated in Refs, 1 and 3, and will be continued in a
forthcoming series of papers.*® The long range aims
of the study are: (a) to clarify questions of principle
(for instance, the question of existence of crossing-
symmetric unitary amplitudes with Regge behavior) and
(b) to provide a practical means of computing realistic
hadronic amplitudes from “first principles.” In this
context, a computation from first principles is under-
stood to be one in which general requirements such as
analyticity, crossing, and unitarity are satisfied pre-
cisely, and in which phenomenological input is held to
a bare minimum. The partial-wave program evolved
from an earlier program in which the complete scatter-
ing amplitude A(s, f) was constructed by solving a non-
linear integral equation for the double-spectral function,
namely, the Mandelstam unitarity equation. § The earlier
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program was not able to accommodate realistic ampli-
tudes. In particular, it faltered in the realistic case in
which Regge poles make large excursions into the right-
half [ plane. In the presence of Regge poles, the double-
spectral function takes on an oscillatory behavior. The
oscillations are undoubtedly essential in modulating the
high-energy behavior of the unitarity equation, but at the
same time they make the analysis of the equation extra-
ordinarily difficult, It turns out that the oscillations are
much more tractable if one works with partial-wave
amplitudes at complex !, rather than the double-spectral
function. The advantage is similar to that which is
sometimes gained in working with the Fourier transform
of a function, rather than the function itself. In fact,

the Watson—Sommerfeld representation of the double-
spectral function in terms of partial waves is a kind

of Fourier representation, in which a quadratic unitarity
product of partial waves is like the Fourier transform.
The oscillatory function P,(z), for Rel=-¢, plays the
role of the exponential in this transform.

Our method of studying potential scattering consists
of the following steps:

(a) Deduce an equation which must be satisfied by
the partial waves of any scattering amplitude which
satisfies unitarity and has an unsubtracted Mandelstam
representation,

(o) Show that the partial-wave equation has a solution
which may be constructed by iteration, and which is
unique in a certain set § of functions. This is done
under appropriate restrictions on the potential: notably,
that it be sufficiently weak, and such that an unsubtract-
ed Mandelstam representation is valid.

(c) Show that the usual partial-wave amplitude ob-
tained from the Schrddinger equation lies in the set §,
and coincides, therefore, with the solution obtained in

step (b).

Thus, the partial-wave equation may replace the
Schrodinger equation as the fundamental dynamical
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system of the theory, at least in the case of weak, suit-
ably restricted potentials.

Our real interest, however, is in the regime of strong
interactions, in which the Mandelstam representation
requires subtractions and in which it is difficult to car-
ry out the existence proof of step (b). Fortunately, we
know that the solution of the Schrodinger equation is a
continuous function of the potential strength. A strength
parameter A can be inserted as a factor in the potential,
and continuation of the partial-wave amplitude from
small to large A presents no difficulty. Corresponding-
ly, one expects that it should be possible to do the con-
tinuation to large A in a pure S-matrix scheme based on
partial-wave equations. The partial-wave scheme can-
not be exactly the one studied here, since when the po-
tential strength reaches a certain value, Regge poles
of a(l, s) enter the right-half / plane. The Mandelstam
representation then requires subtractions, the Watson—
Sommerfeld representation has Regge pole terms as
well as a “background” integral, and the equations re-
quire modification. Whatever the difficulties of the
strong-coupling case, the weak-coupling study carried
out here is a necessary preliminary exercise, since it
is prudent to start in a regime where the problem can
be analyzed completely, and since certain problems of
asymptotic behavior in [ are probably common to the
strong- and weak-coupling cases.

One possible avenue to the strong-coupling regime,
which is being studied by Johnson and Warnock, ¢ is to
replace the partial-wave dispersion relation of the
present paper by an equivalent N/D equation. That
method promises to allow a smooth continuation to large
A, thus providing an autonomous S-matrix theory for
arbitrary potential strength, in which scattering ampli-
tudes and Regge trajectories could be computed without
appeal to the Schriddinger equation. One expects that a
similar continuation from weak to strong coupling will
be possible in the relativistic case, where coupling
strength is gauged in terms of an appropriate general-
ized potential. * Another approach is being followed by
Atkinson, Frederiksen, and Kaekebeke,® who investi-
gate the existence of crossing-symmetric, unitary
amplitudes with Regge trajectories and residues which
are specified ab initio.

In Ref. 2, the potential was required to have energy
dependence, in such a way that it became weaker at
high energy. In the present work we remove that re-
striction, and deal with an ordinary energy-independent
potential of Yukawa type. We were able to remove the
restriction through a technical improvement in our
treatment of the oscillations of Legendre functions,
This improvement, which we think to be quite crucial
for the further development of Regge theory, should
also allow one to remove some of the restrictions im-
posed in Ref. 3. In Ref. 3, crossing-symmetric partial-
wave equations for relativistic meson—meson scatter-
ing were analyzed. The method of analysis required a
cutoff of the elastic unitarity term at high energy. Such
a cutoff does not destroy crossing symmetry or elastic
unitarity, the latter being required only at low energy.
It would be interesting, nevertheless, to see if the cut-
off could be removed. It is likely that our new method
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of handling Legendre functions will allow removal of the
cutoff and also lead to certain simplifications in the dis-
cussion of Ref. 3.

In Sec. 2 we establish notation and carry out step (a)
mentioned above; i. e., we derive the dynamical equa-
tion for the partial-wave amplitude. The equation is a
partial-wave dispersion relation, in which the left cut
term is expressed as a nonlinear functional of the
partial-wave amplitude itself. Our expression for the
left cut term is simpler than the conventional one,’
and involves fewer integrations.

Section 3 is devoted to step (b); that is, we prove the
existence of a locally unique solution of the equation,
with a specified potential subject to certain conditions.

In Sec. 4, we show that the solution of the partial-
wave equation actually leads to a unitary amplitude with
a Mandelstam representation, and discuss briefly the
relation of this work to earlier work on potential
scattering, %°

2. DYNAMICAL EQUATION FOR THE PARTIAL-
WAVE AMPLITUDE

We discuss the non-relativistic interaction of two
spinless particles of equal mass m, interacting through
a potential V() which depends only on the inter-particle
distance 7. The potential will have the conventional
Yukawa form,

rV(r)= —2—1"—1 -A:ﬂ dtp(t) exp(- rt1/?), (2.1)
(Note: Z=1 throughout this work.) The range of the
force corresponds to that of a two-particle exchange
force, each of the exchanged particles having mass p.
Equivalently, the range is the Compton wavelength of a
particle of mass 2. Note that we do not require m=u.
The weight function p(f) is subject to conditions speci-
fied in Sec. 3.

The reason for writing 4p? rather than p? as the limit
in (2.1) is that we wish our equations to resemble the
analogous relativistic equations as much as possible.
For the same reason, we define a squared-energy vari-
able s by

s=4(g* + p?), (2.2)
where ¢ is the momentum in the center-of-mass frame,
g=@mE)'2, 2.3)

Of course, s#E?, in general. Henceforth, we take units
such that =1, The combination s — 4 occurs so fre-
quently that we adopt a special notation,

¢ =s5-4, 2.4)

The squared-momentum-transfer variable ¢ is defined in
the usual way,

t=-2¢*(1~2z), z=cos#, 2.5)

where @ is the scattering angle.

It is known® that when p(¢) is suitably restricted, the
scattering amplitude A(s, ¢) obeys a Mandelstam repre-
sentation. If the potential is so weak that no Regge
poles of the partial-wave amplitude enter the right-half
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! plane, then the Mandelstam representation requires
no subtractions and has the form

A(s, t)

_ 1 ® 1 y) p(s ')

“5/4 [ fdt(' BIGET N
The single-spectral function p(¢) is identical with the
weight function of the Yukawa potential. The region in
which p(s, f) may be nonzero is determined by the re-
quirement of unitarity, The boundary of the region is
often deduced from Mandelstam’s form of the unitarity
condition for the double-spectral function, It may be
obtained directly from our partial-wave viewpoint as
follows. By reversing the order of the ' and z integrals,
one obtains the Froissart—Gribov form of the partial-
wave amplitude:

plth)at"
-t

(2.6)

al,s) =3 f: dz P,(2) A(s, 1)

———f arQ (1+ )D(s 1), 2.7
D(s, ) =p() + + j: %’%’—9. @.8)

The reversal in integration order is justified for the
amplitudes we construct (see Sec. 4). From the known
behavior of @,(z) at large positive I and a suitable bound
on the ¢-discontinuity D(s, ), one concludes that the
partial wave is bounded as follows at positive I:

la@,s)| <klzy+ (22 - D2},
zp=1+8/4.
Here and in the following work, « is a generic positive
constant which may have different values at different
points in the argument. In Sec. 3, we show that (2.9)

holds for our amplitudes. By unitarity, the absorptive .
part of the amplitude has the form

As, )= (1/20[A(s,, 1) - A(s_, D)]

2.9)

=§) (2 +1) P,(1+2¢/5) q(s) all, s.) all,s.), (2.10)
=0

where

f(s,)= Llim f(w).
w-s+i(

By (2.6), A, may also be written as

_1 dt'p(s, t")
As,t)= f4 o (2.11)
Since

|P,(2)| <kl[z+ (22 - DV2] (2.12)

at positive I, we see from (2.9) that the series (2. 10)
converges absolutely and uniformly in any closed region
interior to the unifocal ellipse defined by the equation

2+ (22 = 1)V 2=z + (2 - 1)/2P, (2.13)

z2=1+2t/s .
That is to say, A,(s, - 2¢*(1 - 2)) is analytic in a unifocal
ellipse in the z plane, with semimajor axis 2z} - 1.
When this assertion of analyticity is compared with
(2.11), we see that the cut of A, in the ¢ plane must start
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at t> 16s/s , since z < 223~ 1 is equivalent to £< 16s/s .
Thus, p(s,?) is zero unless

s24, t=7(s)=16s/s. (2.14)

We shall now derive the dynamical equation by a
series of formal steps. The manipulations will be
formal in the sense that we shall not pay attention, in-
itially, to all questions of convergence, etc, Having
obtained the equation, we shall then prove rigorously
that it has a unique solution in a certain set. From
this solution we construct the complete scattering am-
plitude A(s, ?), and show that the latter is unitary and
satisfies an unsubtracted Mandelstam representation.
That is, the amplitude A(s, t) is the solution of our orig-
inal problem,

The derivation of the equation starts from the obser-
vation that the double-spectral function may be ex-
pressed in terms of partial waves at complex . If a
Watson—Sommerfeld transformation is applied to
(2. 10), one obtains the expression

Ags, D)

2 sinml

We take — 3 <w<0. According to (2.11), the discontinu-
ity of (2.15) over its cut in the ¢ plane is the double-
spectral function, ®

ols, )
_1
2i Rel=w

:ifn AR+ b als)al,s)al,s). (@.15)
el=w

dl(21+1) Py(z) q(s) a(l,s,) all,s.). (2.16)
If A(s, f) is real analytic in s and ¢, it follows from (2.7)
that

all,s)=lal*,s,)*. (2.17)

Henceforth, it will be understood that a(l,s_) is defined
by (2.17). Consequently, the function p(s, {) as ex-
pressed in (2. 16) will be real. Equations (2.7), (2.8),
and (2. 16) taken together constitute a nonlinear system
satisfied by a(l, s). We take advantage of the support
of p, as specified in (2. 14), to replace the lower limit
of the integral (2. 8) by

o(t)=41/(t - 16).

(The function o is the inverse of 7). The Froissart—
Gribov representation (2.7) can now be stated as

(2.18)

2 ° 2¢
ws)=at9+ [T ae @+ )

le“ ds' 1
T Jowy $'—s, 2

ar@l’'+1)

Rel’ ==¢

XP,, (1+ 2 ) g(s)aQ’, s a(l’,s!), (2.19)
where ag is the Born term,
“ 2
asa,s)=%f tQ, (1+7"‘) o0, (2. 20)
4

and 0<e< }. Equation (2.19) may be regarded as a dy-
namical equation for a(l, s,), with Rel=-¢€ and s > 4. The
equation as it stands is difficult to analyze, however, so
that we have chosen to study an equivalent rearranged
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form of the equation. In the new arrangement we carry
out the ¢ integration first and obtain (for Rel> - €),

a(l, s‘)=a8(l, S)+% j:

xa(l’,s) a(l’, s A, s,8"),

dtQ,(1+¥) P, (1+§£) ,

s')

ds’q(s’)

"(21 +1
i (21’ +1)

Rel’=-¢

(2.21)

1
N =
AU, s,8')= e

(2.22)

where 7(s’) was defined in Eq. (2.14). Equation (2.21)
is suitable for our purposes in the open region

Rel > — ¢, but for Rel =~ € we must use a different ex-

pression since the integral (2. 22) diverges when [ =]’,
We proceed by separating the part of A which diverges
at[=1'. We write A=A, +A,, where

1 fs\ M (7 2t 2t
M=z () Lo, @0 @+ 2) 2o (1450)

(2.23)
1 * 2t 2t
=), wpe (1+5) [o (145)
1+4
_é_,.> & (1 + %)] (2. 24)

The divergent part A; may be calculated in terms of
Legendre functions, by using the Legendre differential
equation and partial integration. The result is

A_L < ! 1- 23
17 2mi \¢’ -0 +1+1)

x[Qi(zy) 3, Py (29) - Pre(25) 3,Q,(29)],
z2y=1+27(s")/s". (2. 25)

Standard asymptotic estimates on @, show that the in-
tegral (2.24) converges for Rel =Rel’; see Appendix C.
For the term A, the I’ integration in (2.21) may be
carried out by closing the I’ contour by an infinite semi-
circle in the right half-plane. The contribution of the
semicircle vanishes if the functions

al’, s a(l’, s!) Py (2,) (2.26)
and
a(l’,s)) a(l’,s!) 8, P(zy) (2.27)

vanish, uniformly in direction, as 7’| tends to infinity.
This requirement is satisfied for any a(l, s,) of the class
considered in Sec. 3. The contribution of A, to the in-
tegral (2.21) may be evaluated as the residue of the pole
at I=1'; if one notes the value of the Wronskian!® of P,
and Q;, one obtains

j:‘ ’d_s' (%7) IQ(S')a(l,SQa(l,sj).

(2.28)
s’ -8,

This is the familiar right-cut term of a dispersion rela-
tion for the reduced partial wave amplitude!!

b(ly S)=a(1,s)4 -1, (2- 29)

The new form of (2.21), obtained by the decomposition
of A, is best stated in terms of the reduced amplitude.
We write
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b+(l;s)=F(b+;l’ S), (2- 30)

where
b’ay s) =b(ls s,)
and

F,;l,s)

1 (~ ds’
=b,,(l,s)+;’[4 Py q(,s")b,(, s b.(l,s")

l - ds' ’ ’ ’ ’
HL s,_sfwm @@L+ g, s

xb, @', s (I',s") G, 1, s,8"),
Rel>-¢, q(,s)=q(s)s’, b.@,s)=[b,0*s)]*.
(2.32)

The function G differs from A, just by a kinematical
factor:

P 2t \[ 1 2t
G(l,l"s,s')z—iT '/;(s') di P, <1+F)&m Q, (1+T)
1 2t
- o U (1+ ry )]
For the open region Rel > — ¢, we have the alternative

form of F(b,;1,s) by (2.21):

* ds'q(s")
s'—s,

(2.31)

(2.33)

-] i
F(b,;1,8)=bg(l,s)+ ‘—ﬂ- f av
4

X2 +1) () b,(,s)b_(1’, s AQ, 1, s,87).
(2.34)

In Sec. 3 we shall determine a solution of (2. 30),
which is to say that we shall find a fixed point of the
nonlinear mapping F in a certain function space. The
space will be such that when b, is one of its elements,
the two forms of F, (2.32) and (2. 34), are equivalent
for Rel> .

Equations (2.30), with F in the form (2. 32), is a con-
ventional partial-wave dispersion relation for b, al-
though the left-cut term, the third term in F, appears
in an unfamiliar form. The function G is a “known”
function, in the sense that it is independent of dynamics
and may be computed once and for all. In computing
a solution of the equation only two integrations (over s’
and I’) are required to evaluate the left-cut term. In
the conventional form of the left-cut contribution, ' four
integrations are required.

Rel’=-¢

3. EXISTENCE AND CONSTRUCTION OF SOLUTIONS

In this section we prove that the dynamical equation
(2. 30) has a locally unique solution in a Banach space
B, when the potential is suitably restricted. The space
A consists of all complex functions f(I, s) that are analy-
tic in [ for Rel > - ¢, continuous in I for Rel=~¢, con-
tinuous in s for s> 4, and such that the following num-
ber, the norm in 3, is finite:

7l = 1AMy + 1 £ (3.1)

The subnorms over the Region 1 (-~ e <Rel < - {) and the
Region 2 (- ¢ < Rel) are defined by
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[7l;= sup (sups“’”lflf(l,s)l
meswEat \ 524

+ gup s SUDTIRIN) e

and

| Fll2= sup sups*2./2[p()1°| 71, ) (3.3)
We have defined the quantities

w=Rel, (3.4)

L,=1+|1], (3.5)
and

pls)=(s"2+2)% (3.6)
Also, we shall define and use the function

(s, D=t + Vs +D? (3.7)
note that

p(s)=u(s,4). (3.8)

Note that the elements of 4 decrease as [,” as [ — =
within Region 1 and as 7,"1/2 as [ — « within Region 2;
in addition they decrease exponentially as Rel — «,

The positive quantities €, v, A, ¢, and 0 appearing
in the norm (3. 1) are subject to the following
constraints:

e+26<4, £+206<e 3+06/2<v<l, i<Ar<§-0/4,
v/2+rs1, (3.9)

In other respects, they may be chosen arbitrarily. By
contrast, in Ref. 2 it was required to take v (v+3 in
that notation) to be greater than 1, and the Born term
by was not an element of the Banach space for an ener-
gy-independent potential. Our Born term will belong to
A. In fact, the last of the conditions (3. 9) is imposed
by the requirement that b = 8. When b< 3, the func-
tions (2. 26) and (2. 27) vanish as |7’| tends to infinity,
uniformly in direction in the right-half I’ plane. This
follows from the upper bounds on P,.(z) and 3,P;.(2)
given in Appendix A of Ref. 2. Consequently, the two
forms of F, stated in (2. 32) and (2. 34), are equivalent
when be .

In proving various central results of this paper, we
shall need to use certain special properties of Legendre
functions of the second kind. To describe these proper-
ties, let us define a function §,(4,¢) by

Q(1+2t/s)=a11Q,(s, 1.
Using the standard Laplace representation!? of @,;, we
may represent §; as
Q:s, )= f,” do{s+2t+2[¢(s +1)]V/2 cosho} P
(3.11)

It is convenient to factor the value of the integrand at
6 =0 from the integral representation (3. 11) to obtain

3.10)

Qt(“’t):u-(hi) Rl(x); (3. 12)
where u(s,1) is given by (3.7),
x(e, )= @/u)t(s + D2, (3.13)

and
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Ry(x)= J,* d8[1+x(coshg - 1)]-"+1, (8.14)

Note that for s and ¢ positive, x lies between 0 and 3.
We show in Appendix A that, for Re/> ~ 1 and 0<x <3,
the function R,(x) and its x derivative satisfy the bounds

|R,(x)| <k(t,2)1?%, (3. 15)

|R)(x)| <k(.2%)?,. (3.16)
and

[R](x)| <k(l,2%)1/2, (3.17)

Let us point out that, whereas the z derivatives of @,(z)
become unbounded at large I,, the transformations
(3.10) and (3. 12) permit us to separate out an oscillat-
ing part, such that the remainder R,(x) has bounded

x derivatives., The Legendre function of the first kind,
P,(z), may be expressed in terms of @,(z) and @_,_4(2)
by a standard identity g uted in Appendix C, Eq. (C2).
This identity yields the bound

|P,(1+ 2t/ )| <k@(s,t)/s)°Qx)"V?2, —ssws<-¢.
(3.18)

Similarly, one may obtain bounds on the derivatives of
P,.

We shall verify that F maps a certain ball of # into
itself, in a weak-coupling regime in which certain re-
strictions are placed upon the potential V(r). Specifical-
ly, let us require that the real-valued function p(#) be
differentiable for ¢ > 4 and be subject there to bounds

lo@) | <ct™ | (t-4)/t|1/? (3.19)
and
[’ | < ct=-t [t/(t - 4|1/,

with @ > 3. Furthermore, we shall place a restriction
to be specified presently upon the magnitude of the con-
stant ¢. The form of the bounds upon lp!| and [p’l is
chosen to include the case in which p(f) ~ k{t — 4)}/? as
t—4 +. One might expect that an effective potential
based upon two-particle exchanges would lead to a
Yukawa density p with such a crossed-channel thresh-
old factor. We are not able to handle the case of “one-
particle exchange,” in which p(f) = 6(¢ — 4), by the cur-
rent procedure.

(3.20)

Under conditions (3.9), (3.19), and (3.20), one may
easily demonstrate that b5(l, s) and 9,b5(l, s) are analy-
tic in 7 for Rel > — ¢, continuous in / along Rel =—¢, and
continuous in s > 4. In fact, we establish the following
bounds in Appendix B for s > 4 and w=Rel > - €:

1
le(l,s)] 5217}67%37’1 POF’ (3.21)
1
lba(l,s)[szg/"z—zm TP (3.22)
and
lob5l,8)] < s L. (3.23)

l+1/235/4 [P(s)]w

The constant k appearing in (3. 21)—(3. 23) is independent
of p, I, and s. The bounds (3.21)—(3.23) are sufficient
to guarantee that the function bg(Z, s) is in the Banach
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space 8, with any choice of (¢, 1, v, £, 8) subject to (3.9);
and that its norm is subject to the bound

(3.24)

the constant k; being independent of p, and therefore
of c.

165 || < xse,

Let us express Eq. (2.30) as
b,=by+K(®,). (3.25)

We shall show that the operator K maps the space
into itself, in such a way that

5@ [ <«lo.]? (3.26)
where « is independent of b,. We define a closed ball

§, centered at the origin in 4, as the set of all b, such
that

lo.] <. (3.27)
By an analysis similar to that which yields (3. 26), one
may show that, for b,y, b, S,

K@,y - K. [ <kr(d,g - bl (3.28)

From (3.24)—(3.28), one sees that if ¢ is sufficiently
small, one may choose a correspondingly small ball
radius 7 such that F=by + K is a contraction mapping
of § into itself. It then follows from the contraction
mapping theorem!® that Eq. (2. 30) has a unique solution
in § and that the solution may be computed by iteration.

In the remainder of this section, we shall establish
that K maps £ into itself in such a way that (3. 26) is
valid. We shall prove first that K(b,;1, s) is analytic in
I and continuous in s, for Rel > ~¢, and that || K|},
<k ||b,|?. This will be done by using the second form of
K, as given in (2. 34). We shall then demonstrate, with
the help of the first form of K, (2.32), that K(b,;!,s) is
continuous in ! and s for Rel =-¢, and that the subnorm
over Region 1 obeys the bound || K ll; <« || b,l1>. The
bound (3. 26) will then follow.

The analysis of this section employs information upon
b,(l, s) itself only for 7 in Region 1. But, of course, the
mappings (2. 32) and (2. 34) are equivalent only if b, de-
creases exponentially in w in Region 2, as is the case
when b, is in the Banach space A.

We shall make use of the following bounds upon
b,(,s)eB for ! in Region 1 (-esw<-¢):

1o, it

6., s)igm (3.29)

for s=4, and
|b+(l’ S') - b+(l’ S) I < " b-r II |S, -$ lc/l:'.ﬁskm)“5

for s'=s=4,

(3.30)

To analyze K(b,), it is convenient to define the
function

C{,s)=q(l,s)b,0,s)b.(, ). (3.31)

It follows from (3.29) and (3. 30) that C is subject to
the following bounds for / in Region 1:

lca,s)|
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sklll*b';nz (g)llz«vws -1/ , s>4, (3.32)
|C(Z,s')—C(l,S)l
< xlib, 1P (a_')‘”*w-ﬁ s’ ~s1®
s’'zs>=4, (3.33)

Let us cast the expression (2. 34) for K(b,) into the form

K(b,‘)=ﬂ£;1rj;ue s(jii’s H(l,s,s')+7i,H(l,s,s),
(3.34)
where
H(l,s,s’)

= frree Q@D CU,SN(NAQ T, s, s, (3.35)

with A defined by (2.22). The integral (2.22) is absolute-
ly convergent when w=Rel > — ¢ and Rel’=-¢€, We may
directly apply (3.10)—(3. 18) to establish the following
bounds:

ls " A@, T, 5,8

(3.36)

| as'(“”'A(l, U,s, s'))\
“are (i) F Go) " b ()]
(3.37)

We use (3. 32), (3.33), and (3. 35)—(3. 37) to get the fol-
lowing bounds for the function H{l,s,s’):

IHG’S’SIHSF’:”’I()—;}% 51_‘(5%5)) © [“_ <§si> 1/4-6]

x(%) e (s—,),lrm i (3.38)

and, for s{<sj,

|H@, s,s)) - H{, s, s
K ||b,||2 1 ( P ) w [ (s') Utee  [o!\1/4¢
= —17-2————114' (w Te 'S—g st) 1+ TSL + f ) ]

42' 1/2-¢=25 1 .
x(s—z) P17 |s{~ sgl°. (3.39)

We may use the bounds (3.38) and (3.39) on the princi-
pal value integral in Eq. (3. 34), along with Lemma II
of Appendix D, to establish that K(b,,I, s) is continuous
in s for s> 4 and subject to the bound

kb, 12 _ 1 .
|&@.,1,5)| < wte 1,177 B-IN2 [p@&) ™.

(3.40)

We have thus established the required bound || K|,

<k |5, ]|, and have shown that X is continuous in s. It
remains to show that K(p,;Z, s) is analytic in [ for

Rel > — €, One first notes that A(,1’, s, s’) is analytic
inZ, for Rel > —¢, Rel’=-¢, by virtue of uniform con-
vergence of the integral (2.22) that defines A. Further,
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(8. 35) converges uniformly in 7, so that H{l, s, s’) is
analytic for Rel > - e. To show that the principal-value
integral in (3. 34) is analytic in !, we write the integral
as

1 * ds’
'7?:}' '/; s—,:[H(I,S,S')—::;,H(Z,s,S)]

ds’

TT=9)" (3.41)

S o«
+ Ed—,-H(l,s,s)P j;

The first term in (3. 41) is convergent uniformly in I,
thanks to (3.38) and (3.39), so that the required analy-
ticity is apparent.

We shall now study the expression (2. 32) for K(b,,1, s),
which we write as
K(®,) =Kz, + K, (b,), (3.42)

for ! in Region 1, We shall show that X(b,) is continuons
in 7 and s for Rel = - €. In addition, we shall establish
these bounds:

cllo, 1

IKR.L(b-nl’ s)lS 1V ;FE": (3=43)
and for s’ = s,
K 2 |g’—-g]®
[Kp,1(.,1,8") = Kg, 1 (b,,1,5)| < e, i SSM%I . (3.44)

V=8
1 +

That is to say, the subnorm |} K(b,)|); obeys the bound
&K@ |y <xlo.]2 (3.45)
Let us establish (3.43) and (3. 44) for Ky, which is
given by the expression

o« ?
KR(Z,3)=§L Tds—g €(,s’)+iCQ,s). (3.46)

s —
For A>3, we obtain bounds (3.43) and (3. 44) for the
second term in (3. 46), from (3.32) and (3.33). By a
standard lemma on principal-value integrals, which is
stated as Lemma I of Appendix D, we may conclude that
the first term is continuous in s and subject to the
bounds (3.43) and (3. 44). Furthermore, one easily es-
tablishes that K(l, s) is continuous in [ and s for Rel
=—¢€, by uniform convergence.

To analyze K, let us define the auxiliary function
E(,s,s")

@’ +1c@’, s 6@,1",s",s), (3.47)

= fRel’:HeI:w
with G defined by (2. 33). Note that the integral (3. 47)
is equal to the !’ integral appearing in (2.32). The con-
tour displacement from Rel’ = - € to Rel’ =Rel is per-
mitted by analyticity of the b,(I,s). It is evident from
(2.33) that G vanishes for s =s', so that the expression
for K,

= ’
KL(las):;T]: j:l dss E(l; S;S’):

Py (3. 48)

involves a nonsingular integration over s=s’, We es-
tablish in Appendix C that G is subject to the following
bounds [see Eqs. (C63), (C69), and (C70)]:

(G, 7,5, < k@D 2 1als + s)[1+ (s7/s)V 2]
x[1+nz,2/ ]|y - 9|2+ |y + |32

+y! = "/ 2y 2+ [y + (s7/5) 2y T2), (3.49)
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{ asG(l’l'> s,s") ( < [’C(l.,l:)1/2/(l., +l+’)][1 + (S'/S)“A'w]

x[In(s’ +s)/s](1+1nl,2}), (3.50)
|0,GE, U, s,8") | <e@INY?/0, +1))1 +1n2,1))
x[In(s +s7)/s "1 +(s"/5)3 #¥], (3.51)

We have adopted the notation y=Imi, y'=Iml’ in writ-
ing (3. 49). It follows from (3,32), (3.33), (3.47), and
(3.49)~(3.51) that E is subject to the following bounds:

[E(l,s,s')f

< kllb, [P(1+1n2,) (a_') 12w In(s +s')
l* s’ (SI)ZEw-IH

s\ t/4 s’ 1/2+w
X[(g—,) +(—s—) ] (3.52)
|EQ, s4,8") - E(, sy, 5|
o 10{s, +8°
KB () 1 S
RERIEY s’
s 1/4 st\ 1/ 2w Sy —5,1%
{376 s s
(3.53)
[E(l,s,s{)—E(l,s,s{)[
< Kb, (1 +1nl,) (‘,_5 )1/ 296 In(s + s3)
TP s (PPt
» _§I_ 1/4+ ié_ 1/ 2+wab/4 s gtl®
' s s; 47
s{ssi. (3.54)

In (3.53), the Hdlder exponent &’ is required to satisfy
the constraint

§< 8’ < min(6+ 4, 86). (3.55)

In order to obtain HGlder continuity of the integral

(3. 48), with respect to s and with exponent 8, we re-
quire a HOlder continuity of E(, s, s’) with respect to s
with an exponent 6’ bigger than 6; cf. Ref. 14.

We may now apply Lemma III of Appendix D, in con-
junction with (3, 48) and (3. 52)—(3.54), to infer that K
obeys the bounds (3. 43) and (3. 44). [Even though the
integral (3. 48) does not require a principal-value defini-
tion, the lemma may still be used. ]

This completes the proof of inequality (3.26). The
proof of the Lipschitz inequality (3. 28) is carried out
by almost identical considerations. We have thus fin-
ished the proof of existence of a locally unique solution
of the dynamical equation (2. 30).

4. MANDELSTAM ANALYTICITY AND UNITARITY

We have established the existence of a solution to the
dynamical equation (2. 30), under the conditions that the
potential (2. 1) be sufficiently weak and satisfy inequali-
ties (3.19) and (3. 20). The solution is a member of the
space A, defined in the first paragraph of Sec. 3, and
is unique in a subset § of A, defined by (3. 27).

We shall now show that the solution 6,({, s) of (2. 30)
leads to a solution of our original problem, namely,
the problem of finding an amplitude A(s, t) with an un-
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subtracted Mandelstam representation and unitarity.
We shall show, in fact, that the required amplitude is

ds'dt’p(s’, t')

Als, t)z% f; dt'p(t') e ff T=DG"-s)’ (4.1
where p(s, ) is computed as follows in terms of the
solution b,(, s) = ' a,(l, s) of (2.30):
p(s, 8)=(1/26) [qyopr... d1'(20 +1) Py (1 +2t/ 6) g(s)
Xa(l',s)a(l',s), (4.2)
a_(l,s)=[a,@*,s)* (4.3)

We shall first demonstrate that

(a) p(s, ) has the proper support, as defined in
Eq. (2.14),

(b) p(s, ¢) is Hlder-continuous in both s and ¢,

(c) the integral (4.1) converges for all s and { interior
to the cut s and ¢ planes, and exists as a limit when s
or ¢ approaches its cut,

To prove (a), we simply close the integration contour
in (4. 2) by an infinite semicircle in the right half-plane.
Since b, € 3, the contribution of the semicircle vanishes
if <7(s); see Eq. (2.14). The integrand is analytic in-
side the closed contour, so that p(s,#}=0 for # < 7(s).

We prove (b) and (c) by applying the bound (3. 8) on
1P, } and a similar bound on |P}| to obtain the follow-
ing inequalities:

1/2=¢ 1/ 4-e
ps,olenlod?(2)" St @
lp(si, f)-P(sz,f)l
1/2=¢=5 (s +t)1/4-e Sq~S,|8
<kfl,]? (2) NCEYEFYT 151 2 51 8y;
4.5)
[p(s:ti)_p(s, tz)‘
s\ V2 (54 g)/4-e8/2 g _ g |6
SK”b0”2(g> s -/zx-etij _L?'z y ti\t2‘
4.6)

The conclusions (b) and (c) follow immediately. The
integrations over s’ and # may be carried out in either
order,

Our next step is to take the Legendre projection of
(4.1), and then reverse integration order to put the
resuit in Froissart—Gribov form. The Legendre pro-
jection, call it a(l,s), is given by

aq, s):% f ' azP () Als, 1) @.7
-1
=;i— ) dt @, <1+¥) D(s, ), (4.8)
_ 1 {7 ds’p(s’,?)
D(s,)=p(t) + - fam By Curent (4.9)

The reversal of integration order is easily justified
through use of the above bounds on p. Similarly, one
may justify a further change in integration order, to
show that the right side of (4. 8) is equal to the right
side of the dynamical equation (2. 34), for s —s, and
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Rel> - ¢, (Recall that €>¢ >0, so that the difficult situ-
ation Rel =Rel’ does not arise). Consequently, a(,s,)
=a,(l,s); i. e., our solution of (2. 30) is identical with
the Legendre projection of A(s,, ) for s =4 and Rel > - ¢.

Note that @(, s) is defined in the cut s-plane and that,
for Rel = - ¢,

a.(,s)=[a,@* s)F=[a@*,s,)*=a(,s.). (4.10)
Henceforth, we may replace a,(, s) by a(l, s,) in Eq.
(4.2). We are now in a position to prove unitarity:

(1/24){aq, s,) - 2@, s)]=q(s) a@, s,) 2@, s).

This statement will hold even for complex I, with
Rel = — . By applying (4.8), we see that the left side
of (4.11) is given by

2

=g arQ,(1+2t/4)p(s, t),

(4.11)

4.12)

where we have extended the integration region to 2=0.
The latter step is permissible since the integral (4. 2)
is identically zero for 0 <f <4, We may now reverse the
order of the # integration in (4. 12) and I’ integration in
the definition (4. 2) of p to obtain

1

- darr’ +1) 4(3) a(l’, S») &(l,: s.)
1Ma Rel’=-¢

xf datQ, (1+27t>1>,, (1+¥
0

= L '(97*
=g ./;: o & (21’ + 1) g(s)

1
14 —_—
Xa(l s)a(l S)l ll l+l'+1

=g(s)a(l,s,) a(,s]). (4.13)

This concludes the proof that the amplitude A of (4. 1),
which was constructed from the solution of Eq. (2. 30),
is unitary and has an unsubtracted Mandelstam
representation.

To show that the amplitude we have constructed coin-
cides with that which would be obtained by solving the
Schrodinger equation, we must establish that the
Schrédinger reduced partial-wave amplitude, 5°(,s,),
lies in the subset § of the Banach space 4. To this end,
we may appeal to the work of Bessis, ? who has obtained
bounds on b® for a class of potentials V{(#), analytic in
v for Rer> 0, and restricted for Rer > 0 as follows:

[V < m|r|™, p<2, |r]<1,
| V)| < mexp(~ wyRen) |7, ¥>1/4,1,>0, |7|>1.
(4. 14)

One may show that our potential, as specified in Eqs.
(2.1), (3.19), and (3.20), satisfies the conditions of
Bessis, with p=3, y=2; also, p,=2 with our choice
of units, One may apply Egs. (2.3)—(2.5) and (2. 13)—
(2. 14) of Ref. 9 to show that b°({, s,) is bounded as fol-
lows in our Region 1 (-e<Rel <-¢§):

|05, s,) | < kmni, /s V2o, + 5172, (4. 15)

This result meets the requirements for membership in
the set § (for sufficiently small m), as far as behavior
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at large [, and large s is concerned. The right side of
(4.15) becomes infinite as s —4, whereas the members
of § are bounded and decrease at large [, even when s
is close to 4. Bessis has also proved [see his Eq.

(2. 21)] that

|55, 5,)| <wm, s <1. (4.16)

This shows that b° is finite at s =4, but it does not give
the required simultaneous vanishing of b* at large 1,. It
seems likely, however, that this difficulty could be
overcome by a more careful analysis at small « .

There is a further difficulty in deriving the required
properties of b*® from the analysis of Bessis, in that
Ref. 9 contains no discussion of HSlder-continuity with
respect to s, This means not only that boundedness of
the second term in our norm {|f[l; of (3. 2) is not veri-
fied, but also that p(s, #) is not proved to be Holder-
continuous in s. The latter shortcoming means that
Bessis has actually not shown that A(s, ), as given by
the Mandelstam representation, approaches a limit as
s tends to its cut, Again, we think it likely that Holder-
continuity could be proved with some additional effort.

Bessis has not discussed the behavior of 5° at large
Rel (i.e., I in our Region 2); we cannot infer, there-
fore, that b° decreases exponentially at large Rel, or
that || bll, is finite. Undoubtedly, this omission could
be corrected with further work. We note that without
this exponential decrease, the proper support of the
double spectral function cannot be established either.

We see that step (c) of our study of potential scatter-
ing, as mentioned in Sec. 1 is not quite complete. There
seems to be no serious doubt, however, that the remain-
ing steps could be filled in. The most difficult step in
verifying that b°c § is to show that »® has suitable
bounds simultaneously at large s and large I, in Region
1. This much has been accomplished by Bessis.
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APPENDIX A

Here it is shown that the function R,(x), defined by
Eq. (3.14), is subject to the bounds (3. 15)—(3.17) for
Rel>-1+¢, £>0, 0<x <4. Before analyzing R;, let
us change the variable of integration in (3. 14) to
v=cosh@ -1, and define m=1+1, to obtain

R;(x)= fo“’ dvlv(w+2)T1 21 + vx)™™,

We shall prove the bounds for Iml = G, since they would
then follow for ImI < 0 from the relation

Ry(x)=[Ryx(x) I*.

(A1)

(A2)
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Let us distort the v-~integration contour so that it lies
along the negative imaginary axis. The result is

Ryl = [ aelt(t+20)FV 21 - itn)™, (A3)
The integrand in (A3) may then be replaced by its
modulus, and we find
|Ry() < f[™ a2V 2 (2 + 4V 41+ £a?)mol 2

X exp [~ yarctan(tx)], (A4)

where we have written m =my+ iy in (A4), with m;=¢>0
and y> 0. Let us split the integral on the right side of
(A4) into parts for which xf> 1 and x¢ <1, respectively,
For the first part, the integral is less than

fl j %—IZ (tx)y"™ exp [~ yarctan(tx)]

= f: ;‘{i% exp [- yarctan(»)]. (A5)

The arctangent in (A5) takes on its minimum value at
r=1, so that (A5) is less than

K exp(- my/4). (A8)
For the second part of the integral we obtain the bound

fo’/" dt 1/ ? exp[ - yarctan(ix)). (AT)
It follows from elementary considerations that, for
O<srsl,

arctan(v) = nr/4, (A8)
s0 that an upper bound for (A7) is given by

Gey)™/2 2 dr V2 exp(- fmv) < klry) (a9)
We may also bound the second term of (A4) by

JY= deet/2 (@ + 4y V4 < In(1/x). (A10)

To obtain an estimate on |R,| that is useful at large m,,
we work directly with (A1), which we replace by its
modulus to obtain

|R,(x)] < fo‘“ dr[v(r +22)]V 2 expl- my In(1 +#)].  (Al1)

We split the integral in (A11) into the region » <1, for
which log(1 +#) = vlog2, and > 1. We obtain for my>§
that

i o0
lR,(x)lsx"”f drr1/? exp(~ rm, In2) + —17?‘1’:‘3
0
< K(xmy)™V/2, (A12)

From (A6), (A9), and (A12) we conclude that
|R, ()| < k)12,
which is the desired bound (3. 15).

(A13)

To obtain the result (3. 16) for |R;|, we differentiate
the representation (A1) with respect to x, and then inte-
grate by parts to obtain

R/(x) =— ’—16 fo dv ot (v +2)2(1+ vx)™™, (A14)

One may majorize the integral in (A14) by the same
procedures used in the case of (Al). As a result we
establish that
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|R,'(x)| < Kl:‘” x-:s/z,
which is the inequality (3. 16).
To get (3.17), we differentiate (A14) with respect to
x and integrate by parts to obtain

R/ (x)

(A15)

= —% f dv vV i p 4+ 2)5/2(1 + vx)™. (A16)
0

The bound (3. 17) is readily established from (A16) by
techniques similar to the above; viz,, we obtain

|R(x)| <kISV2x75/2, (A17)
Our analysis leads also to the results

|Ry(x)| <k In(1/%),

lxR;(x)l <K,
and

|xR)(x)| <x. (A18)

These bounds are not needed, however,
work.

in the present

APPENDIX B

We shall show that the partial wave Born amplitude
bp(l, s), which may be determined from the Yukawa
density p by Eq. (2.20), is subject to bounds (3.21)—
(3. 23) when p satisfies conditions (3.19) and (3. 20).
Let us substitute (3.10) and (3. 12) into (2. 20) to obtain

ba(l)s)—:'% 4/4“ dtu(‘yt -l-iRl(x("t))p(t)-

We have used (3.7) and (3. 13) to define the functions
u(4,!) and x( 4,7). To demonstrate (3. 21), we replace
the integrand in (B1) by its modulus and use (3.15) and
(3.19) to obtain

(B1)

K b 1
lba(l,8)|<m£ dt |p(t) | AT

U 1
\Z,“"’ Fo4I7E w37 5

K
<

RUTArIOL (B2)
Here [, and w are defined as in Sec. 3. We have used
the inequalities @ >, u<4(s +1), s <p(s) su(s,?),
w+%>0, in obtaining (B2).

To demonstrate (3. 22), let us integrate the expres-
sion (B1) by parts to obtain

ba(l, s)-.— lil f dtu(s -1
X lp@®)u(s,t)x(s,) Ry(x(s, )] (B3)
We have used the fact that p(4) =0 and the relation
x(s, t) (4 H=2 (B4)

in getting (B3). It is straightforward to show by using
(3.10)—(3.16) and (3. 19)—(3. 20) that

P\ 12 (4 p)3/4
Iat(Pusz)l\ (t 4) (i3/42a .

Let us apply the bound (B5) in (B3) to obtain

(B5)
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1/2 (S + t)3/4
u1+w t.'ill-m

K ° t
|b3(l, s)ls mj; dat (t—4)

K « 1/2 (s+t)”4
< [T )T f a (,—_—4) pTEE
K
< Wu TS5y - (B6)

In the last step of (B6), one shows that the integral is
of order si/4, by splitting the integral into the parts
with f<s and > s.

To obtain the bound (3. 23), let us change the variable
of integration in Eq. (B1) to # and use relation (B4) to
obtain

a, =2 [ duutt o x(s, 0 Rilele, 1), B
s
The function #(s ,%) is defined implicitly through (3. 7).
We differentiate (B7) with respect to s to obtain
asbB (l, S)

1

== f T duut dlo@® x( s, ) Ry(x(s,0)]. (B8)
#(8)

m

The contribution from differentiating the lower limit of
(B7) vanishes because p(4) =0. We may show by routine
estimates that

K t 1/2
2052 | < 7372 (t—4>

We insert (B9) into the integral in (B8), and obtain the
following bound upon d.bg:

© 1/2
logbpl< mam | at (= 1
sVB l+1 A t—4 u5/4owt3/l'+a

< K
17T ST p(s)%

1

WA (B9)

(B10)

Finally, we note in passing that if @>1 in (3. 19), one
can obtain an upper limit on |b,| which does not de-
crease when Iml — ; namely,

|65, s) 1< Ins ——% (B11)

P(
It is an intrinsic feature of the Born term that bounds
reflecting more rapid decrease at large |{Iml| are ob-
tained at the expense of correspondingly less rapid de-
crease at large s. The results (3.21), (3.22), and
(B11) illustrate this property of by. The large s and [,
dependence of these estimates cannot simultaneously
be improved, if only conditions (3.19) and (3. 20) are
assumed for p.

APPENDIX C

The purpose of this appendix is to establish the
bounds (3. 49)—(3.51) for the function G{,1’, s, s’),
which is defined by Eq. (2.33). We carry through the
ana1y51s for Rel’=Rel=w, where —esw<-¢,
€<%, £>0. The special case Iml > 0 shall be analyzed
here; the bounds for ImJ < 0 follow from the symmetry
relation:

G, U, s,s")=[G*,1'*,s,s")]*, (c1)

The lower limit 7(s’) of the integral is defined by Eq.
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(2. 14); we shall frequently use the fact that 1(s’) is
greater than 16,

Let us first use the identity
tannl’

Py ()= [Qs(2) - Qp 4(2)], (C2)
along with (3.7) and (3. 10)— (3. 13), to write
6= tfnz—”’# <4 nar g _ Gz> , (c3)
where
Gy= [ dtu(s', 0" R_yu_4(x(s ", )
X[u(s , )" Ry{x(a, D) —u(s’, 07 Ry (x (6, D).
(c4)

The expression for G is obtained by interchanging I’
and ~7’ - 1 in (C4). We shall carry through estimates
upon G,, and then indicate how the results are altered
for Gi’

One may show that the separate terms in the integrand
(C4) vehave at large ¢ as 1/¢, so that the integrals of the
separate terms do not converge absolutely. There is a
cancellation in the integrand of (C4) at large ¢, however,
so that the integral (C4) is absolutely convergent. By
contrast, each of the separate terms in G, gives an ab-
solutely convergent integral. To exploit this cancella-
tion in the integrand, let us decompose the f integral
in (C4):

Gy=Gy+Gp= [T+ [, (C5)
where
T={(s+s") 112 {(C6)

[We shall write out the analysis as though T is greater
than 7(s’); if 7> T, we have only the second term of
(C5). ] The mean-value theorem, together with the
bounds (3. 15) and (3. 16), may be applied to the last
factor of (C4) to obtain

lu(s, 7R (c( 6, D)) — (s ', D71 R, (x(s 7, 1)) |

SK\S'—SIl,ilzt'1/4(4<+t)'“"7/4, cmn

where ¢« (=min ( s, ¢ /). Let us apply the bound (C7) to
G,, to obtain

1/2 o
lezlskls’_S‘(ll}_) fT dt(6<+t)-3/2t-1/2

w372 s’ —sl
<k QI

(C8)
The estimate (C8) verifies that G,, becomes small at
large I, and, independently, at large I/; we obtain such
a bound by having chosen T to be large at large s,

s’y 1, orl’.

By contrast, we choose not to exploit the cancellation
at large f in G,y; rather we write

|Gy | = [Is", )| + |1s", M), (c9)
where
T ? 14
I(s,s")= [r dt :—g;‘;”—g,—;{R_,._i(x(d',t))R,(x(é,t)).
(C10)
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We shall obtain bounds upon |I{s,s’}|; the bounds for
1I{s’,s”)| follow as a special case.

Let us replace each factor in (C10) by its modulus,
and use the bound (3. 15) upon the R’s to obtain

T ! 1/ 4+w
lI(s,s')lsx(u:)-wz]: [t(aftt)]iﬁ (::—tt) .

(c11)

The integral on the right side of (C11) is conveniently
analyzed by separating it into an integral from 7 to s’ +s
and an integral from s’ +s to T. We may thereby estab-
lish that the integral in (C11) is bounded by
kEW;1',s,s’,++w), where we have adopted the notation

f(l’l" S,S', B)

’ 8
=[1 +<—SS—) ] In(s’ + s)(1+1nl,1/). (C12)
In turn, |I(s,s’)| satisfies the bound
|I(s,s") | <k@INIV2EQ L, 8,8, L +w). (C13)

[Actually, the factor In(s +s’) may be replaced by 1 in
(C13)]. Alternately, we may integrate (C10) by parts,
taking =1 du/dt as the term to be integrated, and then
bound the resulting expression to obtain

| Ts, M| <k@)Y21,%/?
st \ Vi fT dt o+t 1/4vw]
x[“‘(?) ). T 4+t) - ()

We may treat the integral in (C14) as we did the one in
(C11) to obtain the result

[I(s, s [<e@NV2L32EQ, 1, s, 8", S +w). (C15)
The bound (C15) is more stringent than (C11) at large
I,, but it does diverge at large 1,’. We may integrate
(C10) by parts, taking »'’ du/dt as the integrated term,
to obtain

II(S, s’) l < Kl.)i/z (l+l)-3/2

s’ 3/4+w T dt 6I+t 3/4+w
ha Sl e . 6
x[1+(s) +1 t(4+t) (c16)
A bound of the form

[ (s, s") < k212,372 £Q,T,s,8", 3+ w) (c1m

is readily established from (C16). We emphasize that
the bounds (C13), (C15), and (C17) are all valid when
—esws-~¢.

To make an improvement in these bounds when both
I, and I,/ are large, we must take into account the os-
cillations in the integrand (C10) when both !ImZ| and
iImZ’| are large. We handle the oscillations in
[u(s’, 01" and [u(s, ]! by writing (C10) as

I= [T at [ g T, (C18)
where
70 = ()" g Rl ) R, ) (C19)
and
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g =T +VsT+

TV (20
with
y=ImJ, y' =Imi’, r=y'/y. (c21)

We shall use the bounds (C13), (C15), and (C17) if
either |yl or Iy’| is not large; the analysis of (C18)
applies to the case in which both are large.

Our procedure is to integrate (C18) by parts in order
to obtain more stringent bounds at large 7,, which are
not divergent at large I,’. For the straightforward,
though lengthy, analysis we shall need bounds on f,
which are easily obtained through (3. 15) and (3. 16);
namely,

r@], 17/ ®]

dl +t 1/ 4+
<k[t(s+0)1,7,]1/2 (——) . (C22)

s +1

The derivative of g(f), which plays a crucial role in
the analysis of (C18), may be written as

g =g)m(), (c23)
where
1 A 1

In the analysis we shall distinguish three cases, de-
pending upon whether, for 4 <<, m() is everywhere
positive, everywhere negative, or neither:

CaseI (positive): A= X\,= sup(l, (s'/s)¥/2]; (C25)

Case II (negative): A <X, = inf(1, (s'/s)1/2];  (C26)
and

Case ITI (mixed): A, <A<, (C27)

Note that if s =s’, Case III does not arise. We shall
handle Cases I and II first; they are similar in that for
either case one may integrate by parts, with g% g’ be-

ing integrated, to obtain
(1+2iy) I(s,s) =g L, ’ —fT dtg“’*ia,(i)
? gl T T gl

(c28)
We may write the derivative in (C28) as
3:(f/8)=(f ~fm’/m)/mg~f/g. (C29)
Then (C29) may be used in (C28) to give
2iyI(s, s’)
T T ’
— o8y i _ 28y f_ (_1_)]
=™ | fr dtg [m (- | - {(C30)
To handle (C30), it is convenient to note that
._1__ _ , /2 6' +1 1/27) -1
) =2 02 A <4 m . (c31)
_1_ < Ni/2 [ 4’+t 1/2 -1'
'atm(t) <2t + o N2 [a, | A= T
2
+ Tm@l (C32)
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Thus, (C30) yields
) |81+ (o2 )
N j;r dt[t(t+ 4,)]1/2“-(,), la‘ [7&—(:'::) 1/‘2]-1

(C33)

|31] <

Now notice that the factor

O+t 1/2] -1
x=- (55)

is monotonic in ¢ (increasing or decreasing, depending
on the sign of s — s’) on the interval (4, «); i, e.,

[aex]| =% 0., (C35)

with a definite choice of the sign for fixed s — s’. This
observation allows us conveniently to integrate by parts
in the last term of (C33), affer replacing |f| by its up-
per bound (C22). After integrating partially, and using
(C22) and (C31) to treat the first three terms of (C33),
we find that

|s1] < (171‘5175{[ 1+(£) " kel + el

o #(5)" wal.

To complete the estimate of I, we note that {x[, being
monotonic in £, is majorized either by its value at =4
or by its value at =, Consequently, for any inter-
mediate value of 7 it is majorized by the sum of those
values:

(C34)

(C36)

[x@)] <|x=1]"14 |2 - (s'/s)1/2 |1, (C37)

When this result is applied in (C36), we obtain

|v1] <k@17)172 []x—1[-1+ Ix- (S?')”z 1][1 +(s?'>8/4+w

Tat (J+1) 34>
+[ + (:+t> ] (C38)
T

By comparison with (C186) and (C17), this yields the
required bound for cases I and II:
-1]

[I(s, s") | < k@2,0)1/? [ly’—yl"+ 'y’— (s—'> Yy
(C39)

s
This brings us to Case III, A, <A<}, in which we
must face the complication that g’(f) has a simple zero

at t=1fyc (4, ©), with

A=[(s"+1)/ (6 +2)T /% (C40)
We shall give the detailed analysis of I(s, s’) for the
case in which 7<#,< 7T, The remaining cases, ;> T,

ty <1, may be treated in a similar way, Let us divide
the integral (C18) into three parts, as follows:

XEQ, U, 5,8, % +w).

_ [T _ (¢ ¢ T_
I=[7 = [+ [+ [T=h+h+ 1. (Cc41)
Here
4 =max[7, ¢ (1~ n], #=minlt,(1+7), T), (C42)

where the parameter 7, to be specified presently, is
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restricted so that 0 €7 < 3. We integrate J; and I; by
parts, to show that they vanish appropriately at large
y, while the smallness of I, at large y will be ensured
through a suitable choice of 7. Partial integration of

I, is not possible, since the integral would then diverge
at =1,

For I,, we simply use the estimate (C. 22) of f to
obtain

¢
ilzl</t12 at| )|

Bg(1+m) dt ’ 4\ Ve
< ry-1/2 é
K (l-old» ) j:oﬂ-n) [t(4 + t)]]/Z (‘ + t>

gy [1e (£) 7]

<en@L)VEEQ Y, s, 8", i+ ).,

For the remaining integrals, we note that the right
side of (C36) is an upper bound for I, or I3, if the limits
[7, 7] are replaced by [7, 4], [#,, T], respectively. The
requigite integration by parts may be carried through
on each of these subintervals as x is monotonic and has
a definite sign on each subinterval. We shall use this
bound, after finding a new estimate for the factor x that
occurs under the integral.

To treat X, we substitute (C40) in the definition (C34),
and rearrange the quotient to obtain

. (4Lt0)(4+t) ¢’+tQ 1/2+ ‘,+t 1/2
x= (s’ —s)t-t,) s +1, s+t :
(C44)
Next, we make the essential observation that both A -1
and A - (s’/s)1/2, the quantities that occur in our pre-

vious estimate (C37) of X, are proportional to s ~ s’.
In fact, a little calculation shows that

(C43)

Sos=0-Dlrw [1+(Et—ff) . e
and
s—s'=[h_(s?')“2] s(t:j;‘Q) [(%,) 1/2+ (;‘%%;?) 1/2].
(c4e)

By substituting one or the other of these expressions
for s — s’ in (C44), the choice depending on the dis-
position of the variables ¢, and s, we obtain the required
bound on ¥. One uses {C45) when s <, and {C46) when
s> t;. The analysis is straightforward, being based on
monotonicity in # of [(¢+8/( 4+ #1172, but it involves

a separate consideration of each of thepossible inequali-
ties between s, s’, ¢, and ;. The result is that

|X|SK‘%(§’1'IQ (m-lu o (sl'/s)fﬂb' (c4m)
For the term I, of (C41) we have ¢ <¢#y(1-n) and
max(t, ) _ 1 (C48)
it-61 n’
whereas for I; we have £=> f;(1+7) and
max(t, t) (147 (C49)

1t—1¢,! 7
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We can now majorize I or I; by the right side of (C36),
after replacing the limits [, T] by [ 7, 4] or [t,, T], re-
spectively. We introduce (C47)—(C49) to obtain

1 1 1
1 <|)\—1! + I)\—(s’/s)vrl)

s’ 3/d+w fT dt (t+4' 3/ dew 1
X i =
[”(s) +f, T(52) 7] oo

By combining this result with (C43), we arrive at the
following bound of the integral I:

| vl |+ | yL | < (l.l;)”?

lI(s,s’) Is (l—l”(_)iﬁ EQV,s,s", 1 +w)

cfae 2 [0 (2) 7] [yt
RN

It remains to choose 75. We define

+ (C51)

5=[1 + (s'/8)1/4][|y'— yl-1/2 + ly/_ (s’/s)”zyl"”].
(C52)

In the case 6<1 we put n=10, which yields

Kﬁf(l,l', S, 5” %+w)
@Iz

|7(s,s") | <

-!/2]

(C53)

S/ \1/2
y - (;’) y

K -
R []y"yl e
X {(l,l', S’S,ré'*"w)-

When 06> 1, the inequality (C53) is a trivial consequence
of (C13). Thus, we have shown that (C53) holds in Case
II, if r<{y<T. It is not difficult to establish (C53) also
for the cases f, <7, {,> T. For instance, if {, <7, we
integrate by parts over the entire interval [7, T] if

T— 1,276, but if T-{,< 76, we integrate by parts only
on the interval [¢,+ 76, T], while integrating the bound
of | f| straightaway on the interval [7, ¢, + 76].

The result (C53) is valid for Cases I and II as well
as III. Indeed, it is an immediate consequence of (C39)
and (C13) in those cases. The bound is good in the
event s =s’, a situation which occurs only in Cases 1
and II, so that we see from (C9) that G, is also major-
ized by the expression in (C53). By using (C8), it is
easy to show that Gy, defined in (C5), is subject to the
same bound as G,,. By (C5), thefinal result for G, is

, (S') i/2 -1/2]
y -\ y
S
XEQU,s,s, 3+ w). (C54)

The function ¢ 3G, of Eq. (C3) has an upper bound
the same as (C54), except that ¥’ is replaced by — ',
The proof of this assertion requires only slight modifi-
cations of the arguments presented above. We again
make a decomposition of the integral as in (C5):

01=Gu+612=ff’+f:. (C55)

We easily find that «"***" G obeys (C8). As in (C9), we
write

| Gyls, sN < ﬁ%m [b" -yl Vs
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[47127 G, | < | (s, 87 | +| (s, 87, (C56)
where
, R, (x(s’,D)R ,
J(s, sl)=4'1‘21 -/: ;("i(:t)"zzu(t(x(t‘),* )) (C57)

The problems in bounding J(s, s') are easily reduced
to those encountered in bounding I(s,s’). We find im-
mediately that J obeys (C13), (C15), and (C17). To es-
tablish (C53), we write in place of (C18) the expression

J= [T atf )lg@OF®, (C58)
11+21’

7= [u(4, t)u( s Relile; ) Bao (e, 1), (C59)
BO=(T + Ve +D* (VT + Ve ¥D.

(C60)

"Now 7 (#) satisfies (C22), and, in analogy to (C23),

£ =z m), (c61)

m(t)= (c62)

1 A 1 )
21172 ((4’+t)"z T
If m(t) has a zero at y’ =y,, then #(f) has a zero at
9’ =—y,. By reviewing the discussion following (C18)},
one sees that the argument required for (C58) is the
same as that for (C18), except that ~ y' plays the role
that y' played before, We can then assert that the right-
hand side of (C53) is larger than J(s,s’), if -y’ is sub-
stituted for y’. Since l[tannl’| is uniformly bounded for
~€eSw<0, €<, our final bound for G, obtained from
(C3), is as follows:

(G, 1, s,s"]
< K(ZJQ,)AIZ f(l’ l’: S, s’) —é' + w)

x[iyl_y‘-i/Z_,_ lyr+y,-1/2+ 'y'_(sr/s)UZy,-i/Z

+ ]y’+(s'/s)”2y['“2], (C63)
where

Rel’=Rel=w, -esw<s¢, €<}, >0,

Iml'=y’, Iml=y,

the function & being defined in (C12). The bound (C63)
is equivalent to (3.49), the bound to be established for
1GI.

In the remainder of this appendix, we shall obtain the
estimates (3.50) and (3. 51) of the derivatives of G. We
first notice that 9,G and 2, G are related as follows:

as,c+( ) 2.6="171 c+las. (T(S')) Py (1+ 27(3'))

x[ . (1+ 2’;(,3'))-(:—') " e (1+¥Q)] . (c64)

We majorize 3,G, and then use (C64) to majorize 3,.G.
By (C3) we have

a,c~tin§’—l- (¢ "9 3.6, - 3,Gy), (Ce5)
where
0:Gy= [7,, dtu(s', D" R_p_y(x(s', 1))
X3 lu(s , 0 Ry (x(a, D). (C66)
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The formula for 2,G, is obtained by interchanging I’
and -7’ -1 in (C66).

The integral in (C66) is absolutely convergent, and
we may employ (3. 15) and (3. 16) to show that

|8,G, | <@, /1)V2(1/s) EQ, T, s, 8%, 4+ w). (C67)

Also, we may integrate (C66) by parts and usé (3.15)—
(3.16) to show that

[8,Gy | <k @ SIVVE(A/S)EQ, U, s, 8", 5+ w). (ce8)
Bounds the same as these are true for {42 3 G, 1,

and are proved in the same way. Hence,

@12

|2,6] <k 27

= f(l ,s,s', s+ w. (C69)
Finally, we use this result in (C64), to bound 2,.G. We
use (C2), (3.15), and (3.16) to handle the Legendre

functions, and the result is

@
I+l

The inequalities (C69) and (C70) are equivalent to (3.50)
and (3.51), respectively.

{o,G| <k ;17 E@,,s, 8", 3 +w). (C70)

It is worth mentioning that the estimates (C69) and
(C70) are not optimal, since we have not fully exploited
the oscillations in the integrand of (C66). Nevertheless,
our results are sufficient for the purposes of Sec. 3.

APPENDIX D

We shall state three lemmas concerning principal-
value integrals, which are used at several stages of
the analysis. These lemmas are proved by arguments
in the spirit of Muskhelishvili’s book. * For Lemma III,
see also Pogorselski, 14

Lemma |

Let f(s) be a complex continuous function for s € [4, «)
which satisfies the following bounds:

]
lf(s)ISc(g) S-i (D1)
and, for s’>s,
1\ 0= [
709« 5 (£) |22 (02)

The positive constants ¢, «, §, and 6 are subject to the
constraints <@ and ¢ +8<1.

Then the function g(s), defined by

gls)= f '[ i s—,df—s— £, (D3)
satisfies the bounds

lg@) <= (D4)
and, for s’>s,

lgls") - ()| < XC £ ;s ~ (D5)

‘The constant « in (D4) and (D5) is independent of the

particular choice of the function £.
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Lemma |l

Let f(s, ) be a complex continuous function for
(s, f) <[4, «)x[4, ©), which satisfies the constraints

| #s, 8] <c (g) ’ [1 + (;)B]S—ﬁ (D6)

and, for s;<s,,

lf(sl: 1) —f(Sz, ) l

o)) (e

The constants o, 8, 0, and d are subject to the con-
straints >0, 6>0, a+8<1, 0<a-B8<1-0, and
6-26>0,.

We define the function g(s) by the principal value
integral

g(s)= %J ‘[: ds’ ﬂs',_s) (D8)

s'-s

Then for s< [4, =) it may be shown that g(s) is continu-
ous and subject to the bound (D4) above, with the con-

stant ¢ the same as in (D6)- (D7) and with the constant
K independent of f.

Lemma i

Let f(s, ) be a complex continuous function for (s, #)
€ [4, ©)x[4, ©) which meets the conditions

R RN T

| £(s, t) = f(s, 1) |

Int,[ /s\ 8 [L\7 aelt—t“’
<p 222 = 2 4 4~ 2
<[ @)+ H16) 15 e
(D10)
[ Fls1, D) = flsy, D)
+6/ 4
scﬂ“t[ (21)“ +(L)’}
81 t si
o\ s, —s, |0
x<J> =% s, (D11)
Sy Sy

The positive constants «, 8, 7, 8, 8’, 0 are subject to
the constraints

8>3, 8>0, a>B, a+y<l, a+d<l. (D12)
Then
1
| g(s,8) | <ke 2o, (D13)
Ins, | s, —5,}°
{g(sz,sz)—g(s,,s,)lsxc-s—?i “2";1—1 Sy > 8y,
(D14)
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where
P (= fls', Bds’
g B

The constant « is independent of f.
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Second-quantization representation for a nonrelativistic
system of composite particles. |. Generalized Tani
transformation and its iterative evaluation®
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A method of constructing “atomic second quantization” representations is described, based on the
introduction of redundant modes (“ideal atom variables”) which are then given physical content by
carrying out a suitable unitary transformation, the “generalized Tani transformation.” In such a
representation bound atoms or molecules are described by elementary Bose or Fermi operators, the field
operators for nuclei and electrons referring only to unbound particles. The Hamiltonian thus obtained
contains not only nucleus-nucleus, electron—electron, and nucleus—electron Coulomb interactions, but
also atom-atom, atom-nucleus, and atom—electron Coulomb and exchange interactions, including
breakup and recombination terms. All possible scattering and reaction channels are exhibited
simultaneously in this transformed Hamiltonian. The method is applicable to any species or mixture of
species of composite particies, but for simplicity the derivation is restricted here to the case of atomic

hydrogen.

1. INTRODUCTION

There are many problems involving systems of com-
posite particles in which their internal degrees of free-
dom cannot validly be ignored. Examples are high-
temperature gases and partially ionized plasmas,
molecular gases, chemical and nuclear reactions,
Cooper pairs in superconductors, ferromagnetism, and
phenomena in quantum liquids and solids involving real
or virtual molecular excitation. In these and other prob-
lems, a representation in which the existence of the
composite particles is treated kinematically, through
use of appropriate composite-particle dynamical
variables, is desirable. Recently several different
methods!~5 have been developed for obtaining such
representations, in which bound composite particles are
described by “ideal atom” annihilation and creation
operators satisfying elementary Bose or Fermi com-
mutation or anticommutation relations, and the unbound
constituents are described by the usual elementary field
operators. Of these various methods, it seems that the
one? based on redundant modes and a generalization of
Tani’s canonical transformation® is both the simplest
and the most easily generalized. Although the second-
quantized Hamiltonian thus obtained is unitarily equiv-
alent to the standard one in which only the field opera-
tors for the elementary constituents appear, it is more
convenient for calculations, since known information
about the atomic and/or molecular structure and ex-
change is kinematically built into the representation via
the ideal atom operators and matrix elements involving
atomic and/ or molecular wavefunctions. The derivation
was previously sketched in a highly abbreviated ver-
sion, * The purpose of this paper is to develop a sys-
tematic method of evaluation of physical operators in
this new representation, to exhibit the various terms in
the transformed Hamiltonian in explicit form, and to
discuss their physical significance, We shall limit our-
selves here to the case of atomic hydrogen, for sim-
plicity. The application to N-electron atoms has been
discussed in connection with the theory of ferromag-
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netism, 7 but only those terms in the transformed
Hamiltonian relevant to the ferromagnetism problem
were considered there.

2. FORMULATION

Consider a system composed of hydrogen atoms, un-
bound protons, and unbound electrons {e.g., a partially
ionized atomic hydrogen plasma). The standard “first-
principles” approach to the study of such a system
would be to formulate the quantum-mechanical many-
body problem for the system in terms of states and ob-
servables expressed in terms of the Schrodinger
dynamical variables of protons and electrons only, or,
equivalently, in terms of the second-quantized proton
field operators $(X) and #'(X) and electron field opera-
tors $(x) and ' (x). Here X = (R,¢,) where R is the pro-
ton position vector and o, its spin variable (=4 or ¥);
similarly, x=(r,o,) with r the electron position vector
and o, its spin variable (again % or ¥). In this represen-
tation the nonrelativistic Hamiltonian H is

H=T,+ T+ Vy+ Voot V,,

T,=J axy' O T(X)pX),

T.= [ dxy’ () T(x)(x),

Voo =3 [ dXdX'§ X)W (X" V(XX )X )PX),

Vo=t [ dxdx'§t ()9 (x") Vixx")p(x")d(x),

Voe=J dX dx 4" COY (0) VIXx)px)P(X), @

where [dX stands for 3,, [ d°R, [dx stands for 3o, [ d’r,
T(X) and T(x) are the single-proton and single-electron
kinetic energy operators plus external potentials (if
present), and V(XX’), V(xx'), and V(Xx) are the proton—
proton, electron—electron, and proton—electron Cou-
lomb interaction potentials. If such a representation is
employed, the presence and properties of bound com-
posite particles (here hydrogen atoms) are not explicit
in the algebra of observables, but must be inserted es-
sentially as boundary conditions on the state vectors.
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For many-particle state vectors representing a system
of nonzero density, this is a highly nontrivial problem.
It is possible, however, to find a unitary transforma-
tion U such that U™'HU, although in principle containing
the same physical information as H, contains explicit
“atomic dynamical variables” representing bound
atoms, as well as proton and electron variables for the
unbound constituents, Such a representation is more
convenient for calculations since dynamical processes
such as atom—atom, atom—proton, and atom—electron
scattering, atomic ionization and recombination, etc.
are exhibited explicitly in the Hamiltonian and are

thus amenable to physical interpretation and physically
motivated approximation procedures. Furthermore,
representation of atoms by their own Bose of Fermi
variables facilitates application of standard many-body
calculational techniques (Green’s functions, Wick’s
theorem, etc.) to problems where both bound atoms
and their unbound constituents play an essential role.

As a preliminary to construction of the appropriate
U, let us define the “physical-atom annihilation and
creation operators” A, and A',. Let {¢ ,(Xx)} be the
orthonormal but not complete? set of bound hydrogen-
atom wavefunctions. The second-quantized state vec-
tor | ¢,) representing a single hydrogen atom in state
bq is

| ¢a) =A% | 0) @)

where |0) is the normalized vacuum (no-particle state)
and A', is the physical-atom creation operator

Al= [ aXdx b (Xx)0 (XY (x). (3)

The corresponding annihilation operator 4, is defined
as A,=(A%)". More generally, a state containing only
bound atoms is a linear combination of atomic product
states A, - - - A}, |0). In order to write down the com-
mutation relations satisfied by these operators, it is
necessary to adopt a definite convention regarding the
commutation properties between the proton and elec-
tron fields. Although our treatment is nonrelativistic,
it is convenient nevertheless to adopt the standard
dogma of relativistic field theory: “Kinematically in-
dependent fermion fields anticommute. ”" Thus we

take the proton and electron field operators to anti-
commute with each other. ® Then with the standard anti-
commutation relations for the proton and electron fields
geparately, we have

[¥(X), ¥x")].=0, [¥X), &' (X")],=56(X~X"),
[B(x), ¥(xN],=0, [P(x), ¥'(x)],=6(x - x"),
[(X), d(x)], = [9(X), ¥' ()], =0. )

It is then straightforward to verify that the A, and AT,
operators satisiy the commutation relations

[AmAB] =0, [Am AE] =845+ Cag,

[9(%), A)=[¥(x), Aa] =0,

[9(x), AL]= [ dx ¢o(Xx)4' (x),

[B@x), AL] = - [ dX ¢4(Xx)¥'(X) (5)

where the bracket [A, B] with no subscript denotes the
commutator, and
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Cap=~ J dXdX'K (X, X"V X)Y(X")
~ [ dxdx'K 4o(x, x" ) (x)d(x") (6)
where the “exchange kernels” K ,; are defined as!’
KoplX, X") = [ $2(X'x) pp(Xx) dx,
Koplx, x') = [ X (Xx") pg(Xx) dX. (7)

The presence of the operator C,z in the commutation
relation between A, and A} is a kinematical manifesta-
tion of the composite nature and internal structure of
hydrogen atoms. Similarly, the fact that the commuta-
tors [#(X), Al] and [¢(x), A% ] are nonvanishing is a con-
sequence of the lack of kinematical independence of
hydrogen atoms from proton and electrons. We note,
parenthetically, that the anficommutativity of the proton
and electron fields was used in deriving the commutation
relations of the proton and electron fields with the A,
and A%, operators. It would also be consistent?® to take
the proton fields to commute with the electron fields.
However, the second, third, and fourth lines of (5)
would then be replaced by anficommutation relations,
which would be less convenient for the subsequent
development.

The interpretation of the kernels K4 as arising from
exchange of electrons or protons between atoms a and
B is intuitively clear from their definition. Since inter-
atomic exchange can only occur when the atomic wave-
functions overlap, we expect the K,;, and hence C,
to vanish in the limit of vanishing overlap. To see that
this is indeed the case, suppose that two atoms with
wavefunctions ¢, and ¢; (@ # 8) are localized in dis-
joint regions R , and R 5, in the sense that ¢, vanishes
unless both RcR , and r&f ,, and similarly for ¢,
where R , and R ; are disjoint. It is then easy to see that
both of the kernels K ,; [Eq. (7)] vanish identically in
their arguments, and hence the operator C,; also
vanishes. This confirms our physical expectation that
the commutator [A4,, AL] should vanish for o # 8 when
the atoms a and S do not overlap. On the other hand,
the diagonal elements K, and hence the operator C,,
do not vanish; they represent exchange effects of strong-
ly overlapping atomic wavefunctions. Similarly, one
can interpret the nonzero expressions (5) for the com-
mutators [¥(X), A%] and [¢(x), A"] as representing the
kinematical effects of exchange of an unbound proton or
electron with the atomic proton or electron. It is clear
from (5) that [#(X), A%] vanishes identically if ¢, is
localized in £ , and the proton position R is outside &
and similarly [¢(x), A,] vanishes identically if the elec-
tron position r is outside £ ,.

The nontrivial commutation relations (5) would lead to
computational difficulties if one were to employ the A,
and A, operators as atomic dynamical variables. E.g.,
the atomic product states A%, - - -A‘;,,IO) are neither
orthonormal nor independent of the proton—electron
product states ¢'(X,)- - ¢ (X)) YT ) 10). A
related difficulty is that Wick’s theorem only applies to
operators satisfying elementary Bose or Fermi com-
mutation or anticommutation relations. To overcome
these difficulties, we employ the familiar “redundant-
mode” technique. Define the “Schrédinger state space”
¢ as the space of all normalizable!! linear combinations
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of proton—electron product states ¥'(X;)- - - ¥ (X,)¥' (x,)
-+« ' (x;)10) with arbitrary m and I. Also define a com-
pletely independent Hilbert space 4, the “ideal atom
space, ” as the space of all normalizable linear com-
binations of “ideal atomic product states”!? af, xE -a, 10)
with arbitrary », where, by definition, the a, and al,
satisfy elementary Bose commutation relations

[am aB] =0, [aay a;] = 84p. (8)

Finally, define the “ideal state space” ¢ to be the direct
product space ¢ = {® 4. Since the ideal atom operators
are kinematically independent of the proton and electron
fields, they satisfy

[aay IP(X)] = [aau wf(x)] = [am lP(x)] = [au; d)f(x)] =0 (9)

on ¢. The commutation relations (8), initially defined
on A, are also valid on ¢, as are the commutation
relations (5).

The basic idea is now to establish a one-to-one cor-
respondence between “physical state vectors” in § and
“ideal state vectors” contained in a certain subspace of
@. On the one hand, such an approach is in the same
spirit as Dyson’s treatment of the Heisenberg model, 1*
wherein such an “ideal state space” was introduced in
order to circumvent the problem of the non-Bose com-
mutation relations of spin-wave annihilation and crea-
tion operators. On the other hand, the method we shall
use to set up the correspondence between § and ¢,
namely that of initially interpreting the ideal atoms as
“redundant modes” and then giving them physical con-
tent by carrying out an appropriate unitary transforma-
tion U, is closely related to the Bohm~Pines theory of
plasma oscillations! and to some treatments of collec-
tive modes in nuclei,

We note first that the Schrodinger space § is trivially
isomorphic with the subspace ¢, of ¢ consisting of those
| ) € ¢ which satisfy the constraints

a, % =0, all @, |B<g,, (10)

i.e., they are eigenstates of all the ideal atom occupa-
tion number operators N, a=a*°,aa with eigenvalues zero.
Equivalently, ¢, is the subspace of {{) € ¢ satisfying

Nl®=0, [Deg, (11)
where N, is the ideal atom total number operator
N,=2J ala,. 12)
[+ 3

Thus in ¢ the ideal atoms are “redundant modes”
(totally unoccupied), which makes the isomorphism with
§ trivial and obvious.

We next try to find a unitary transformation U which
in some sense shifts the description of bound atomic
states to the a, and al, operators, so that they acquire
physical content (note, again, the close analogy with
the Bohm—"Pines theory). ¥ For the case of one-atom
states, this is easy to do. The physical atom state (2)
is transformed into the ideal atom state a%,{0) by the
operator atA ,:

(@A )AL |0 =al,|0), (13)

as is easily verified by Eqs. (5)—(9). Although the
operator a*o,A,, is not unitary, one can construct a uni-
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tary operator U which does the same job, as foilows.
Define the antihermitian operator F by

F=§ (aLA, - A%a,). (14)

Then one readily verifies that

FA%|0)=a% |0y, Fa',|0y=~A"]0). (15)
Define the unitary operator U(e) by

Ule) = exp(eF). (16)

Then by expansion of the exponential and iteration of
(15) one can verify that

U0 - (1~ 57 +57 ) Atlo
2! " 4!
+(€-— g—:— +-§E!- - ~-)aL]0)
= (cése)AL| 0y + (sine)al, |0). 17)
If we define U by choosing e=7/2,
U=exp[(n/2)F], (18)
then our goal of constructing a unitary U such that
UAL|0) =a% |0 (19)

is achieved. We call U a “generalized Tani transforma-
tion” since it is an obvious generalization of a trans-
formation employed by Tani® to formulate the theory of
single-particle scattering by a potential with a bound
state. There is also a chose connection with the “quasi-
chemical equilibrium” theory of Blatt and Matsubara. 18
However, we work with a unitary transformation U,
whereas Blatt and Matsubara employed a nonunitary
transformation which, in our notation, is exp(},a%4,).
The unitary transformation has the advantage of pre~
serving hermiticity of observables, the eigenvalue spec-
trum of the Hamiltonian, normalization and more gen-
erally matrix elements, etc. Bohm and Pines also
employed a unitary transformation. 1

The effect of U on a many-body state is more com-
plicated than (19). However, in the approximation in
which C,; in (5) may be neglected (we have seen already
that this is the case in the zero-density limit), U con-
verts a physical-atom product state into an ideal-atom
product state. To see this, note first that

UAYL, -~ AL, |0 = (UAL U UAL U - - (UAL, U 0),

(20)
since’®
Floy=0, U|o)y=|0. (21)
The unitary transforms in (20) can in principle be
evaluated from the multiple commutator expansion
UALU1= exp(g F)AL exp (— 7—27 F)
rooss (= m/2)
:Au+§21—‘].—l—‘—~[Ata, F]j (22)

where [A",, F], denotes the multiple commutator defined
recursively by

[A*“, F]l = [A’;, F]’ [Atn F]I+1 = [[A:u F]f’ F]' (23)
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1t follows from (14) and (5)—(9) that
[Atw F] == a'& = ZB>aECBa’

[Al, F]=AT, (24)

In the approximation in which Cgz in (5) is neglected,
only the term - ', in the top line of (24) is to be re-
tained, so that (22) becomes

UALU 1= A cos(n/2) +al, sin(n/2) =d',. (25)
In the same approximation, (20) reduces to
UAY, - AL, |0 =d}, - -dl, |0). (26)

In fact, this approximation becomes an exact equality if
the atoms are all localized in a set of mutually disjoint
regions. This is proved in Appendix A. The physical
interpretation is that in the zero-density limit, bound
hydrogen atoms behave like elementary bosons, and the
physical-atom product states behave like orthonormal
product states of elementary bosons. !” This is already
physically obvious without introducing the transforma-
tion U. The advantage of the use of such a transforma-
tion is that it will enable us to introduce Bose dynamical
variables for bound hydrogen atoms into the problem in
a physically meaningful way even at realistic densities,
where the internal atomic structure and exchange ef-
fects are important.

Since the transformation U is constructed in such a
way as to replace physical-atom variables A by ideal-
atom variables al,, one expects that in a physical situa-
tion where no bound atoms ¢, can form, the transfor-
mation U will have no effect, i.e., it will behave like
the unit operator. In fact, suppose that [{) is a state
of electrons only, or of protons only [so that bound
atoms ¢,(Xx) cannot be present]. Then it follows
trivially from (3), (14), and (18) that

Flp=0, Ul®=|p. (27)

More generally, suppose that all the « indices occur-
ring in (14) refer to atoms ¢, localized in some region
R, in the sense defined in Appendix A, and suppose that
| is any state in which all the protons and electrons
are localized in a region R’, where R and £’ are dis-
joint, Then it is easy to show that (27) still holds. This
justifies the interpretation that after the transformation
U, the proton and electron field operators refer only to
unbound protons and electrons.

In addition to the ideal-atom number operator (12),
consider the proton and electron number operators N,
and N,:

N, = [ axy' ()X, No=[ deyf (0)d(). (28)

Let |¥) be any m-proton, I-electron state in the sub-
space!? ¢, [Eq. (11)]):

Nl =0, N|p=m|p, NJIp=1]s). (29)

Let | {) be the image of such a state under the general-
ized Tani transform:

[»=Uly, [®=U"|y. (30)
1t is clear from (14), (18), (12), and (27)—(29) that
[(Na +Np): U]:[(Na +Ne)y U]=0,

1904 J. Math. Phys., Vol. 16, No. 8, September 1975

(N, +N) |9 =m|w), (N, +N)|w)=1]9). (31)

The physical interpretation is that in |¢) the fofal num-
ber of protons is the sum of the number of atoms {each
containing one proton) and the number of free (unbound)
protons, and similarly for the total number of electrons.
More generally, if A is any physical observable on the
Schrodinger state space §, expressed in terms of proton
and electron field operators, one has

[4, No]=[4, N,]=[4, N, ]=0, (32)

the first following trivially because A does not contain
a, and a:', operators, whereas the second and third fol-
low from conservation of the numbers of protons and
electrons. Then with (30) one has

[V, +N,), UTAU]=[(N, + N,), U™'AU]=0. (33)

This establishes two superselection rules: For any
physical obgervable A, its generalized Tani transform
U-lAU has nonvanishing matrix elements only between
states with the same eigenvalue of N, + N,, and also the
same eigenvalue of N, + N,. These superselection rules
are merely the transforms, under U, of the usual
particle number selection rules. They have important
consequences for the structure of transformed ob-
servables UlAU. E.g., we shall find that U"'HU has
terms representing the breakup of an atom into a proton
and an electron, but, as expected physically, none with
the “wrong” numbers of outgoing particles of various
species.

States 1¢) related to states |¥) € ¢, by (29) define a
subspace of ¢ which we shall denote by ¢y, Symboli-
cally, one can write

_thys: U-l_Qo- (34)

Yoy is the subspace of those states 19) € ¢ satisiying
subsidiary conditions which are the transform of (10):

U, ) |9)=0, all @, [¥)E Gomye (35)
or equivalently, by (11),
(U-lNaU)lZp)zt)y Izp}eﬁphn' (36)

For any two physical states i), 19 €S, there are
essentially identical’® states in ¢,, which have images
19), 19" € oys. Any calculation in the conventional
Schradinger space § is equivalent to a calculation in
Ootys- E.g., for any observable A, one has trivially

(wlalvy = @|U-tAU|y). (37)

As mentioned before, the advantage of carrying out the
calculation in (g, is that processes involving existence,
excitation, and ionization of bound atoms are then built
explicitly into the algebra of observables and hence are
exhibited explicitly in U-'AU. Discussion of the trans-
formed subsidiary condition (36} will be deferred until
Sec. 5. We note here only that the subsidiary condition
is dynamically consistent, in the sense that the original
Hamiltonian (1) commutes trivially with N, [Eq. (12)]
and hence the same holds for the transformed operators:

[U-'HU, U-IN,U}=0. (38)
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3. EQUATIONS OF MOTION AND ITERATIVE
SOLUTION

The multiple commutator expansion (22) used in
evaluation of the approximation (25) is not useful for
evaluation of more accurate expressions for the trans-
forms. The reason is that even the “zero order” ap-
proximation (25) involved summation of infinite series.
As soon as the operator term C,g in (5) is taken into ac-
count, the infinite series generated by the multiple
commutator expansion are more complicated, and
there is little hope of recognizing the general terms of
the relevant series and of summing them. What is need-
ed is a more efficient method of evaluating the trans-
forms, such that the evaluation of the zero order ap-
proximations is trivial. Then one can expect that the
problem of tinding the low-order corrections due to
atomic structure (i. e., due to the C,z) will be tractable.

The “equation of motion” method provides such a
method of calculation. Define Ule) by (16), and, for
any operator A,

Ae)= U-H)AU(e). (39)
Then with (18) one has

A(0)=A, A(x/2)=U"AU, (40)
Differentiation of (39) yields the “equation of motion”

228)- (4@), F©) = exp(- <F)l4, Flexp(eF). (a1)

We need the explicit forms of (41) for the cases A =a,,
A=A, A=y(X), and A =3(x). Using the commutation
relations (5), (8), and (9), one finds with (14)

daa(e) _
‘~—d€ —Aa(e),
dlld:(e) - aa(e) - ZB> CaB(G)aB(e)’

HED % [ axgani (v, 000,

R Zf dX 6o (Xx)3 (X, Oaq(e) (42)

where, by (6),
Cople) = — [ dX dX'K (X, X"V (X, )X’ , €)
- [ dxdx'K 5%, s (x, )Y(x’, €). (43)

Equations (42) and their Hermitian conjugates are cou-
pled, nonlinear differential equations for the unknown
operator functions a,(€), A,(€), ¥(X,¢€), P(x,¢€), and their
Hermitian conjugates. In view of their nonlinearity,
they cannot be solved in closed form. However, it is a
straightforward matter to solve them iteratively (meth-
od of successive approximations) starting with the zero
order approximations discussed previously. In fact,
these zero order solutions are themselves most easily
found by approximate solution of (42). In the approxima-
tion in which the atoms behave like elementary bosons,
and hence the term C,; in the commutations (5) is
dropped, the first two differential equations (42) reduce
to
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da ()
de

By differentiating the first of these again and substitut-
ing from the second, or vice versa, one finds
dfal d2AD(e)

e
L8 __apio, T2

A, ﬂ:‘;‘:—@ =-ag’. (44)

-AQ(), (45)

which have the general solutions

a(e) =c, cose+d, sine,

AW =f, cose+g, Sine (46)
where C,,d,, f,, and g, are operator “constants of

integration” to be determined from the “initial
conditions”

agj)(o)=aa, A:,?)(O)'JA“ 47

[note Eq. (40)). Determining the coefficients in this
way, one finds

al?(e) =a, cose + A, sine,
A () =A 4 cose - a, sine, (48)

which reduces to (25) if €= — 7/2 [note that U(- n/2)
=U"!]. In the same approximation, the 4, and Al opera-
tors should be regarded as kinematically independent of
the ¥ and ¢’ operators (as they would be if the atoms
were elementary), and hence the commutators

[¥(X), A%,] and [¥(x), AL] should be neglected [see Eq.

(5)]. Then the differential equations (42) for the ¥
operators reduce to

VX0 20,
o€ o€ ’

(49)

with trivial solutions
POX, 9 =9(X), ¥V (x,€) =9 (50)
satisfying the initial conditions at €=0.

To proceed to higher order we need a systematic way
of classifying the orders of various terms. Since the
terms neglected in obtaining (48) and (50) are of positive
degree in bound atom wavefunctions ¢,and ¢J, it is
natural to order various contributions according to their
degree in the ¢, and ¢F. Thus we write

2,0=2 aP(©), Aq0)=2 AV,
I=0 =0

§X,9= 5 000,90, 95,9=1 96,0 6

where the superscript j denotes that the given contribu-
tion is of degree j in the ¢, and ¢ . These expansions
are not in powers of the large parameter 7/2 in (18),
but instead are essentially in powers of the density of
the system, since the bound state wavefunctions enter
via the operator terms on the right sides of Eqs. (5),
which have negligible effects in the zero density limit
(all particles infinitely far apart) in which the atoms be-
have as elementary. We shall adopt the convention that
in counting the orders of terms involving the A, and/or
A',, the implicit factors of ¢, and/or ® ¥ entering via
the definition (3) are not to be counted; this is consistent
with (48), and is desirable so as to preserve the sym-
metry between a, and A,,.
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The differential equations for the first order correc-
tions a!’, etc., are obtained by evaluating the first
degree (in the ¢, and ¢ ¥) terms on the right sides of
Eqs. (42), making use of the zero order solutions. 1t is
clear from (43) and (7) that Cg4(€) involves terms of
second and higher degree in factors ¢, and ¢ ¥, the
terms of second degree coming from the terms ¢‘°’ and
P in the ¢ and ¢’ operators. Hence there are no first
order terms on the right sides of the first two differen-
tial equations (42), except for the terms linear in A%
and a,(e), so that

dal (e

= -4,

-ad(e). (52)

dAP e _

de
Since the initial conditions (47), (50) on the zero order
solutions were chosen so that the initial conditions are
assigned entirely to the zero order terms, it is clear
from (40) and (51) that one must put

ad©0)=0=4(0),

$(X,0)=0=9"(x,0), j=1. (53)
Thus we must pick the trivial solution of (52),
al@®=0=AL(), (54)

as would also be obtained by putting c,, da, f,, and g,
all equal to zero in (46). The corresponding first order
equations for the proton and electron fields are obtained
by replacing the " and a operators on the right sides of
the third and fourth differential equations (42) by their
zero order approximations:

éﬁ%ﬁéﬁ o @ dx P X)W (x, )ad’ ()
== 3 [ dx o (X ()(@, cose + A 4 sine),
?ip(_la)_éx:_f) - ‘?fdx¢a(Xx)¢(°)'(X, a(e)

5 f AX ¢ (Xx)W (X) (@, cose+ A, sine).  (55)

Then with the initial conditions (53) one has, upon in-
tegration from O to €,

VX, €)= —Za) f dx ¢ o (Xx)Y' (x)[ay sine + A, (1 - cose)],
PP(x, =2 [ dXo(Xx)¥' (X)[ag sine + Aq(1 - cose)].  (56)

The second order equations for a,(€) and A, (€) are ob-
tained by replacing C .5(€) and a4(e) by Cff,,’ (€) and aé“’(e)
in the second Eq. (42), since, as noted previously,

C o, starts with a second order term C%). Thus

@)
da:le © =AD),

@

dALN) _ _ a (0~ L CaR e (e).

de (57)

The expression for C% () is to be obtained by replacing
¥ and ¢' by ¥ and ¥ in (43); hence by (50) C2)(€)
reduces simply to C,5, Eq. (6). Then with (48) one finds

dad€) _ , @
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2)
1‘%’6—(6—) =—a@(e) - ZB) C 45(@5cose + Ay sine), (58)

This is a set of coupled, inhomogeneous first order
differential equations, which can be solved by the
standard method of variation of constants. The solution
satisfying the initial conditions (53) is

ad(e) =~ %%} C aglage sine + A (sine — ecose)],

AP ) =~ %Zﬂ) C ol A g 8ine + a,(sine + € cose) ], (59)

The correctness of (59) can be verified by direct sub-
stitution into (58).

The second order equations for the ¥ operators are
seen from (42) and (54) to be

WX, 6 _
o€

$
9"’—25%@@ J aX g Xx)p (X, 9 (6).

-2 [ dxdoX0)P " (x, a6,

(60)

Substituting from (56) and (48) and carrying out the
straightforward integrations from 0 to €, one finds

YPX, == 21 [ dxdX’ o F (X'x)$oXx)Aanl B,
UV, =~ 21 [ dX dx’ 3 (Xx") $Xx)A ag(e)Px"),

A gg(6) = zala,sin% + 3 a4 (e — sine cose)
+Ala,(sine - 3€— 3 sinecose)

+ Al A4(1 - cose - 5sin%). (61)

The iterative process of solution can in principle be
carried to any desired order, although the complexity
of the expressions obtained increases rapidly with
order. As illustrated by the case j=2, a{’(¢) and AY(¢)
for arbitrary j = 2 can be obtained by solving an inhomo-
geneous pair of coupled linear differential equations,
with homogeneous solution given by (46) with an inhomo-
geneous term known in terms of the previously obtained
lower order solutions. On the other hand, ¢ (X, ¢) and
9 (x, €) can always be obtained by direct integration,
from 0 to €, of an expression involving only the known
lower order solutions, as illustrated by the cases j=1
and 7 =2, We shall find in Sec. 4 that the leading terms
{for low density) in the transformed Hamiltonian involve
only the ' for j 3. Thus the only remaining expres-
sions needed are those for the third order proton and
electron field operators 4@, Since the method of deriva-
tion has already been illustrated by the cases j=1 and
j =2, we shall merely exhibit the final expressions for
j=3:

YO, = T [ dxdX’ dx’ 92 (X'x)9oXx) By X'x ) (£)A aer(e)
+ 2 [ dx ¢o(Xx)¥ (¥)C agl3ag(sine - € co89)

+A4(1 - cose - 3€sine)],

ll)(:”(x, E)
= 22 [ axax’ ax’ s 3(Xx") Op(Xx) %, (X '5")§" (XVA gy (©)

- T [ aX¢ X} (X) g 3ay(sine - ecose)
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+A4(1 — cose - Fesine)],

A (€)= ala,0,sin% - 5ala,4,(cose - 1 + 3 sin’e cose)
+1a'A,a,[sin% + 1 - cose - esine + 3(cos’e - 1)]
— 1a'A Ay(sinecose — € + sine — ecose + 38in’e)
+3A%a,a,[cose—1+€sine+ 3(cos’e - 1)]
+ L A%a, A (sine - ecose — § sin’e)
+ATA a4(sine - Fsinecose— z€— %sin3e)
+ALAA %1 - cose) - 3sine++sin’cose].  (62)

According to (40), the generalized Tani transforms

U~'AU are obtained by substitution of €=7/2. Thus

Uta, U= ;)oaf,“, U-1A¢U=,§V=)0Ag{’,

UEOU=Z YO, UHEU=S 00 (69

where the jth term in each series (63) is obtained by
substitution of €=7/2 in the previously obtained jth term
[cf. (51)]. One finds thus

[( 1) { 1 1 .
ao?):Aou ag =0, aozZ)z_?Caa(‘l"ms‘FzAs)’

AV =-_q, AL-0, A,‘f’:-?caa(%m“%as). (64)
Similarly,
PV (0 =90,

Y0 = T [ dxg 0¥ () @+ A,

PP =~ 2 [ dxdX' 9 (X'%) X0 A (h(X"),

YO0 =25 [ dxdX’ dx' 63 (X'x)p(Xx), (X'x" ) (") Ay
+23 | g XmW ()Cofbay+ (1 - Al (65)

and
ZP(O)(x) = l/)(x),
YO) =2 [ dXbo(Xn)f (X)(aq+Aa),

¥ ()= -2 [ dXdx' 92 (Xx) Bo(X¥) A agb(x"),
YO x) =~ 2 [ dX X' dx'6 & (Xx')b(Xx) 3, (X5 W (XVA sy

-aEB J dX0 (XX X)C opl 305+ (1 - tmA,] (66)

ap=5a5ag +5mal, Ags (1 - im)ALay + $ALA,,
atr =300+ 3050, A, +(E - i)alA,q,
+(GEm =D A4+ (ir - DALa,a 4+ 5 AL A,
+ (‘S ~imALA,ay+ %ALAYAB‘ (67)

4. TRANSFORMED HAMILTONIAN

According to (37), the Hamiltonian acting on states
19) € Qinys is given by U-IHU where H is the Hamiltonian
(1) on states |) € §, and § is the Schrédinger state
space. In §, only proton and electron variables occur
explicitly, and the existence and properties of bound
atoms are not manifest in the algebra of observables,
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On the other hand, upon carrying out the unitary trans-
formation U-lHU, one obtains a transformed Hamilto-
nian containing not only proton and electron variables,
but also the operators a, and al, representing the bound
atoms. The generalized Tani transformation automati-
cally generates explicit terms in U 'HU representing
all possible atomic scattering, ionization, and recom-
bination, etc. processes which can occur. The general
procedure for evaluation of U™'HU is to substitute the
transforms (65)—(67) for the various ¥ and ¢ factors
in (1), and then to put all operator products into normal
order by use of the commutation relations (4), (8), and
(9), or equivalently by application of Wick’s theorem.
Upon carrying out these operations one obtains a trans-
formed Hamiltonian of the structure

U™HU = Tp+To+ Viy+ Vee + Hye
+H,+Hy +H,y+H,,
+H(pe —a) + H(a~ pe)
+H{ppee — aa) + H(aa — ppee)
+ H(pea ~ aa) + H(aa ~ pea)
+ H(ppe ~ pa) + H(pa — ppe)
+H(pee —ea)+H(ea~—pee)+. ... (68)

Our notation is motivated by the work of Stolt and
Brittin, ! who obtained a similar expression by a differ-
ent method. The details of the derivation of (68) are
described in Appendix B. Here we shall merely list the
results and explain their physical interpretations.

First consider the terms T,, T,, V,,, and V,,. These
terms are the same as the corresponding terms in the
untransformed Hamiltonian (1), except that the physical
interpretation is different, in that the ¥ and ' operators
now refer only to unbound protons and electrons. These
contributions are obtained from the terms ' =¥ and
T =4 in all factors in the transform of (1). The
diagramatic representations of the corresponding terms
in U™'HU are shown in Fig. 1. The same type of line
can be used for both protons and electrons, since the
distinction is clear from the labels (X for proton, x for
electron). The fact that the labels on the outgoing lines
are the same as those on the incoming lines is a result
of the locality of the Coulomb interactions, kinetic en-
ergy operators, and external potentials (if present) in
Schrodinger representation. We use a standard conven-
tion: Incoming lines always approach from the right,
and stand for annihilation operators on the right in the
corresponding term in U-1HU; outgoing lines always
leave toward the left, and stand for creation operators
on the left in the same term; two-line vertices stand

X ¢—e——<—X X € @—— x
o Te

X>< x x x
X PP X’ o ee o

FIG. 1. Diagrams representing the terms Ty, Te, V,p, and
Vee in UMLHU,
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FIG. 2. Diagramatic representation of the single-atom
Hamiltonian H,.

for T(X) or T{(x) (kinetic energy operator plus any ex-
ternal potentials and/or magnetic fields, if present);
four-line vertices stand for Coulomb interaction poten-
tials V(XX') and V(xx'); finally, free indices are to be
integrated over, with a combinatorial factor (2!)! for
identical particles. If one were to Fourier transform
#(X) and ¥(x), one would obtain the usual diagrams with
lines labelled by momenta and spins. We have written
down the well-known diagrams of Fig. 1 merely to
establish notation and to motivate the construction of
related but more complicated diagrams for the other
terms in (68). All other terms represent processes in-
volving bound atoms. For example, we shall see later
that the term H,, in U™*HU difters from the bare
proton—electron Coulomb interaction Hamiltonian V,, of
Eq. (1), due to the influence of bound atoms (bound
proton—electron pairs).

The “single atom Hamiltonian” H, in (68) has the
structure

H,=2; d\(a|H|B)a, (69)

where the single atom matrix elements (o |H|B) are, as
suggested by the notation, matrix elements of the single
atom Hamiltonian between single atom wavefunctions:

(a|H|B) = [ XXH)TX)+ T(x) + V(Xx) ] 5(Xx) dXelx.
(70)

This contribution to U 'HU arises from the terms of
structure p VN X)X (X), ¥V ()T ()P (x), and

PO XSO () V(X (x) 3 (X) upon substitution of
(65)—(67) into the corresponding terms in (1) and re-
duction of all operator products to normal order. Terms
such as ¢a'ay, etc. also contribute to U-'HU, but will
be considered later (as contributions to H,,, H,,, etc.).
If the ¢, are chosen to be single-atom energy eigen-
states, i.e.,

[TX) + T(x) + V(X%) ] o (Xx) = € o (Xx), (71)
then H, becomes diagonal,
Ha :¥eaNm (72)

with N =ala, the occupation number operator for atoms
in atomic bound state ¢,. The diagramatic representa-
tion of the more general expression (69) is shown in Fig.
2, in which thick lines stand for (bound) atoms and the
vertex represents the single atom matrix element

(a1 HiB). In the special case (71), (72), a single atom
state 8 propagates without decay into other atomic states
a (and, as we shall see later, without decay into protons
and electrons). On the other hand, even if the ¢, are
taken to be free-atom energy eigenstates, they will not
be energy eigenstates in the presence of an external
field [which is included in the definitions of 7(X) and
T(x)]. In such a case Fig. 2 represents real physical
effects, namely atomic transitions induced by an ex-
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ternal field. The related processes of field-induced
ionization and recombination are described by H(pe + a)
and H(a+ pe), which are found to be

H(pe —a) =2 [ dX dxy"(X)' (x)(Xx |H| a)a,,

H(a~pe)=[H(pe —a)]

=2 [ dx dxal(a|H| Xx)p(x)p(X) (73)
with!?
(Xx [H| @) =~ HXx)po(Xx) + [ dX’ dx’ A(Xx, X'x")
XHX'x")¢o(X'x'),
(a|H|Xx) = (Xx|H|a)*. (74)

Here A is the “bound state kernel” defined by (B3) and
H(Xx) is the single-atom Hamiltonian

H(Xx) = T(X) + T(x) + V(X%) (75)

which also occurs in (70} and (71). In case the ¢, are
energy eigenstates (71), the matrix elements (Xx|H|o)
and (¢ |H|Xx) vanish identically:

(Xx [H| @) = - €4 pa(Xx) +€, [ X’ dx’ AXx, X'5") po(X'x")
== 6a¢a(Xx)+Ea¢a(Xx):07 (76)

since it follows from (B3) and orthonormality of the ¢,
that

J AXx, X'x") o (X'x")dX' dx’ = po(X¥). )

The vanishing of H(pe — a) and H(a + pe) if the ¢, are
single-atom energy eigenstates is an expression,
together with (72), of the stability of the bound atomic
states in the absence of external perturbations. On the
other hand, if the ¢, are not energy eigenstates and
hence not stationary states, then the matrix elements
(74) will not in general vanish, and there will be a non-
zero probability of spontaneous breakup (decay) of such
nonstationary states, in which case (73) represents real
physical processes. Similarly, if the ¢, are taken to be
isolated-atom energy eigenstates, they will not be en-
ergy eigenstates in the presence of external fields
[which should then be included in T(X) and T'(x)], in
which case (73) represents field-induced ionization and
recombination processes. ® The diagramatic represen-
tation of such terms is given in Fig. 3.

The term H,, was not included in the diagrams of Fig.
1 since the presence of bound atoms modifies the effec-
tive interaction of free protons and electrons, i.e.,
H,, differs from the bare proton—electron interaction
Hamiltonian V,, of (1). In fact, one finds

H,,= [ dX dxdX' dx' (X)9" (x)(Xx | H | X %) p(x)Vp(X")  (78)

with

X X
« o 4——<
X
FIG, 3. Representation of single-atom breakup and recombina-

tion Hamiltonians,
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1]

X x

FIG. 4. Diagramatic representation of the effective interaction
H,, between unbound protons and electrons.

(Xx | H| X’x") = V(Xx)5(X - X*)6(x - x*)
— H(Xx)A(Xx, X'x') - [H(X'x") AX "’ , Xx) [*

+f ax” dx”A(Xx,X”x")H(X”x")A(X”x”,X'x').
(79)

The diagramatic representation of (78) is shown in Fig.
4, The first term in (79) is the bare proton—electron
Coulomb interaction which gives rise to the term V,, of
Eq. (1), whereas the remaining terms represent a non-
local contribution to this interaction arising because of
the possibility of binding of proton—electron pairs, the
interaction within such bound pairs already being in-
cluded in those terms in U~-'HU which involve @, and/or
a', operators. In contrast, the proton—proton and elec-
tron—electron Hamiltonians V,, and V,, in (68), depicted
in Fig. 1, are just the bare proton—proton and elec-
tron—electron Coulomb interactions (1). The range of
the nonlocal term in (79) is of the order of the Bohr
radius a;, as can be seen’! from the definition (B3) of
the bound state kernel. If the ¢, are taken to be single-
atom energy eigenstates (71), then (79) reduces to

(Xx|H|X'x")
= VXx)B(X - X")0(x ~ 5") - 2iea pa(Xx)p2(X'x").  (80)

The sum subtracted from the bare Coulomb potential in
(80) is just the portion of the spectral representation of
H(Xx) associated with all of its bound states. As a re-
sult, one expects that the modified potential (80) will
not have any bound states, whereas it will be equivalent
to the bare Coulomb potential when acting on a continu-
um (unbound) energy eigenstate. These properties are
verfied in Appendix C, where it is shown that if the ¢,
consist of all the bound energy eigenstates, then

(T, + T,+H,,) is positive semidefinite and is equivalent
to (T, + T, + V,,) when acting on any state orthogonal to
all the bound sfates ¢,. This substantiates our inter-
pretation of H,, as the interaction between unbound
protons and electrons, the interaction between bound
protons and electrons already being included in those
terms in the Hamiltonian involving the a, and a',.

We next consider the two atom interaction Hamiltonian
H,,, which is defined as the sum of all the terms in
U-'HU of the structure a'a'aa. Thus

H,=% a};ﬂ ata(aB|H]|yd)asa, (81)
where the atom—atom interaction matrix element
(ap|H|y?) is the sum of a number of contributions of
different physical origins. In the first place, there is

a direct Coulomb interaction contribution (aB|H|y8)cou
arising from terms of the form Py ip the
transforms of V,,, V,,, and V,, upon complete contrac-
tion® so as to remove the factors Py y', leaving only
factors a'a’aa. The corresponding matrix element is
found to be
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(QB‘HI‘YG)CouI
=f DEXX)GFX 2N VXX + Vixx')
+ V(Xx") + VX'%) ]9, (Xx) o (X'x") dX dx dX' dx’

as one expects for the matrix element of interatomic
Coulomb interaction. Note that inferral Coulomb inter-
action V(Xx) and V(X’x’) are not contained in (82), being
already taken into account in the single atom Hamilto-
nian®® H,, There is also a matrix element representing
coupling between interatomic Coulomb interactions and
interatomic electron?® exchange, given by

(aB]H]18) cout-ex
=~ [ dX(Xx)pF (X't KV(XX") + V{xx")
+3[V(Xx) + VIX'x") + VX 'x) + VX)) ]}
X &,(Xx")Py(X'x)dX dx dX' dx’.

The first two terms in the curly brackets also arise
from terms of the structure PPt yyy there
being two ways of completely contracting such a product
if all four operators refer to protons or all four to elec-
trons; the remaining terms come from more complicated
terms in the Tani transform, as discussed in Appendix
B. The first two terms in (83) are recognizable as
matrix elements of the operator IV where I is the inter-
atomic electron exchange operator and V the proton—
proton and electron—electron interatomic interactions.
The third and fourth terms in (83) are matrix elements
of the operator IV whereas the fifth and sixth terms are
matrix elements of VI, where I is again the interatomic
electron exchange operator and V is the proton—elec-
tron interatomic interactions. Finally, there is an addi-
tional contribution to (81) arising from coupling between
intra-atomic energy and inferatomic electron exchange,
given by

(aBlH[Yﬁ)xntra-u
=% [ o X(Xx) o (X'x")[H(Xx) + H(X'%")
+H(Xx') + H(X’x)]qb,,(Xx')cpo(X'x) dX dxdX’ dx’',

Here H(Xx) is the single atom Hamiltonian (75). The
first two terms in (84) are matrix elements of HI where-~
as the third and fourth are matrix elements of /H, where
H is the sum of H(Xx) and H(X'x’), and ! is the inter-
atomic electron exchange operator. The matrix elements
(83) and (84) are generalizations of the “exchange in-
tegrals” which play an important role in the theory of
ferromagnetism and quantum chemistry. The implica-
tions of the many-electron generalizations of such ex-
change matrix elements for the theory of ferromag-
netism have been discussed elsewhere.’ In contrast with
the direct Coulomb matrix elements (82), the exchange
matrix elements (83) and (84) vanish identically if the
atoms are nonoverlapping, i.e., if ¢, and ¢z are

(82)

(83)

(84)

B )

FIG. 5. Diagramatic representation of the two-atom interaction
Hamiltonian H,,.
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X x' X X

« B « 8

FIG. 6. Representation of processes in which atoms collide
with protons or electrons without atomic breakup.

localized in disjoint regions R, and [g; compare with
the physical discussion of the exchange kernels (7). The
diagramatic representation of H,, is shown in Fig. 5.

The terms H,, and H,, in (68) represent processes in
which single atoms collide with single protons or elec-
trons without atomic breakup, and have the general
structures

H,y, = [ axdx'al ¥ (X)(aX |H|AX")(X")ay,
Hep=2) [ dxdx'aly) (0)(ox | H|px')p(x")as. (85)

The diagramatic representations are shown in Fig, 6,
As in the case of H,,, the matrix elements in (85) have
both direct Coulomb and exchange contributions. One
finds for the direct Coulomb matrix elements

(aX|H|BX") cou
=6(X - X") [ pF(¥VVXY)+ V(Xy)|a(Yy) Y dy,
(ax IHIBx’)COul
=5(x - %) [ o2(¥y)[Vxy)+ V(¥x)]8e(¥Yy)dYdy.  (86)

The delta function prefactors are an expression of the
locality of direct Coulomb interactions. As one expects
physically, the expressions (86) are matrix elements,
between single atom wavefunctions, of the Coulomb
interactions between the incident proton or electron

and the two particles (proton and electron) in the atom.
Since the incident particle can exchange with one of the
particles in the atom, there are also exchange contribu-
tions, arising from different parings of the contracted
operators. One finds for the Coulomb-exchange coupling
matrix elements

(aX!H]BX’)Coul-ex
=~ [ pXX'%)[V(XX') + V(Xx) + V(X'x)] p5(Xx) dx,
(ale]ﬁx,)Coul-ex

== [ pX(Xx")[V(xx") + V(Xx) + V(Xx')|pp(Xx)dX. (87)

XxX'|H|aX")
=~ 68X’ = X" V(XX") + V(X'x)] Do (X%)
+ 86X~ X") [ AXx, Yy)[VIX'y)+ V(X'Y)]¢,(Yy)dY dy
~ i [ {{T&X)AX %", Xx) P
— AXx, X x")T(X")} Do (X x")dx"

~ [{aQtx, X"x" HX'x") + SHXx) AXx, X 5" )} §o(X'x") 0

- [ AXx, X"x")[3V(X'x) + FV(XX') + VX'X")
+ V(X"x") P (X x")dx",
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There are also terms representing coupling of kinetic
energy and exchange, which are found to be

(X | H| X "Yineex
=~ [ SEX'%)T(x) po(Xx) dx
=3 [ {22(X'0)TCO + [T(X') 9o (X'%) ¥} $5(Xx) dx,
(ax'H,Bx’)kin-ex
= - [ PEXXYT(X) Byl Xx) dX
- 3 [ {0FXx")T(x) + [T(x") polXx") *} b (X x) dX.
(88)

In contrast with the direct Coulomb contributions, the
exchange contributions (87) and (88) are nonlocal since
they do not contain prefactors 6(X - X’) and 6(x —x’). It
is not difficult to see that the range of the nonlocality
is small, of order a,, the Bohr radius of hydrogen. It
is also easy to see that these exchange matrix elements
vanish if the atomic wavefunctions are localized in re-
gions R, and R, and either X is outside R ; or X” is out-
side R, (resp. x outside {; or x’ outside R,), or if R,
and R, are nonoverlapping.

The remaining terms in (68) are reaction Hamilto-
nians, representing processes in which hydrogen atoms
break up or recombine (ionization and recombination).
The simplest such terms, H(pe —a) and H(a~ pe), have
already been discussed. The terms H(ppe ~ pa),

H(pee — ea), and their Hermitian conjugates represent
processes in which a single atom collides with a proton
or electron and is thereby ionized, together with the
inverse recombination processes, and are of the form

H(ppe ~ pa)
=2 [ dx axax’ ax"yf QO¥ ()¢ (X)) (XxX* | H| aX "X ")a,,
H(pee —ea)
=00 [ dXdxax’ dx" ¢ (X)§ () (=) (Xxx' | H| ax )" ),
H(pa—ppe)=[H(ppe —pa)]", H(ea~ pee)=[H(pee ~ ea)]".
(89)
The corresponding diagrams are shown in Fig. 7; the
diagrams for the inverse recombination processes differ
only by left—right inversion. Although such recombina~
tion processes are three-body collision terms, they
should be included for consistency (otherwise the

Hamiftonian would not be Hermitian). The mat
ments in {89) are found to be
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Xxx'|H| ox")
== 8(x’ - x")[V(Xx’) + Vixx')] @ (Xx)
+ 0 = x") [ AXx, Yy)[V(Y5') + Vix'y)] 64(1y) dY dy

— 47 [{ITE")AX %", Xx)1* - AXx, X"%")T(x’)} Do (X"x") dX"
~ [ {ax, X"x" HX"x") + SH(Xx) AXx, X"5" 1o (X "5") dX"
- f AXx, X"x")3V(Xx") + 2V(xx") + V(x'x") + V(X"x")]¢ o (X"x7) dX", (90)

The first term in each of these matrix elements clearly
represents the effect of the direct Coulomb interaction
of the incident proton or electron with the two particles
(proton and electron) in the atom; the minus signs are
merely phase factors and have no physical signifi-
cance. % The second term in each matrix element rep-
resents indirect processes in which the Coulomb inter-
action with the incident particle induces a bound state—
bound state transition of the atom, followed by decay?®
of the resultant bound state into its constituents. All of
the remaining terms in (90) represent nonlocal exchange
with nonlocality of range ~a, as a function of (R’ - R")
or (r’ -~ r”); the argument for the range is similar to
that previously given?! for the simpler matrix element
(79).

Finally, we consider the terms in (68) representing
binary atomic collisions with resultant ionization of one
or both atoms, and the inverse recombination terms.
The terms representing ionization and recombination of
both atoms have the form

H(ppee - aa)
=32 J axdxdx’ dx' gt (X)y (x)8t (x")6' (x*)

X(XxX'x'|H| ap)ag,,
H(aa — ppee) = [H(ppee — aa)]', (91)

and are represented by the diagrams of Fig. 8. Although
the diagram on the right, and the corresponding Hamil-
tonian H(aa - ppee), represent four-body collisions,

they should be included for consistency, as in the case
of the analogous three-body collision terms H(pa ~ ppe)
and H(ea - pee) discussed previously. The matrix ele-
ments in (91) are found to be

XxX'x’ |H| ap)
=[V(XX")+ Vxx') + VIXx') + V(X'%) | o (Xx) o (X 'x")
(92)

and clearly represent direct?’ Coulomb interactions be-
tween the two atoms. Terms representing partial ion-
ization as a result of binary atomic collisions, and the
inverse recombination processes, have the form

H(pea~aa) = ;2, S dX dxal, ! (X)§ (x)(aXx | H| By)a,ag,
X o X o

X X
xl . xll xl xll

FIG. 7. Diagrams representing atomic ionization due to colli-
sion with protons or electrons.
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|I:!(aa! - pea) = [H(pea — aa)', (93)

and are represented by the diagrams of Fig. 9. The
matrix element in (93) is a sum of three types of contri-
butions, which are similar to (82)—(84). The direct
Coulomb contribution is

(aXx|H|By)cou
== [ XX 'x)VXX’) + V(zx') + V(Xx') + V(X'%)]
X Be(Xx) 9, (X x") dX' dx’, (94)

whereas the interatomic Coulomb-interatomic exchange
coupling contribution is

(aXx IHlﬁy)Coul-sx
= [ X' NVXX") + Vixx') + £ [V(Xx) + V(X'x")
+V(X'%) + V(Xx") |} a(Xx") 8, (X'x) dX* dx’ (95)

and the intra-atomiec energy—interatomic exchange cou-
pling contribution is

(aXx lHIB'}')tntra-ex
= [ B BHX %') + 5 HXx)]bs(Xx') ¢, (X'x) dX" dx’.
(96)

As in the cases of the previously discussed exchange
matrix elements, the sign difference between the direct
Coulomb and exchange contributions is a real physical
effect; on the other hand, the overall phase is not physi-
cally observable, since (93) contributes to observable
quantities only in even orders.

This completes the enumeration of the various con-
tributions to (68). The omitted terms “...” are of two
kinds. In the first place, all multiple collision terms,

i. e., all terms in which bdo?k the number of incoming
and the number of outgoing particles is = 3, have been
omitted. In the second place, higher order contributions
to some of the matrix elements of binary collision terms
have been omitted. We shall conclude this section by
discussing the nature of such corrections to matrix
elements.

In the first place, the matrix elements (70) and (74)
of the single-atom scattering Hamiltonian (69) and the
single-atom ionization and recombination Hamiltonian

o 23

X
X
X

>xX x X

8 g X

x

FIG. 8. Diagrams representing complete atomic breakup due
to binary atomic collisions, and the inverse recombination
processes,

M.D. Girardeau 1911



X X
X Y Y X

FIG. 9. Diagrams representing partial atomic breakup due to
binary atomic collisions, and the inverse recombination
processes,

(73) are exact, i.e., there are no higher order correc-
tions. Although the analysis carried out in Appendix B
only verifies this through fourth order, a different
method of evaluation discussed elsewhere?™?? enables
one to prove that higher order corrections to these
matrix elements do not occur. Similarly, it can be
shown?& 29 that, as previously noted, the proton—proton
and electron—electron interaction Hamiltonians V,, and
V,. in (68) have exactly the forms (1), i.e., there are
no corrections® due to the influence of bound atoms. In
addition, the modified proton—electron interaction
matrix element (79) is exact. *®??

The other matrix elements in (68) have only been
evaluated to the lowest few orders. Specifically, there
are omitted fourth-order (in wavefunctions) corrections
to (aX{H|BX') and (ax|H|8x’) [Eq. (85})], to
(XxX’'1HlaX") and (Xxx'{H|{ ax") [Eq. (89)], and to
XxX'x'|H| af) [Eq. (91)]. The matrix element
(aXx| H|By) in (93) has been exhibited through third
order, and the analysis in Appendix B indicates that
there are no fourth order corrections. However, there
may be corrections in fifth and higher orders. In addi-
tion, there may be corrections to the interatomic inter-
action matrix elements (aBiH|v5) {Eq. (81)] in sixth
and higher orders.

5. SUBSIDIARY CONDITION

The subsidiary condition (11) on state vectors |} in
the subspace ¢, isomozphic to the Schrédinger state
space § is equivalent to the transformed subsidiary con-~
dition (36) acting on states |¢)=U"!¢); the subspace
Gons = U™, [Eq. (34)] consists of those states 1)
satisfying (36). More generally, if ¢, is the subspace
of ¢ consisting of those states 1) satisfying

N9 =ilw, @7)

then one can easily prove that the ¢, are disjoint and
that their union (j running from 0 to «) is the entire
ideal state space ¢. If the subsidiary condition (11) is
dropped, then, since H does not contain ¢, and at,
operators, it will have the same eigenvalue spectrum?®
as it does on ¢,, but a spurious infinite degeneracy of
every energy level. Similarly, in addition to .
=U" ¢, [Eq. (34)], there is a whole infinite sequence of
disjoint subspaces U"! g;, whose union is ¢; each
U-t g, for j= 1 can be regarded as a “copy” of Jyus,
with all states of ¢, imaged with the same energies.

It follows from this that so long as one is interested
in energies but not in the density of states, one can
ignore the subsidiary condition with impurity. In fact,
since the same argument®! implies to any physical ob-
servable, not merely the energy, one can safely ignore
the subsidiary condition in evaluating the eigenvalue or
expectation value of any observable. On the other hand,
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the subsidiary condition must be properly incorporated
in the evaluation of quantities depending on the density
of states, for example the partition function®

Z(p)="Tr, exp(- BUHV) (98)

where the subscript zero on Tr means that the trace
must be restricted to a basis spanning only the physical
subspace {,...=Ug,. However, if one defines a gen-
eralized partition function

= (8, £) = Tr{c" " ¥eY exp(~ BU-HU)
=Tr exp[- U1 (H - \N,)U] (99)
where
¢ =exp(Br) (100)

and Tr denotes the unrestricted trace over the whole
state space ¢, then clearly Z(B) is the coefficient of the
constant term in an expansion of =(8, £) in powers of Z.

In case one wishes to project out the component of
any state |3) which lies in the physical subspace ¢,
this can be done by multiplication by the projection
operator

Poys = U PU 101)

where P, is the projector onto ¢;. Recalling that the
eigenvalues of N, are integers, one can easily write
down a formal expression for P:

2
Py=(@m) [ d9 exp(ioN,).

This expression is not very useful for actual calcula-
tions, since power series expansion of the exponential is
term-by-term incompatible with the periodicity which

is essential for the validity of (102). What is needed is
an expansion of P, in terms of normally ordered prod-
ucts of annihilation and creation operators. Such an
expansion is easily constructed and is in fact well

known in other contexts, The desired expression is

(102)

~ ol Yy S
P0-1+jz=>1[( 1)/]”.11@0‘,%1 Gaya;” " oy

(103)

Using the identity
t ... 4 ..

(@ =N(Ng= 1)+ (N —j+1),
(104)

one can verify that (103) has the desired projection
properties. Low-order approximations to the trans-
formed projector (101) can be constructed using the
transformation (64):

U'IaaU=Aa—>%,‘CaB(%1ras+ A 4. (105)
The projector (101) can be used to construct a “pro-
jected Hamiltonian”

H=U"HP U = (U HU) P,y

which has the same eigenvalues and eigenstates as the
Hamiltonian (68) on the physical subspace ¢, but
which annihilates states orthogonal to ¢, and hence
no longer has spurious degeneracies. Such projected
Hamiltonians have been discussed previously® in a
slightly different context. The evaluation of (106) will
be discussed elsewhere, 2 where it will be shown that
#{ differs from (68) only in having additional contribu-

(106)
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tions to some (but by no means all) of its matrix
elements.

6. DISCUSSION

A transformation has been developed which allows
states and observables of a nonrelativistic system of
composite particles and their constituents to be ex-
pressed in terms of elementary Bose or Fermi opera-
tors for the bound composites plus the usual elementary
tield operators for the unbound constituents. In this new
representation all possible scattering and reaction chan-
nels of the composites and their constituents are ex-
hibited simultaneously. The transformed Hamiltonian is
evaluated explicitly for the case of atomic hydrogen
through binary collision terms, including the terms in
which the number of outgoing or incoming particles (but
not both) is greater than two. The matrix elements have
qualitative properties expected on the basis of physical
arguments, Similar representations have been developed
previously; we shall conclude by comparing and con-
trasting our results with those.

The representation of Brittin and Stolt! is qualitatively
similar, although the derivation is very different from
ours; however, the matrix elements obtained differ in
detail. Although their approach is in principle exact,
they were forced (as were we) to make approximations
in obtaining an explicit expression for the transformed
Hamiltonian; the following remarks apply to this ap-
proximate expression only. The terms in the Brittin—
Stolt Hamiltonian to which we refer here are given on
pp. 76—179 of their Boulder Lectures. ! In the first place,
the Brittin—Stolt terms T,, T,, T,, ¥,,, and ¥,, cor-
respond exactly to (and agree with) our single-atom
Hamiltonian H, [Eq. (69)], the single-proton and single-
electron Hamiltonians 7, and T,, and the proton—proton
and electron—electron interaction Hamiltonians V,, and
Vee; such exact correspondence is to be expected for
such simple and “obvious” terms. On the other hand,
their single-atom dissociation term V(ep - a) differs
trom ours H(pe —a) [Eq. (73)] not only in an irrelevant
sign difference, but also in that there is no term
analogous to the term involving A in (74). As a result
and in contrast with (78), their matrix element fails to
vanish in the case of an energy eigenstate (stationary
state) ¢,, a case in which dissociation does not in fact
occur physically. Similarly, their proton—electron in~
teraction Hamiltonian V,, corresponds to only the first
term in our effective proton—electron interaction
matrix element (79), and hence fails to account for the
effect on the unbound proton—unbound electron interac-
tion of the fact that the bound proton—bound electron in-
teraction is already included elsewhere in the Hamil-
tonian, The direct interatomic Coulomb interaction
term V,, is equivalent to the direct Coulomb term (82)
in H,, [Eq. (81)], but the exchange contributions E,,
appear to differ from (83) and (84). The terms VM and
Vee are equivalent to the direct Coulomb contributions
(86) to H,, and H,, [Eq. (85)], and the exchange contri-
butions E‘Zn and E,, also appear to be equivalent to (87)
and (88). On the other hand, the corresponding disso-
ciation matrix elements V(epp « pa) and I7(eep ~—ea) are
equivalent to only the first term in the expressions (90)
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for the matrix elements in H{ppe — pa) and H(pee - ea)
[Eq. (89)]. The direct Coulomb contribution to

V(epa — aa) is equivalent to the corresponding term (94)
in H(pea -~ aa) [Eq. (93)], but the exchange contribu-
tions appear to differ from (95) and (96). Finally, in the
approximation in which the Brittin—Stolt Hamiltonian

is evaluated, there are no terms corresponding to our
two-atom total dissociation and recombination terms
(91) and (92).

The representation of Sakakura? is also superficially
similar to ours, but the matrix elements differ more in
detail from those in (68) than do those of the Brittin—
Stolt representation. The following comments refer to
the terms exhibited on pp. 504, 505 of Sakakura’s
Boulder Lectures.? Sakakura’s first term is equivalent
to the sum of our terms T,, T,, V,,, V,,, and V,,; as
in the case of the Brittin—Stolt representation, there is
no analog of the terms in (79) which effectively subtract
the bound proton—bound electron interaction from the
bare proton—electron interaction. Sakakura’s second
term is equivalent to our H, for the case that the ¢,
are taken to be single-atom energy eigenstates. In the
same case, his third term is equivalent to only the first
term of (74); as in the case of the Brittin—Stolt rep-
resention, omission of the remainder of (74) leads to an
unphysical instability of bound atomic energy eigen-
states. Sakakura’s fourth and fifth terms correspond to
our H,, and H,,, and the direct Coulomb contributions
agree; however, Sakakura’s exchange contributions
differ both from (87), (88), and from those of Brittin
and Stolt. His sixth term corresponds to our H,,, and
the direct Coulomb contribution agrees with (82); again,
his exchange terms differ both from (83), (84} and from
those of Brittin and Stolt. In the approximation in which
Sakakura evaluated his Hamiltonian, no terms corre-
sponding to H(ppee ~aa), H(pea ~ aa), H(ppe ~ pa),
H(pee - ea), and their Hermitian conjugates appear.

A more recent formulation of Brittin and Sakakura®
was not carried to the point of explicit evaluation of the
interaction parts of the Hamiltonian, so we cannot make
a comparison at this time.

A previous conceptually more complicated approach?
by the present author also led to a similar Hamiltonian,
but again there are differences in the detailed matrix
elements. Precise comparison is made difficult because
terms in the matrix elements vanishing by virtue of the
subsidiary condition employed were dropped in the
course of the derivation. We shall therefore not attempt
such a comparison here. However, there are some in-
dications?? that the representation obtained there is
closely related to, but no completely equivalent with,
the one of the present paper.

A composite particle second quantization formalism
adapted to the theory of nuclear reactions has been
given recently by Nishigori. 3* Many approximations
(including neglect of all exchange terms) were made in
the course of the derivation, so a detailed comparison
is not possible. However, one can note, for example,
that Nishigori’s single-nucleus breakup matrix ele-
ment?® omits the second term of (74) necessary for
stability of bound energy eigenstates, and in addition
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omits the kinetic energy contribution to even the first
term of (74).

The formalism of Gilbert®? is based on the same Tani
transformation as ours but uses a different method of
evaluation of the transformed Hamiltonian. It therefore
necessarily leads to the same transformed Hamiltonian.
The details are discussed elsewhere, 2829

In addition to these first-principles approaches, there
have been many previous approaches which must be
classed as semiphenomenological, since they do not
start from any generally accepted complete quantum-
mechanical representation of states and observables in
terms of the constituents of the composites. It would be
inappropriate to attempt a comparison with such ap-
proaches. In addltlon there have been a few recent
formulations®® 37 which, although first-principles ap-
proaches, employ composite particle annihilation and
creation operators similar to our A, and A%, and make
no attempt to introduce operators analogous to our a,
and a!,. A detailed comparison of our formalism with
such approaches does not appear to be possible.
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APPENDIX A: BEHAVIOR OF TANI TRANSFORM
IN THE LIMIT OF ZERO OVERLAP

The proof presented here is closely related to pre-
vious proofs by my students Munro38 and Gilbert. %
Suppose that the atoms a4 - - @, are localized in mutual-
ly disjoint regions, in the sense that for each j, Pay Xx)
is only nonzero if both Re R, and r€ R;, where the re-
gions R; are mutually disjoint. Suppose furthermore that
only nonoverlapping atoms are included in the Tani
transformation (14), in the sense that ¢ is only summed
over a discrete set of ¢; including o, - - - @, (but perhaps
including the other «; as well) which refer to mutually
disjoint regions in the above sense. Then as previously
noted, the exchange kernels K,; [Eq. (7)] and hence the
operators C,; [Eq. (6)] vanish for o #8, with the under-
standing that o and 8 are both members of the set
@y, 0y, - -. It then follows with (6), (7), (14), and (22)—
(24) that for all integers j=1

[AL’ F]ZJ' = (— 1)IAL +Df‘xz”,

Al
(A%, Flyyg = (= 1)lal, + DD (A1)

2 [ dXdxal, ¢ ¥ (Xx)[T(X) + T(x)ps(Xx)a,

where the DY’ satisfy
DY’|0y =0,

(DY, a5]=[D,a}]= (D, A4l (A2)
=[p, A1) =[D$, D=0, a#s.
Then by (22)
UAYU=d',+D, (A3)
where
D,|0) =0, |
[Da, @5)=[Da, a})=[Da, Ag) (a4)

:[Da’A£]=[Da,DB]=0; o #8.

Then

vAy, - AL |0 =vAL, Ut VAL U] 0)

(@, + D) |0)

(@l + D, )ah, |0
=(@l, +Dg )+~ (@h, , + Dy, ok, b |0)

= =al, - --al, |0). QED (A5)

= (a1;11+Da1) e

= (a'c,,1 +Da1) .

"‘APPENDIX B: DERIVATION OF TANI-TRANSFORMED

HAMILTONIAN

Consider first the terms 7, and T, in (1). Upon sub-
stitution from (63) one has

U-iT’sz dx[zp(O)?()() +¢(1)T(x) + ¢(2)T(X) +¢(3)1(X) e ]
XT(X)[:];“”(X) + ¢(1)(X) +Zp(2)(x) + zp(ii)(){)_‘_ o ]
(B1)

The transform of T, is expressed similarly. We shall
denote by ij the contribution of #"Ty. The total
order?® of any such contribution is (¢ +j). By (65) and
(66), the zero order contributions 00 to U™'T,U and
U-T,U are merely T, and T,. The first order contri-
butions 10 and 01 are found from (65), (66), and (3) to
be

- Z;’ [ dxadxy' ) ([ TX) + T(x)] ¢ (Xx)a, +h. c.
- [ dxdxadx’ ax'§ X)) T(X) + T(x)]

X A(Xx, X'x")(x")P(X") +h. c. (B2)

where “h. c.” denotes the Hermitian conjugate and A is
the “bound state kernel”

AXx, X'x") E@ b, (Xx)DF(X'x"). (B3)
The second order contributions are of the forms 11,
02, and 20. The contributions 11 are, by (65), (66), and
(3) and after rearranging into normal order by use of

Wick’s theorem,

+Za) [ dx dxdx’ ax'$ ()9 () AXx, X'x")[T(X’) + T(x")] $o(X'x")a, +h. C.

+f dX dx dX' dx’' dX" dx" " QO () AXx, X"x ") TX ")+ Tlx"YaX"x", X'xVp(x")p(X")
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- f ddedX’a'azp'(X)¢:(X’x)T(x)¢,(Xx)¢(X')aB—EBf dX dx dx'al, i (x)p X (Xx') T (X)po(Xx)P(x")a,
af ]
-2 [ dXdxdX’ dx’' dX" ' ) () (X AXx, X"2')T(5") g X'5")PX " Jag +h. c.
-2 [ axdxdXx’dx’ dx" ' (X0 ()9 @) A, X'x")T(X") g (X'5")P(x")ag +h.C. +- - - (B4)

‘Here “- - - gtands for terms of the structure zb’zp'zp'zpzpzp. Such terms represent three-particle collisions, and are
beyond the accuracy of the binary collision approximation within which (68) is evaluated. The contributions 02 and

20 are found to be
- %g; J dxdxdX'a' g (X){ o2 (X' %) T(X)$ s(Xx) +[T(X’) palX'x)]* ¢ X X)X ")ag
- %EB [ dxaxdx’aly (x){ X (Xx")T(x) @ 4(Xx) + [T(x") po(Xx") * B4 (Xx) Ri(x")ag

-2 [ dxdxdx’ ax” ax"aly () {ine F X'x) T(X)A(Xx, X"'5")

+ (1= iM[TX") P o (X' * ALXx, X" R(x")PX")P(X") +h. c.

-2 [ axdxdx' dx" dx"al ' (x){ire ¥ (Xx")T(x) A(Xx, X "x")

(- dn)[T) BaXx)*Ax, X 2" (x)Y(x")PX") +h.c. +- - - (B5)

where “- .- ” again stands for three-particle terms of structure y'y'y'$yy. The terms of structures a'y' Yy and
iy’ pa are viewed as binary collision terms and hence retained in (B5).

The third order contributions are of the forms 03, 30, 12, and 21. The contributions 03 and 30 are

%Z;y J axaxdx’ dx'at i (X)F (x)p X (X'x") [ T(X) + T(x)]¢aXx") b, (X x)a,m5 +h. c.
+Gr-9T [ axdrdx’ ax ax” dx"f F () X0 () a5, X 5" )[T(X) + T(x)]pa(Xx") 85X "x)as +h. c.
43 [ dXdxax’ dx’ ax"$ (X4 (e () T(X) + T(x) AWK, X"5") $o(X'x)P(X Jaq +h. c.
- %Zﬂ) J axdxdx’ dx’ dx"§ (X0 ()3 () TX) + T(x)]aXx, Xx") Po (X2 )p(x")ag +h.c. +- - (B8)
where the contributions “- - - ” are again three-particle or higher-order collision terms in the sense that they cor-
respond to processes in which the number of incoming particles is three or more and the number of outgoing parti-

cles is three or more; all terms in which the number of incoming o7 ocutgoing particles is two or less are included.
The contributions 12 and 21 are

z GZBZ J dXdxdX’ dx'alalp X (X'x)pF (X&) TX') + T(x")]$,(X'x")p(x)¥(X)a,+h. c.
+ ':‘WQEB J dxdxdX’ dx' dX" dx"aal o2 (X"x)pF (Xx") T(X") + T(x"))AX %", X'x')p(x")PX")Pp(x)$(X) + h. c.
-2(1~ %ﬂ)?ﬂ f dX dx dX’ dx’ dX"al P (X)a(Xx, X'x" ) X (X "%)T(X") (X "2 VP(X" )y
-2(1- %w)Z; J dxdxdX’ dx’ dx"a' gt (x) A(Xx, X'x') X (Xx")T(x") palX %" )P(x")a
[
- (1 - %”)g f dXdxdX' dx'dX"dX" dx”’zp*(X)zl)T(x)zl)' (XI)A(Xx, mem)A(Xlxn’ Xllxl)T(XM)¢Q(XIIIxI)Zp(X")aa +h.c.
-1-inx f dX dx dX' dx’ dx" dX"™ dx"™ " (X)) (x)f (') A%, X" x ™) AX %", X x")T(x™) o (X'x™)P(x")ay +h. c.
o
- %?; f dX dxdX’ dx' dX" dx" dX"a' 3t (X)A(Xx, X'x' )P XX "x)T(X")AX "%, X"x")P(x")p(X")p(X") +h. c.
- %4? f dX dxdX'dx' dX" dx” dx"a ' (x) AXx, X'x")p X (Xx™)T(x™)AX 2", X "x")Pp(x " )PX")d(x") +h.c. +---. (B7)
The fourth order contributions are of the forms 04, 40, 13, 31, and 22. We cannot evaluate the contributions 04
and 40 here since the series (63) for the transformed proton and electron field operators have only been evaluated
up to third order. However, the only possible contributions to the terms 04 and 40 which are of binary collision
form are those of structures a''ya, a''ya, a''yfya, ¢ laa, a'a iy, STy va, and o'y Py, Such contribu-
tions will be found to also occur in other terms [e.g., there are such terms in (B4), (B5), and (BT7)] in the second
order. Hence we shall, for consistency, drop all fourth and higher order contributions to such terms. Note that
this requires dropping the term with coefficient (/4 - 3) in (B6), and the terms with coefficients 7/4 and 2(1 — 7/4)

in (B7). By the same token, the terms of structure a'¢' ¥y and ' "' ya in (B7), which are of fifth order, will also
be dropped, as will such fifth order contributions in similar terms which will subsequently be evaluated.

The terms 13 and 31 are found to be
-t 2 [ axaxax’ ax'alale X)X TX) + Tx) + TOE) + T (X5) oo (K %)y + - - (B8)
where the omitted terms “- - - consist of multiple (higher than binary) collision terms, binary collision terms of
fifth and sixth order in wavefunctions, and binary collision terms a"zl:'z/)a of fourth order in wavefunctions. ! The

contributions 22 consist entirely of multiple collision terms, binary collision terms of fifth order, and binary colli-
sion terms a'¢'Ja of fourth order, and hence will all be dropped.
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Next we consider the transforms of the interaction terms V,,, V,,, and V,, in (1), which can be evaluated in

analogy with (Bl). We shall employ a notation similar to that used in enumerating the various contributions to (Bl),
denoting by #jk! the sum of the contnbutlons of form TP T VP®YH) to the Tani transforms of V,,, V,,, and V,,
The terms 0000 are merely V,,, V,,, and V,, themselves. The first order contributions 0001, 1000, 0010, and 0100
are found in analogy with the derivation of (B2) to be

-2 f aX dxd (P )V (Xx) pa(Xx)ag+h. e, — [ dX dxdX’ dx'f (X3 (x)V(Xx)alXx, X'x")plx'P(X’) +h. c.
+§ [ dx dx ax' gt (X)) (X[ V(Xx) + VIXX) 6o (X'%)P(X)a, +h. c.
+25 [ dX dxdxy COF ()f () V(Xx) + Vxx") | po(Xx)pw)as +hc. + - - - (B9)

where the terms “...” are ternary collision terms of the form ¢ ' ' yubp.

The second order contributions are of the forms 0002, 2000, 0020, 0200, 1001, 0110, 0101, 1010, 0011, and
1100. The terms 0002, 2000, 0020, and 0200 are

1- %n)Zu) [ dxaxax' ax” dx" ¢ (X ) (X VXx) AKX x, X"%") po(Xx")PX " )aq +h. c.

+3(1 - iw)Za) J dX dxdx? dx” dx”" " ()P () (X)) VXX VAKX %, X"x") po(Xx")P(X")a, +h. c.

+3(1- %n)Zq) J dX dxdx’ dX” dx"$ (X ()¢ (") Vex ) AXx!, X% o X" %) P Nag +hoC 4 - - - (B10)
where “--.” are multiple collision terms. Similarly, the sum of the terms 1001, 0110, 0101, 1010, 0011, and 1100
1S
§ [ dx dxat, B (Xx)V(Xx)$4(Xx)a + 2 [ dx dx X' dx' X (x) AXx, X 5" ) V(X'x") $o(X'5")ag +h. C.

+ [ dX dxdX’dx' dX" dx"§ X (x) AKx, X %" )V X"x")AX " %", X'x" )l Yp(X)

+ 2 [ aXdx dx'al g (X)8 3 (Xx)[V(Xx) + VXX pg(X"x)p(X)atg

+§ [ dx dxdx’ald! (x) pF (Xx") V(Xx) + Vixx') | p5(Xx")d(x)ag

-2 | dXdxdX'aly ()¢ 3 (X'2)[V(Xx) + VX'%) + VIXX') b (Xx)H(X")ag

-2 [ axdxdx'alaf (093 Kx") V) + V') + Vies') | $(Xx)Y(x)ag

+§ J dX dxdx’ ax’ dx" ¢ ()¢ X)W () AX %', X %) [ V(Xx) + VIXX")]$o(X"%)p(X)ag +h. c.

+Za) J dX dxdX’ dx’ dx"§ (x)P (X )P (£ )AX %!, Xx ") V(Xx) + V{xx")] o (Xx")D(x)a, +h. c.

- Za) J dX dx ax’ dx’ ax "yt QP X () AX %", X %) [ V(Xx) + VXx') + 3VXX") + VIX"%) + V(XX ") ] $oX2)P(X " )ag +h. c.

=2 [ dXdxdx’ dax’ dx"§ e XY () A%, X ") V(Xx) + V") + 3V (0x') + Viax") ] @ (Xx)p(x")ag +h. c.

+ %;; f dX dx dX’ dx" ¥ OO0 ) XY (D VXX + Viex") + VXx') + V(X 'x) ]9 (Xx) pa(X'x")aga, +hoc. +-- -, (B11)

Next consider the third order terms. The sum of terms of structure 0003, 3000, 0030, and 0300 is found to be

% aZB)Y f dX dx dX’ dx'al g (X)) (x) p X (X'x") V{Xx) palXx") (X x")a @z +h. .

- ;za; [ dX dxdX’ dx’ dX" ' X (x)¥ X)[2VXx) + VXX)]AXx, X %"} (X% )P(X)ag +h. c.

- ;Za) [ dX dxdX’ dx’ dx" 3 (X9 )P () [2V(Xx) + Vxx")JAXKx, X'x") po(X'x")D(x")ag +h. c.

+32 f dX dx dX' dx' dx" Q) ()P ) VXx) AKX, X'5") po (X' %)P(x"Yag +h.C. +- - - (B12)

a

where the terms “...” are multiple collision terms and terms of structure ("4’ ¢'y'aa +h.c.) which are of fourth
order in wavefunctions, hence of the same order as terms 04 and 40 which were not calculated [see the discussion

following Eq. (B7)]. The sum of the terms 1002, 2001, 1020, 0201, 0120, 0210, 0102, 2010, 0012, 2100, 0021, and
1200 is

Z) f dXdxdX dx'a aLzb,’{(X'x)q‘) XxN[VX'x) + V(Xx") o, (X %" )Pp(x)Pp(X)a, +h. c.
- G-iMY [ dXdxdX’ aX” dx"§ Q)Y ()¥ XYV XR)AX %, X5") $o(Kx")PX )y +h. C.
¢- 411)2 [ aX dx dax’ ax” dx" i (X)3 ()P (X V(XX AX %, X"x") o (Xx")P(X")a, +h. c.
G- ﬁr)Z}dedxdx dxX” dx" P OO ()T D Vxax Y AXK, X %" )b o (X "x3(x Ve, + 1. €.
+% Z} [ dax dxdX’ dx'a gt QO (x)p F (X2 )V (Xx) po(X %) b, (Xx")a, a5 +h. c. +- (B13)

E
1
2(

Finally, the terms 0111, 1110, 1011, and 1101 are
- a% J dX dxdX’ dx'al i (X)W (0) 0 X (X'x" ) V(Xx") + V(X'%) + VIXX') + V(xx")] pXx) 9, (X' x")aya5 + 1. C.
+ ;}r f dX dx dX' dx'a’ ff XY (%) pX (X' V(X'%') + VXX + V{xx")]9g(X'x)D,(XxNa,as +h.c. +-«-. (B14)
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The fourth order terms 0004, 4000, 0040, and 0400 capnot be evaluated here, since the series (63) were only
-evaluated to third order. However, in analogy with the case of the terms 04 and 40, one concludes that the only
binary collision terms which can arise from 0004, 4000, 0040, and 0400 are those of structures a'¢' ¢'ya, a'y yya,

S taa, a'atyppy, ¢ty pa, and @'Y PP, Since we have consistently been dropping fourth or higher order con-
tributions to such terms, we need not concern ourselves further with them here. The remaining fourth order terms
are of the forms 1003, 3001, 1030, 0301, 0103, 3010, 0130, 0310, 0013, 3100, 0031, 1300, 2002, 0220, 2020, 0202,
0022, 2200, 0112, 2110, 0121, 1210, 0211, 1120, 1012, 2101, 1021, 1201, 2011, 1102, and 1111. The sum of the

terms involving 1 and 3 is

- §a§)° J dX dx dX’ dx'al,aloF (Xx) pF (X' x") [ V(Xx) + V(Xx")] 6, (Xx") by (X' x) Ay, + - - -

(B15)

‘where “. . -* stands for multiple collision and fifth*? and higher order terms. The terms 2002, 0220, 2020, 0202,
0022, and 2200 are all of multiple collision form or of fifth or higher order, and hence negligible. The terms 0112,
2110, 0121, 1210, 0211, 1120, 1012, 2101, 1021, 1201, 2011, and 1102 yield

- %g)ﬁ [ dX dx dX' dx'alal ¥ (Xx)o F (X x| V(Xx) + V(X'%)|6,(X"%) g (Xx") g2, + - - - .

Finally, the term 1111 is found to be

(B16)

3 a%_"’n f dXdxdX’ dx'alaloX Xx)p ¥ (X' ) [V(Xx') + VX'x) + VIXX') + V(xx) ]9, (Xx) s (X'x")asa,

-3 2 [ dXdxdX’ dx'alal o (Xn) b (X5 ) VIXK') + Vix') ), (X'%) 8 (X5 )agay +- - .

(B17)

This completes the evaluation of the transformed Hamiltonian to fourth order. Upon combining terms of like opera-

tor structure, one finds the expressions in Eqs. (68) ff.

APPENDIX C: PROPERTIES OF THE UNBOUND
PROTON-ELECTRON INTERACTION

Let |®) be any one proton—one electron state:
|6) = [ dXdx ¢ (xXx)y GO (x) | 0). C1)

Assuming the ¢, to be single-atom energy eigenstates
(71) so that (80) holds, one easily verifies with (78) that

H,[¢) = [ dX dx[V(Xx) ¢ (Xx)
~2Zi€al$ar® ) BaX) W COF (x)] 0). (C2)
Then by (1) and (75)
(T, + T, +H,,)|$)
= [ aX dx(H(Xx) ¢ (Xx) - Dol ba,0) ¢ a(Xx))]
X3 (04" (x) | 0). (€3)

If ¢ is one of the bound eigenstates ¢, of H(Xx), then
one has trivially*

(T, + Ty +Hye) |90 = 0. (C4)

On the other hand, if ¢, is orthogonal to all the bound
states so that (¢,,¢,) =0, then one has with (1)

(Ty+ To+ Hyp) [9,) = (T, + Ty + V,,) |1
= [ dX dxH(Xx)¢,(Xx)¥' (X)¥' (x)|0). (C5)

Let ¢,(Xx) be the continuum (unbound, positive energy)
eigenstates of H(Xx), with energies ¢,> 0. One can
expand any ¢(Xx) in the form

$x) =23 CapalXx) +2) Coy(Xx) (ce) -
where (¢,,¢,)=0. Then by (C4) and (C5)

(T, + T+ Hpo) [6) =20 cataln), ()
so that

<¢|(T,+T9+H,e)|¢>=k2 |c, 26,2 0, (C8)
1917 J. Math, Phys,, Vol, 16, No. 9, September 1975

i.e., (T,+T,+H,,) is positive semidefinite and hence
has no bound states.

*Supported in part by National Science Foundation Grants GP-
11728 and DMR72-03211.
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PX 1 0)=p )| 0)=0.

!"This should be qualified by the statement that even in the
zero-density limit, the terms arising from C,g play an im-
portant role in atomic collisions, being closely related to ex-
change effects (primarily electron exchange but in principle
also nuclear exchange) occurring in such collisions. Such
contributions will be evaluated when we evaluate the Tani-
transformed Hamiltonian; however, our purpose in this sec-
tion is to introduce and motivate the transformation (14), (18)
without obscuring the qualitative ideas by such details.

183uch a state |¥) is of the general form

19) = const fdxl P ‘d)Q,,dxl o 'dx,¢(X1' o 'mel o .xl)
><w‘(X1) ) 'lli'()i,,)lbf(xi) o e ’d)'(x, 1 0).

The corresponding state (according to the one-one corre-

spondence S ﬂo) in is of exactly the same form, ex-

cept that then | 0) is the vacuum of S rather than of 4.
13The calculation initially gives an operator matrix element
(o | Hl Xx):

(@| HI Xx)= - ¢, (Xx)H(Xx)

+Sax’dx' ) (X xVHX x)AX &', Xx).

However, upon substituting this into (73) and making use of
the hermiticity of H(Xx), one can rewrite the expression (73)
so that the matrix element is the c-number function

(Xx | Hl a)*,

20 such a case (Xx|H| @) reduces to (Xx| Vg, |a) where Vg,
is the external potential, since the contribution from the
free-atom Hamiltonian vanishes by the previous argument(76).

Y'More precisely, it is of range ~ (m/M)ay<<a, with respect to
the nuclear separation R —R’, and of range ~a, with respect
to the electron—nucleus separations r —R and r —=R’, hence
also of range ~a; with respect to r—r’. Here m and M are
the electron and nuclear masses., To see this, note that the
quantum numbers @ labeling the atomic bound state ¢, can
be taken to consist of a wave vector k, where 7k is the total
translational momentum of the atom, together with a set v
of internal quantum numbers (the usual atomic quantum num-
bers). Accordingly, one can decompose @, into a center-of-
mass translational wavefunction exp(’kk "R ., ) and an internal
wavefunction u,2

BoXx) =@V explik R . ) 4,r -R, 0,,0,).

Here Ry = (MR +mr)/(M+m), @ is the volume of the sys-
tem, and 0, and 0, are the proton and electron spin variables.
We assume periodic boundary conditions in 2 macroscopic
cube of volume 2, thus determining the allowed wavevectors
k in the usual way. Substitution of this decomposition of the
¢, into (B3) yields

AXx, X'x’) =QAZ ,explik: R,
—R o)1, t R, 0, 0)utr’ —R’,07,0;)
=5®Re g ~Rbn)Z, 4,0 —R,0,,0)ufc’ -R
—(m/M)(x~x’), 05,0).

Since the U, have range ~a;, one sees that A is only appreci-
able when r and r’ are both within ~a, of R. Then by the def-
inition of Ryg , R with be within ~ ¢n/M)ag of Re,p, , and
since R, =R’ . because of the delta function, R’ will also
be within ~ ¢n/M)ay of R , so that R and R’ will be within
~ (m/M)ay of each other. Thus A has range ~ fn/M)ay<a,
with respect to R —R’, and range ~a, with respect to r —R
and r’ —R’, hence range ~a; with respect to r—r’,

2 Ppartially contracted terms contribute only to multiparticle
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. colligion terms a"a"y'yaa, etc.

3Such a separation is not assumed; it is an automatic conse-
quence of the algebra generating the various terms in U-1HU.
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produce a distinct matrix element, since interatomic proton
exchange is equivalent fo interatomic electron exchange fol-
lowed by exchange of the whole atoms; exchange of whole
atoms is already accounted for by the commutation relations
of the a, operators.

250nly even powers of these matrix elements contribute to
physically observable quantities.
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cluding the bound proton—bound electron interaction. On the
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¥pp, 51, 52 of Ref. 28,

40A¢t this point we are maintaining the previous convention that
A, and A,' are of zero.order, In such contributions we shall,
after normal ordering, restore any ¢"‘ and ¢, factors coming
from the definitions of 4, and 4,", provided that they have
not disappeared in the contractions of A,A.Y. Thus the true
order with.respect to ¢, and b5 factors will be > the nomi-
nal order defined by our iterative scheme.
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#iRecall that the contributions a'y%ya atart with terms of sec-
ond order, and that there are fourth order terms of struc-
ture a'ytpa in the contributions 04 and 40, which we are not
evaluating.

£Uncontracted terms involving A and A factors are of fifth and
higher orders.

O1n fact, (C4) holds even if the ¢ are not eigenstates of H(Xx).
However, the proof then requires the more general expres-
sion (79) and is less trivial,
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Borel summability and distribution

P. Hillion

Institut Henri Poincaré, Paris, France
(Received 18 October 1974)

This paper concerns the Borel summability of series expansions 2§ f, s, (x) 2 f(x), where the
polynomials s, (x) defined on the interval I of the real line, are orthogonal in some space L *(I)
and we look for conditions on f, such that f(x) is a distribution. As an application, a long
standing ambiguity in the quantum theory of Coulomb scattering is solved.

. INTRODUCTION
The Borel transform f(z)= A{f,} of a sequence {f,},

n=0,1,2, -+, of real or complex numbers, is defined?
by the relation:
— 1 ~1
f"_zm jl: f(z2)zmtde (1)

where the contour I' encloses all the singularities of
f(2). Equation (1) can be written in a symbolic way':

Juh,=5(2) 0, (11
8,, being the Kronecker symbol, i =I for =0, and
Bih}=hz)=2/(z - 1). f(2) is the analytic continuation
of the generating function 37 f, 27", so the Borel trans-

form enjoys all the well-known algebraic properties of
generating functions; in particular

BUS 18D =1 (2) g(2)
where the symbol * denotes a convolution product.

If lim,,, f(z) exists, the series 3 f, is said B-sum-
mable and we write

S ARy @)

of course, a convergent series is also B-summable with
the same limit. Let f(2), g(z) be the Borel transforms
of the sequences {f,}, {g,}, defined, respectively, for z
outside some domain 2, ,, according to (1) and let I'
be a contour enclosing all the singularities of

P F(p)gl2/p); if C denotes the infinite circle, then from
Cauchy’s theorem, it follows

E;Tfr rf (P)g(f;)dp+§,1,—,- f P"f(ﬁ)g(%>dp=o.

Provided that p~* f(p) and g(z/p) have no common singu-
larities, we can always find I'; enclosing the singulari-
ties of p™' f(p) and for T, those of g(z/p) such that [
=fp, + fj‘ and since IPFF(z)dz:— [szF(l/z)dz where
T, and I'; enclose, respectively, the singularities of
F(z) and those of zF(1/z). The previous relation can be
written in the form

o [ oo [ oo

) [

If we note f(z) @ g(2) and g(z) ® f(z), respectively, the
left- and right-hand side of this equation, we have

1920 Journal of Mathematical Physics, Vol. 16, No. 9, September 1975

f(2)® g(z)=g(2) ® f(z)

with

1 [ @) (= _L]f..(_l’) 2
e g = 5o fr D) of2)ap+ % [ 44 g(p)dp
(3)
and similarly for g(2)® f(z). For Borel transforms, in

all the cases that we have considered, the value of the
integral along the infinite circle tends to zero.

Theorem 1:
f(2)® g(2) = B1f, £, (4)
Proof: From the equalities
Sab,=5(2) 6,4, (5a)
8, h,=28(2) 8,0, (5b)
b, =h,=h(2)5,,, h(z)=2z/(z-1) (6)
it is trivial to prove the relation h(z)® g(z)=g(z)
= A{g,h,}. This last result and Eq. (5b) lead to
8ol = 8,1, = (h(2) @ g(2))6,,=8(2)5,;
S0
fa8ahn=(f,1(2) 0 & £(2))
and with (6)
fa&ahy=f,h, ® g(2)).
Finally, using (5a)
fo&nh,=(f(2) @ g(2))5,;

Im2

FIG. 1. The Fourier series.
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TABLE I, Borel transforms #(x, 2) of sequences of polynomials
¥(x) defined on the interval I of R, *

I R M X b, 2
Fourier (~mm —iD n Fylx) =ei™ Flx,2)= z—zei"l
. 2(z—cosx)
Fourier ©,m) D? -n? F,(x) =cosnx Fx,2) = z2—2zcosx+1’
Fourier (0, D? —n? F,(x) = sinnx Flx,2) =g —ZZ:::;x+1
2{(z — cosx)
Chebyschef  (~1,1) (A —x)V4DQ -x)V2xDA -x})V4  —p? T,(x) = cosnx Th,2) = 57 cosx+1
2_1) n+1) Py =i LI gy P, 2) =
Legendre (-1,1) D{(*-1)D nin+ FaTdaA %~ 'Y T zT-2Zcosx +1
— %) .
Laguerre ©,%) xD2+D-§ —n L,,(x) E/( ) = L(x,Z)—z_le'x/(n-i)
, H (x) [n/2} _ 1)k 2n=k Hx, z) = e~x/2-1/222
Hermite (- o,®) D2_x2+1 k =2 ( B G g &
D D T(n+2a) 2%
(@ — x2)pe0? i) ~Fr AT 6D O &) = T Tz comr 110
Gegenbauer  (~1,1) W) W () —nlr+20) Tr+dTRa wol 1ex (z zcosx+1
W) = (1 — x2)&/2-1/4 X,Fl(n+20£, e et )

aD=d/dx, @ is the differential operators with eigenvectors y, (x) and eigenvalues A,. In the definition of Gegenbauer polynomials,
o Fy is the hypergeometric function.

that is, f(2)® g(z)= B{f,,g"}. This completes the proof. in this special case, many applications of (7) to the

ti f ies.
Of course, B{f,g,} is computed with the easier of both > oron OF SETIes

expressions: f(2) ® g(z) or g(z) ® f(2). An immediate 2. ORTHONORMAL B-SUMMABLE SERIES
corollary follows EXPANSIONS
Corollary:

Let {,(x)} be a sequence of polynomials defined on an
1 z open interval I =(a, b) of the real line IR with the Borel

f ®) ;5 — f| 7 )ap- -

21n p Zm ", p-1"\p transform y(x, 2) =A{y, ()}

! From now on, we assume that in Eq. (3) the second

I', enclosing the point 1 in the complex plane. It is easy term is zero (from a practical point of view, it is not a
to show that in this case the integral along C is zero real restriction); then relation (7) for x I leads to
since for p—~, f(p) =35 (f,/p™ and for |z/p1 <1, z/ - B

(z=p)==(2/p)(1+2/p+2%/p*+-.-). Theorem I and Eq. ? T a (%)= f(x),

(2) lead to 1 1
. f(¥)=lim -— 5 f(0)¥(x, z/p)ap.
2 faga lim (f(2)@ gl2)). ™ 2 [, ? (8)

[We assume that (1/2) Ir, (1/DY(P)Y(x, 2/p) dp is
holomorphic bounded in the open disk !z"!| <1 so that
from a well-known theorem’ the radial limit exist. ]
Now the question is: What does the equality (8) mean?

Jury® has proved Theorem I when f(z) is a meromorphic
function and the integral along C zero. He has also given,

ImZ

} A7e

o Iy r
- =~ -4
4 e N
N
// -~ \\ / d \
A6 ||| ) / \
' ° g Y2 ’ =L >
/ e | 0 7] Mg
\ / \ /‘?e z
\ \ //
A — \\ ,
S - 4
FIG. 2. The Chebyschev, Legendre, and Gegenbauer
polynomials, FIG. 3. The Laguerre polynomials.
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FIG. 4. The Hermite polynomials.

Before answering, we have a look at orthonormal series
expansions in distribution theory but first we give in
Table I the Borel transform of the most used families
of polynomials and Figs. 1 to 4 show the contour

T, of definition (1). T is the same for Chebyschev,
Legendre, Gegenbauer polynomials while for Laguerre
polynomials I" is such that one can reach the point I only
along the real axis; functions y(x, z) are analytic outside
Tforxel.

Zemanian® seems to be the first to have studied the
expansion of distributions into orthogonal polynomials.
Here, we only give the main results useful later, with-
out demonstration; but the interested reader can find all
the proofs in Zemanian’s monograph.?

He introduces a particular testing function space 4
as the set of functions ¢(x) with the three following
properties:

(1) @(x) is defined, complex valued, continuously dif-
ferentiable on I;

(ii) for each integer %, the quantity a ()
=[ 2| R*p(x)12dx]'/? exists, R being a differential
operator whose eigenvectors are the polynomials zp"(x).
The expression of 4 and the corresponding eigenvalues
A, are also given in Table I,

(iii) for each integer n, k, (R*¢(x), ¥,(x))
=(@(x), R ™, (x)) with (f(x), g(x))=[,f(x)&lx)dx, where
(%) denotes the complex conjugate of g(x).

A is a linear space with the system of seminorms
{a@,}. Equipped with the topology generated by {a,}5, A
becomes a countably multinormed space; it is complete
and therefore a Fréchet space.

Lemma 1: If 94, then o(x)=733 (¢(%), ¥,(x)) §,(x)
where the series converges in 4.

Lemma 2: Let a, denote complex numbers. Then
S a,¥,(x) converges if and only if 35 I,1** |a,|?
converges for every nonnegative integer k.

Lemma 3: 4 is a subspace of L*(I) and E(I) (space of
complex, continuously differentiable functions on I) and

DI Ac E).

Let 4’ be the dual of 4/ and (f(x), ¢(x)) be the number
that f< 4’ assigns to ¢ € 4 [so that, if f € L%(I), then
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(f(x), @xN=(f(x), @(x))]. A’ has the three following
properties:

D EDcAh cp')y
(24 c Ly 4

(8) for each f € 4’, there exists a nonnegative real
integer and a positive constant ¢ such that

(), @) | < c max d@) VoA,

where 7 and ¢ depend on f but not on ¢. Then, Zemanian®
proves the following theorems:

Theorem 2: 1f fc4’, then the series ¥ 5(f(x), ;/;—,,(x))w,,(x)
converges in /4’.

Theorem 3: Let {f,,} be a sequence of complex num-
bers, then 33 f 4,(x) converges in 4’, if and only if
there exists a nonnegative integer ¢ such that
Tasol X, "2€1 1% converges. Furthermore, if 7(x) de-
nofes the sum in 4’ of the series, then f, = (f(x), J"(x)).

For the polynomials in Table I (see the eigenvalues
A,) Theorem 3 gives:

Corollary: 35 f,4,(x) converges in 4’ if and only if
there exists an integer % such that lim__, f,/n*—0.

For trigonometric series, this result was proved by
Schwartz.* From now on, when %0 S ¥,(x) converges in

A’, this is, when (f(x), ¥x) =37 f(#,(x), @(x))for any
¢< A, we write

7L 3 5, 0.

So, the question following relation (8) can be put more
precisely: Under what conditions does

16 2 5 £
belong to 4'?

3. DISTRIBUTIONS AND BOREL SUMMABILITY

First, we introduce the following theorems for

x(x, 2)= B{x,(x)}, that is,
Xol®) = L[ xx,2)2™dz, x<l.
2mi .

(a) If lim_,_ x(x, 2) =x(x,, 2) for every z= I, if there
exists g r—:L(xf") such that |x(x, 2)| < g (2) for every
x<I and z € T; then from Lebesgue’s theorem it follows
that

lim x,(x)= El—f lim y(x,2)z"™*dz, n=0,
x rx, me T Xz,

ImZ
A
NN -
2 3 7z
e
FIG. 5.
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or

B{lum x,(¥}= lim x(x, 2). (9a)
xi=xg xhexg
(b) If [Ix(x,2)z"'|dz is bounded for almost every
xel, if [, dx [ 1x(%, 2)2™"| dx is also bounded, then
Fubini’s theorem implies

J\xn(x)dxzz%fdz z"'lfx(x, z) dx;
I T I

that is

B xx) dx}= [ x(x,2) dx. (9b)

(c) If for every x<1I, x(x, 2)2™! is summable on T, if
for every z = I', x{x, 2) is differentiable, and if there
exists gn(2) € L}(I") such that 13x(x, 2)[9x| < g for every
x=1I and every z= T, then

M_l_f 9
r

e n-1
o = 3m po x(x, 2) 2"t dz,

that is,

8{5%5)(,.(")}: :987 X(x, Z). (gc)

Remark 1: Since T is arbitrary in the analytic domain
Q of x(x, 2), the conditions which make valid the three
previous theorems are to be fulfilled for any T in Q.

Remark 2: If we consider x(x, z) £(x) instead of y(x, z).
relation (9b) gives [it is assumed that x(x, z) E(x) satis-
fies all the necessary conditions] the following relation,
useful later:

BLS x ) B dxb= [ x(x, 2) Ex) dx.

Let us now consider

(9d)

x(¥)=1lim x(x, 2) and x,(x¥)=1lim S x(x, 2).
£+l gkl IX

Lemma 4: If |x(x,2)| and 1(9/9%)x(x, 2)! are bounded
by some integrable functions on I when z — 1, then
X1{%) =(3/3x)x(x) in 4.

Indeed, for every @< 4

f P(x)xy(x) dx = f ¢(x) lim %x(x,Z)dx
I I

== [ <p’(x)lim X(x,z)dx,
I w1

since from the assumptions one may exchange limit and
integration.

Corollary: Any B-summable series satisfying the
conditions of Lemma 4 can be differentiated term by
term in 4’ if the derived series is B-summable. In fact,
we have

x(¥)=1im 25 x,(¥) 27", x,(x)=lim X x/(x)z™"
gkl 0 gkl ¢

[in this last case provided that relation (9¢) holds] and
from Lemma 4 y,(x) =x"(x).

We now discuss the consequences of relation (9d). For
121 >0, o=supl-, V| f,p,x),f(2) ®y(x, 2z) has the power
series expansion 33 f,¢,(x) 2°", so that from (9d) it
follows that
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2 L0 0,0 = [ F@0 e, 2)T00 5
0 “n I
that is, since (P, (x), Yn(%))=38,nm
sz ] F£(2) © x, 2) §,(x) dx
I
and

fo=1im [ £(2) @ ¥lx, 2) Y,(x) dx.

Now if (i) | f(2)® ¥(x, 2)| is bounded by an integrable
function on I when z 1, then from the Lebesgue theorem

fn:fl ljfﬁf(z)@¢(x,2)$"(x)dx=flf(x)ﬂin(x)dx;

(10)
(i1) 35 f? converges, then from the Riesz—Fisher
theorem
2 0 2" £
(1]
and
fo= [, fx) b %) dx. (10%)

The comparison between (10) and (10’) gives f,(x) = f{x),
S0 we can state:

Theorvem 4: If conditions (i), (ii) hold, then
Z [0 flx)e LAD.

Remark: In the following, we use the fact that the
generalized differential operator Q' on 4’ defined
through the relationship (f, R¢) =(R’ f, @) satisfies
R =R’ (see Ref. 3).

Using Zemanian’s theorem that a necessary and suf-
ficient condition for f to belong to 4’ is that there exists
some nonnegative integer k& and g< L2%(I) such that
S =R+ 0 Co¥, where the c, denote complex con-
stants, we can state:

Theorem 4': If
FEOET £,
and
Flx)=R*glx) +l§0 c, ¥%), geL¥D),

then f(x)= 4’ and from Theorem 2
Fa=(f (), DD,
Theovem 5: If f(x)2 35 f,4,(x) and Eq. (11) holds,
then f = 4.

Indeed, Eq. (11) defines f(x) as a continuous linear
functional on the linear subspace ,2] of 4: 4
={¢(x):¢(x)=3¥a, ¢ (%)} so by the Hahn—Banach
theorem, f can be extended onto all of 4.

Theorem 6: If

(11

fn 2 Z o b,)
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with
Lo =A%), P (2],
then

’

f (x)é{ ().

From Theorem 3 f,=(f(x), ¥,(x)) and from Theorem 5
Hilx)e A4', so

7@ =A@ S G - £, 3000 8,)

4 Z (7, T = A, Tl )
=0.

Theorem 6 does not imply f(x)=f,(x), an interesting
counter example is given in Sec. 4.

Let us now give some examples, considering first
trigonometric series. The Borel transforms of {e‘™},
{cosnb}, {sinn6}are given in Table I and, besides, we
have

1 4
B{;z— cosn@}_log (2% -2z cos8+1)*72 ’

iné
3{1 sinne}ze +arctan —om , 6>0,
n zZ - cosé
(1+z2)cose 2z]
Bin °°S”9}‘ Z%zcosf+ 17
. __ z(2*-1)sind
Bin sinné}= (22 =2z cosf + 1Y
It follows at once for — 7 <6<t that
= 6
;} cosné log siné — log 2, Z sinné=1 cotan 3
=, -1
6E ———
2ineosnd= T o (122)
= smn@ 7 0 B 1 = . B
> —= 3" 3 > cosnbE2-L 3 nsinnd20. (12b)
1 1 1

These series divide into two classes according
whether f(6) is periodic (first line) or not (second line).
In this last case, the sum in the left-hand side is not
7(6), but rather a periodic distribution f(68) which co-
incides with f£(8) in the period (- 7, 7). In the previous
examples, it is easy to obtain f(6):

T g

r_Z, —7<6<
= sinnd s » 2 2 e
nEE )=

g——g—mw, (2m - 1)< 6<(2m + )m;
that is,

(2m - D)}

smnesﬂ 0 =
7‘ ” 5—2-n§,H{9-

1924 J. Math. Phys., Vol. 16, No. 9, September 1975

+11:0§, H{(2m - 1)1 - 6} (12a")

where H(6) is the Heaviside function. Taking the deriva-
tive term by term of this expression gives, according to
the corollary of Lemma 4,
by cosnbZ - 1 +175,,(6) (12b%)
with 5,,(6) =737, 6(8+ 2rm) where § is the Dirac distri-
bution. In the same way, with 6;,(8) =(5/98)5,,(6),
7. nsinnd =7 5,(6). (12¢")
1
Relations (12b) and (12') differ by some linear combina-
tions of Dirac distribution and of its derivatives at the
ends of the interval 1. More important, with (12’) but

not with (12]2), relation (11) is valid, so that from
Theorem 5 f(6)< 4’ but not £(6).

We generalize this result: Since f(x) is defined only
on the open interval I, one can always consider an ar-
bitrary linear combination of f(x) and of Dirac distri-
bution and its derivatives at the ends of /. From now
on we call Borel sum this particular combination f(x)
when it exists which makes relation (11) valid, so that
from Theorem 5 f(x)= 4’. Not any B-summable series

FR Zf 0,%)

can satisfy (11), for instance, if f, does not fulfill con-
ditions of Theorem 3.

It is trivial to show that for expansions (12a), relation
(11) holds. For instance, from

«© I} -1
B _ s 2 Y
2 <4sm 2) s

2. ncosnd=

it follows that (where f. p. means “finite part”)

4sm‘(9/2) ’ cosn@)

)

= » [’
" < 4sin (9/2) cosn > (
. {1 7 cosn8 1
:'15‘.%‘(2 [ T-coss ¢ — 7
In the same way,

cos/2

S B__l_____
Lnsinl= - 7 Sise /s

leads to

= (-

T s
:—1im(lf cos(8/2) sinné dG—E).
e \2 J, 1- cosb €

Let us now give some results using Legendre poly-

nomials. From the Borel transform of {P (cos6)} in
Table I and from the following equality *:2 g{ny,(x)}

= —2(9/92) ¥(x, z) we obtain for x=cosbf=(~1,1)

1 cos(8/2) ’ sinn@):f.p ( 1 cos(6/2)

Z Sin3(9/2) - 4 sinS(e/z) ’ Sinne)
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- B_ __1____ = g _L s
F Pila= Bi=7) D IP) 2v2(T = %)

T (2 + 1) P E0;

but to make (11) valid, these relations have to be
changed into

=~ B 1 - B -
PME L —, TP WE——— +5(1-2),
PSR s Y

é (21+1)P(x) =2 5(1 - x).

To sum up, if the Borel sum is correctly defined at
the ends of the interval, that is, provided that Eq.
(11) can be satisfied, two different B-summable series
3% fata(x) have different limits which belong to 4’.

4. APPLICATION

Zemanian® has given many applications of the distri-
bution theory in 4’ for solving some partial differential
equations. Here we intend to give an application with a
view to solve an ambiguity in the physical theory of
scattering.

First we look for the Borel transform of the sequence
of hypergeometric functions {,F,(-1, 2ia, 1+ia;1)}
where [ is a nonnegative integer and « an arbitrary real
number. Using the gamma function (Ref. 5, p. 67), one
gets ) )

. , Tl+ia)I(l+1-ia
JFi(~1, 2ia, 1+ia; 1)= T1—ia)TU¥1+ia)’

so that the relation I'(1 + z) = 2I(z) leads to

d . N L 1-ia (1-ia)2-ia)
2..Fi(=1, 2ia, 1+ie; 1) p=1+ 5 (A+ia)2+ia)
VL
z!

=,F(1-ia, 1+ia;t) (Ref. 5, p.248)

where [1F1] is the confluent hypergeometric function.
But in the Borel’s polygon of summability, we have!

BlFi(-1, 2ia, 1+ia; 1)}
= [ et \F1-ia, 1+ia; t/2)dt

=.Fll-ia, 1, 1+ia; 2?), |z|>1

(Ref. 5, p.269).

The analytic continuation of this result is obtained
through the two relations (Ref. 5, pp. 59, 104)

1 1 1
c(l - ;) 2F,(a, b, c; ;) - czFléz,b- 1,¢; -z—) +

XzFI(a, b,c+1; -;—) =0,

cC—a

1

I(c) f21(1 — f)cs-t

2}1(1,b,c;%) T HaTc-a) J

t ]
x(l—;) dt, Rea>0, Re(c-a)>0,
with a=1-ia, b=1, c=1+ia, so that, finally
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BlFy(-1, 2%ia, 1+ia;1)}
1 ( 2ia
T z-1\* " (1+ia)B(1-ia,1+2%a)

[ e o)

This function is analytic in the complex plane cut along
(0,1). Using (13), it is easy to verify relation (1) on the
contour of the Fig. 5. Let us notice that Eq. (13) yields
the known result (Ref. 5, p. 86)

£ 11 = 1)y

1-1/z (13)

2 oIy (=~1,2ia,1+1ia;1) B ia(2ia - 1),
[¢]

With this previous result and the Borel transform of
{P(cos6)} (Table I), we prove in the Appendix the
following equality:

B2l +1),F,(~1,2a,1+ia;1)P,(cos)}
e t-ia(l - t)ﬁzia-l
- 151331 rda) ,/01 (1~ 2t cosb + £2/22)*/2
where ¢ is a small positive number and

I(1+e+ia)
I(1-io)T(e+ 2ia)

2
(1 - ?'_)dt

A(a)=

Exchanging lim,,, and integration, since the absolute
value of the integrand is bounded on (0, 1) for z -1, leads
to

%} (21 +1),F\(~1,2ia,1+ia;1) P,(cosb)

1 teio(1 = f)eezia-1(] - 2)
(1-2tcos@+ 2)3/2

= lim 2 () dt.

€0

(14)

In the Appendix it is also proved that relation (11)
holds in the form

(=120, 1+ia;1)

1
:}iprgx A (a)f. p. f P(cosb)d cosb

-1

1 4ig — f)erio=1 1 _ 42
xft (A-feiet1-8)

) (1-2tcosf+ 12)*/2
So the right-hand side of (14) belongs to 4.
We now prove that we also have

= (21+1)
=

oFy(=1,2ia,1+ia; 1) P (cosb)

(15)

From Theorem 3, convergence can only be in 4’, so
that Eq. (15) holds if

A 22{_0; (1= cosé)it,

. 1
2F1(-z,2ia,1+ia;1)=§?f7f.p.f (1 - cos@)ia-t
-1

X P (cosb) d(cos#). (186)
Now equality (16) is trivial for /=0, I/, and we prove
that if it is true for I -1, 1, it also holds for I +I. In-
deed, from (16) and from the well-known relation
(x=cos®b)
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2l+1x l

Pral)= 777 “I+1

P (x),

we deduce (writing to simplify in the left-hand side
I (-1-1,2ia, 1+ia;1) instead of

ia ) !
1 f.p.
-1

that
F(-1-1,2a0,1+ia;1)

_2+1 . . l
= l+1 1(-—l,21,cx,1+1,a, 1)—-—l+—1

(1-cosb)t*t P, (cosb)dcoss)

X, Fi(=1+1,2%a,1+ia;1)

20+1 ia [*
_TF—I—Z_“"—‘/I (1—x)‘°‘P,(x)dx.

The last term can be written in the form

2l+1 2ice . )
“7+1 1+ia Fi(=1,2(1 +ia),2+ia;1)
and thus
A (-1-1,2i0,1+iq;1)
21+ 1 . . !
=T7+1 2F1(—l,21a,1+1a,1)_m
; i v 21+1 2ia
X, F(=1+1,2a,1+ia;1) = e T

X,Fi(=1,2(1 +ia), 2 +ia; 1).

Using gamma functions and the relation I'(1+ z)
=2z I'(2), leads to

Fi(~1-1,2a,1+i0;1)

_TI(1+io) §20+1 T(+1-da) 1 T(-ia)
Tr(1-i@) ) I+1 T({U+1+4a) 1+1 I(l+ia)
2041, . _T(-ia)
T I+1 T +2+ia)

1 Tl+ia) T(+1-ia)
TI+1 T(1-da) T+1+ia)

(2l+1)(lz+l—a —ia) =P+ 2ila-a®+1+ia)

(I-ia)(l+1+ia)

_T(l+ia) T@+1-da) I+1-ia
T T(l-ia) T(I+1+ia) I+1+ia
_T(l+ig) T(+2~-ia)
T I(l1-ia) TI+2+ia)’

This completes the proof.

From (14) and (15), according to Theorem 6, it
follows that

I

(1- cos@)‘“‘lﬁ 11m A (@)

g

1926

2iu

t-ia(l —_ t)e+2lu—1(1 - t2)

T—Zicoser Byprr
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(17)

Now let us come to the physical problem of writing

Eq. (15) in the form
-1 F(l_la)
a(1 - cosé)? Ti+ia)
A’ g'_"‘ < I(l+1~ia) 1y
< -i (]Z(zz+1)———1,(l+1+ ;- Pi(cose).  (15)

Physicists were also to prove that the left-hand side
of (15’) is a solution, in spherical coordinates, for the
scattering amplitude in a Coulomb potential, while the
right-hand side is the solution written as a sum of
spherical harmonics. Erroneously, some of them® in-
ferred the equality of both sides. Moreover, those who
used the Borel summability method were unable to ob-
tain the left-hand side of (15'); the reason why is now
clear: They could have only found the right-hand side of
(14) and from (17) equality holds only in 4’.

5. CONCLUSION

The Borel summability appears as an interesting tool
for obtaining a class of distributions with orthonormal
series expansions. Because of the importance in applied
mathematics and physics of distributions on the one hand
and of orthogonal polynomials on the other hand, one can
think that this method will have more and more
application.

APPENDIX

To simplify computations, we do not use relation (13)
but since ,F,(1-ia,1,1+ia;2™)
=lim,, ,Fy(1-ia,1,1+¢e+ia;z™") where ¢ is an ar-
bitrary small positive number, we can write
(Ref. 5, p. 59)

I{l+e+ia)
(1 -ia){e+ 2ia)

(1 —da, 1, 1+ia; z‘)_hm

f‘l t-ia(l - t)e+2{a-1
| — = dt.

As a first step, let us compute with relation (4) and the
contour T of Fig. 2 ¢(2)= B{,F.(-1, 2ia, 1 +ia; 1)P,(cosh)

Ae(a@) dp
273 (p? - 2p cosB+ 1)/

1
-f - E+2{iq=1
xf———————t 6 ol i dat,
0 1-tz/p
I(l1+e+ia)
I(1 - ia)T(e + 2ia) *

@(z)= hm

r(a)= (A1)

The integral is zero on both circles, so that formally
exchanging integrations in (A1) it follows that

<p(z)—_—1im 7\5(01) fl t'i“(l— t)ewzia-l ¢(t Z)dt
€-0 2 o ’ i

109 dy 1
Wt 2)=2 '[:m (Sin?8 — y2)i 72 (1 —(t/z)(cosf + iy)

1
* 1-(t/z)(cosb - iy)) :
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This last integration is trivial:

2 -1/2
wt, z)=21r(1 - ?t cosfd + t;;) ,

so
! fia(] — f)e2iant
(2) =lim M(@) Jo- (1-(t/2) cosb + 7 /2% /2 dt.

(A2)

To prove that ¢(2) is actually the Borel transform of
{sFi(=1,2ia, 1+ia;1)P (cosb)}, Eq. (1) has to be
verified; that is,

oFi(=1,2ia, 1+ia; 1) P(cosb)

—1im L 1
_151}51 97 ke(a)‘/r‘ zht dz

1
tia(1 = f)erie-t
2[
X"L (1-(2t/z) cosf + £2/22)172 dt. (A29)
But equality (A2’) is evident; just compute the residue at
infinity with

2f t2 )-1/2 © tl
(1 - —cosb+ — = %} P(cosb) —
L

for <1

and the definition of the beta function.
As a second step, we obtain
B{l ;Fy(=1,2ia, 1+ia;1)P,(cosd)} using the relation!s2
B{nf,}=- 2(d/dz)f(2):
B{l.Fy(=1,2ia,1+ia;1) P (cosb)}

1 ~faf] o $)E2ia-1
=ﬁm_,\e(a)z_d_/ tia(1 - 1)
€=0 dz o

(1= (2t/2) cosb + ££/22)172 dt

—1i Xe(a) 1 $#- ia(l - 9)e+2ia-1
- elgl z A (1-(2t/2) cosd + 12 /2%)3/2

X(cos@— t;) dt. (A3)
Finally, relations (A2) and (A3) lead to the result
BY21+1),F(-1,2a,1+ia;1)P,(cosb)}

. 1 t—ia(l - t)eqaia-l(l - t2/22)
- lel.rgl M(a) jo. (1= (2t/z) cos+ £2/2°)372 dt,  (A4)

which, since (A4) is continuous for z2=1 and {= (0, 1),
gives

2 (21 +1),Fy (=1, 2ia, 1 +ia; 1)P,(cosé)
0
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t'“‘(l - t)"”“'l(l - tz)
(1~ 2tcosf+ 2)8/2

1
2 1im A (@) f dt. (A5)
€0 iy
Let us now look for condition (11), which gives
Fy(=1,%a, 1+ia;1)
1
=lim A (a) f
€~0

0

t'i“(l — t)eeia-l(l - t2)
(1-2tcosf+ £)372

dt, P{cos®)

1
=1§? he(a)f.p.f P,(cos) a(cosb)

-1

1
rie(1 — g)srteni(y - 2)
x[ (1-2tcosf+ )/ dt

and from Fubini’s theorem
Fu(~1, 2, 1+ia;1)

1
=1im A (a) (1 = f)eriel (1~ 2)dt
€+0

20
1
X [
-1

This equality is then a consequence of the following
relation easy to prove:

[‘ Px)dx 2t
-1

P,(cosb) d(cos8) )
(1~ 2tcosd + £)*/?

(1=2tx+£)372 " 1-F£ °

Note added in proof: Dr. L. Marquez has made me
aware of J. R. Taylor’s work, “A new rigourous ap-
proach to Coulomb scattering” [Nuovo Cimento B 23,
313 (1974)] in which similar conclusions are obtained.
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Small energy denominators in interacting quantum systems:

Bound states
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A perturbative method is developed for calculating bound states of interacting quantum systems,
which is based on an analysis of terms with small energy denominators. An iterative scheme is
formulated in a systematic manner which eliminates small energy denominators completely. The
method is applied to the ¢* model of interacting bosons. The zeroth order solution of the equation
of motion differs significantly from the usual free solution, and satisfies a different equation, the
determining or bifurcation equation. The additional information contained in this zeroth

approximation is used to calculate properties of bound states.

1. INTRODUCTION

The equations of motion of interacting quantum-me-
chanical system are given as nonlinear differential equa-
tions, whose solutions are operator-valued (i.e., g-
number) functions of the space—~time variables. Although
much attention is given to the operator aspects of the
problem, somewhat less emphasis is focused on the non-
linearity. This is further complicated in field theory by
the fact that the solutions are not actual g-number func-
tions, but rather distributions (generalized functions),
in which case the nonlinear terms may not be well
defined.

The basic tools employed in the calculations of such
systems are the diagrammatic methods, which are
based on the standard method of successive approxima-
tions, perturbation theory involving straightforward ex-
pansion in a coupling parameter. Such procedures are
closely related to the classical method of Picard for
treating (c-number) differential equations. In that con-
text the method is used not so much to determine solu-
tions, but more often to provide proofs of existence of
solutions, and as a means of calculating approximations.
However, the approximations obtained by straightfor-
ward perturbation theory (to a given order) are often
qualitatively, as well as quantitatively, poor, even when
the full expansion, including all orders in the coupling
parameter, is known to converge. For example, ap-
proximations to solutions of equations which can be
proved to be periodic in the time variable are found to
be nonperiodic, and blow up at large times. Such prob-
lems are referred to as secular behavior of the approxi-
mation. ! Modified versions of perturbation theory dif-
fering from standard perturbation theory have been de-
vised to eliminate such difficulties. Examples are the
classical methods of Lindstedt and Poincaré, and those
workers following them.? It is interesting that certain
of these procedures resemble methods of renormaliza-
tion theory as used in the many-body problem and quan-
tum field theory. ?

When the solution of a nonlinear equation is Fourier
transformed with respect to the time variable, into a
frequency variable or if Z#=1 an energy variable, the oc-
currence of secular behavior shows up as a resonance
phenomenon wherein a fundamental mode (or oscillator)
is driven at, or near, its bare frequency by the non-
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linearity. This feedback resonance mechanism mani-
fests itself as the problem of terms with small (or
vanishing) energy denominators in the perturbative solu-
tion. ™ Such terms must be treated with special care.
Indeed it is these terms which give rise to significant
physical effects in a given order of perturbation theory,
since the other terms can be transformed away (by a
canonical transformation) to that order.

The diagrammatic methods deal with the problem of
small denominators by use of adiabatic switching (i. e.,
by placing ie in the denominators. ) The implications of
adiabatic switching are sometimes sufficiently clear for
transient interactions, so that its consequences can be
handled by minor modifications, as in the formalism of
scattering theory. However, in problems involving
persistent effects occurring on a longer time scale,’
adiabatic switching gives rise to incorrect results. For
example, phenomena such as bound states and super-
conductivity are not exhibited in adiabatically switched
systems. In such systems the small energydenomina-
tors lead to physical effects which are lost by adiabatic
switching.

In this paper a version of perturbation theory is
developed, which carefully treats the small energy
denominators in the context of the ¢* model of quantum
field theory. The method which is presented describes
persistent phenomena such as binding of particles.

The method is formulated in the Hilbert space of al-
most periodic functions® (in time), and the problem of
small denominators is related to the unboundedness of
the inverse of the differential wave operator in this
space. The basic idea is that in finding approximate
solutions for nonlinear differential equations, by a
method of successive approximations, only certain
zeroth order approximations can be used. The standard
zeroth order approximation leads to (secular) behavior
in time, which is inconsistent with the behavior that
must be shown by the exact solution. The new method
involves finding a suitable zeroth approximation as the
solution of a bifurcation® or determining equation. 1°

In previous work on the ¢* model, ** a brute force
method, which was called quasisecular perturbation
theory, was developed for correcting the inconsistent
time dependence of the standard first-order perturbative
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solution. This corrected solution was applied to the
study of the bound state problem in one, two, and three
space dimensions. !?

The present method is not only a justification of the
previous heuristic work; it gives a general technique
which can be applied to other systems, and furthermore
provides a systematic way to go to higher orders in the
coupling parameter. In addition, it helps to resolve the
issue of characterizing how small a small denominator
must be. 52! Finally, the present method embodies
relativistic invariance for the ¢* model.

In Secs. 2 and 3 the model and the method are intro-
duced. The determining equation is derived and in-
vestigated in Secs. 3 and 4. It is used in the construc-
tion of one and two particle states in Sec. 5. These
states are set up injust such a way that the determining
equations are satisfied on them. Particular attention is
directed at the two-particle states of energy E=2m

—E, (E; >0 and small) which correspond to bound states.

An eigenvalue equation for the energy of the bound state
is developed in Sec. 5 and analyzed in Sec. 6. The
bound state energies are evaluated for the cases of one
and two space dimensions.

The results agree with those obtained with the quasi-
secular perturbative scheme. ! An s-wave bound state
appears for arbitrarily weak coupling (of the right sign)
in both one and two space dimensions, but in three space
dimensions the bound state emerges only for couplings
well beyond the range of validity of any perturbative
method.

We note that this paper is not intended to be a contri-
bution to the extensive and profound literature on the
¢* model of quantum field theory. It is offered as an at-
tempt at developing new calculational procedures for
use in problems involving infinitely many degrees of
freedom. The ¢* model is treated because of its relative
simplicity. The method should be applicable to a variety
of other quantum systems in connection with phenomena
occurring on long time scales.

2. THE MODEL

The model considered here is based on the field equa-
tion

(2.1)

where O is the differential wave operator 92/ — V2 in
N=1, 2, or 3 space dimensions (Z#=c=1), A the dimen-
sionless coupling parameter which is taken to be posi-
tive, and the field ¢ is real in the sense ¢*=¢. The
symbol : : denoting normal ordering is explained below
in the context of this work. In order to effect stability **
the right-hand side of this equation can be augmented by
a term such as $3*m*2¥¢% This order A? term is not
explicitly carried in the following. Vector symbols on
coordinates x and momenta % are not indicated explicitly.

(T +m?) g(t, ) =Am> Ve (t, ) = 2 G(L, ),

In addition, the field is subject to the canonical com-
mutation relations

[o(t, x), olt, x)]=[(3/38)¢(t, %), (3/at)e(t, x")]=0,
(2. 2a)

1929 J. Math. Phys., Vol. 16, No. 9, September 1975

(o2, x), (3/3t)p(t, x"Y] =i 5(x = x"). (2. 2b)

The field is handled in a box of volume V and can be
written in the form

olt, x) =V 27 ay(t) explik - x),
k

where the sum is taken over all allowed momenta for
the periodicity box of volume V. The Fourier amplitudes
satisfy the equations

(2.3)

- 2. _y pel . .
a,+wia,=\,V g’) Opuprqer Bp Qo 1,

where the overhead dots indicate time derivatives and

wi=m?+ k.

It is to be expected that the time dependence of a, (or
its matrix elements) is a linear combination of various
discrete frequencies since the system is in a finite box.
Thus a, has the time dependence of an almost periodic
function. 8

We will need only a few properties of almost periodic
functions. The continuous almost periodic functions
form a vector space in which an inner product

(f,8)=lim (1/T) [T Fx(t gt at

can be defined. The resulting inner-product space is
not complete, but can be formally completed by the
standard metrical completion process® to give a non-
separable Hilbert space %. The set of exponential func-
tions {exp(—i0t)Io= R} (where R is the set of real num-
bers) is an uncountable orthonormal basis for . Thus
an element fc ¥ can be represented by a series ()
=3 .= @,Xp(~i0t), where only a denumerable number
of the @, can be nonvanishing since 3 ,la,|2 <, Thus
an alternative way of writing f in this basis is

f(t) = Z:sl aa n) exP[- io'(n)t].

The significance of the space of almost periodic func-
tions ¥ in the following is that the differential operator
L,=d?/df*+ w,* is self-adjoint (more precisely, it has
a self-adjoint extension) in ¥.

We close this section with a remark on the time de-
pendence of operators. Let {| e,, 7)} be a (complete)
basis of energy eigenstates with energy e, and ¥ rep-
resenting the other eigenvalues of a complete commuting
set. If A(f) is a Heisenberg picture operator, then we
can write

Ay=2 @ exp[-i(e, - ¢e,)t]

enem ¥
X |e,v) (e, AO)]|e,,v")e,,v'|
=2 expl-iot) 2 25 (e, 7| AO)| e, + 0,7

xle,vXe,+0,v|.

The state |e,+ 0, ') is taken to be zero if e, + ¢ does
not correspond to an energy eigenvalue. Therefore, A{f)
can be represented on the exponential basis of % as
A(t)=3, exp(-iot) A(0). If le,y”) is an energy eigen-
state, then the state A(o0)|e, "), if it is nonvanishing, is
also an energy eigenstate but with energy e - 0. For ¢
positive, A(0) lowers the energy by o, and, for o nega-
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tive, fi(o) raises the energy by | 0|, provided the re-
sulting state is nonzero. If a state of lowest energy
exists, then the positive frequency part of any Heisen-
berg operator maps that state into zero. When we fix
the energy scale so that the lowest energy state has
zero energy, the energy of states obtained by operating
on it with a product of negative energy parts of Heisen-
berg operators can be read off by adding the arguments
o of the operators A(¢) and multiplying by minus one.

The normal ordering symbol requires that all positive
frequency (energy) quantities appearing within it must
appear to the right of all negative frequency quantities,
with the ordering of factors of the same sign of frequen-~
cy being otherwise unaffected.

3. THE METHOD

Our aim in this section is to set up a perturbative
procedure for treating Eq. (2.3). The major problem
with the standard perturbative procedure based on an
expansion of the form a,=7,A™a,™ is the fact that the
restricted inverse of L,, denoted by L,™, is unbounded
on the orthogonal complement of the null space of L,.
Restricted inverse refers to the inverse of L, considered
as a mapping from the orthogonal complement of its
null space onto its range. As a consequence the higher
order terms which should be getting smaller need not.
We have examined consequences of this behavior in
work on the quasisecular perturbation method ****? in
which a brute force procedure was proposed for dealing
with the small denominators which give rise to the
quasisecularity or unboundedness. The procedure there
was based on the connection between small and zero
denominators on the one hand and quasisecularity and
secularity on the other. The quasisecular behavior is
handled in the standard texts on periodic behavior in
nonlinear systems.?!

The perturbative procedure developed here is unlike
the method given in the standard applied mathematics
texts on oscillating motion, but it does resemble a
procedure given by Hale !° for the study of periodic os-
cillations.

The first step involves writing L . in the spectral form,
L,=3,cr (Wi-p®) P,, where P, is the orthogonal projec-
tion defined by P, exp(-i0f) =5, , exp(— ipt). Then L,
can be partitioned into L ,=L%+S, (where L} has a
bounded restricted inverse)

L= (Wi -p%)P,, (3.1a)
[ Nk
S,= w? ~ pA)P
2 Pé)Nk( 2~ PP,
. (Wi =-p° 3 (3.1b)
=\, 2 (——"X—E—l P,=x,S,,
aENk N

using the index set N,={p< Rl |p? - 03| (\m?}. Eq. (2.3)
can be rewritten as
Lia,;k,,(V‘l ,% B nrpeger a,aqa,-gkak) =, F(a). (3.2)

Each term in the spectral representation of S, is of
order ) (the dimensionless coupling parameter); hence
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both terms on the right-hand side of Eq. (3. 2) are of
order A.

Equation (3. 2) cannot be used, as it stands, in a
perturbative or iterative treatment. Such a procedure
would involve the family of equations

Lya{) =\ Fy(a™), 7=0,1,2, -, (3.3)

where the ai’’ are solutions of the homogeneous equa-
tion. For this family of equations to be meaningful, at
each iteration step, F,(a‘’) must be in the range of the
linear mapping L9, for otherwise the resulting equation
is not solvable. This is known as the solvability con-
dition. Since, for a self-adjoint operator, the range is
the orthogonal complement of the null space, Fk(a"")
must therefore be within the orthogonal complement of
the null space of L.

It is possible to set up a meaningful iteration proce-
dure. Using @,=7 ,c NkP,, the orthogonal projection on
the null space of LY, we can write Eq. (3.2) as

LY a, =2l = @,)F (a) + 1 ,Q F(a).
The pair of equations

Lla,=x I ~Q)FJ a),

Qka(a) =0

(3. 4a)
(3. 4b)

is then equivalent to Eq. (3. 2). Clearly any solution of
Eq. (3.2) satisfies Eq. (3.4b). Equation (3. 4a) can be
iterated without difficulty since the projection (/ -Q,)
guarantees that the solvability condition is satisfied at
every stage of the iteration procedure given by
LSa, ™D =x (I - Q)F (a'™). (3.5)

If the new iteration scheme is terminated at nth order
to obtain an (n + 1)th order approximation, the question
arises as to whether or not the resulting approximation
is an (n+ 1)th order approximation of the original Eq.
(3.2). We can answer affirmatively if at each stage of
the iteration procedure Eq. (3. 4b) is satisfied,
Q,F{a¥=0, j=0,1,..., n for then Eq. (3.4a) is
identical with Eq. (3.2).

However, not every homogeneous solution may be
used as a zeroth order iterate. Only those homogeneous
solutions, for which Eq. (3.4b) is satisfied at every
stage of the iteration procedure, are suitable candidates
for zeroth order iterates. Thus Eq. (3.4b) plays the
role of a determining (or bifurcation) equation. °

If the determining equation is satisfied, the iteration
procedure of Eq. (3. 3) will satisfy the solvability con-
dition at each stage, and the iteration according to
Eq. (3.4a) is the same as the iteration according to
Eq. (3.3).

It is worth noting that violations of the solvability con-
dition are responsible for such additional problems as
secular behavior (unphysical behavior of solutions as
functions of time), where solutions are obtained outside
the domain of definitions of the linear operator involved.
Many versions of perturbation theory are (or can be)
based on satisfying a solvability condition as a means
for determining parameters such as eigenvalues. °
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Equation (3. 4a) can be put into the “integral” form
using the restricted inverse of L%

aty=hf()+xr, é} (w?-p?)y P,F (a). (3.6)
o ENg

The (I - Q,) factor is taken care of by the summation

condition p# N,. The term k() is a solution of the

homogeneous equation L3k, =0 and can therefore be

represented in the form k() =J .= y, hP) exp(— ipt).

The iteration scheme written out in integral form is

a™ V() =h () + 2 (w2 -p?rP, F (a'"), (3.7a)
k K L k o A
L4 k

a,® (D) =h(1). (3.7)
The zeroth order iterate %, is found using the deter-
mining equation. We note that for each n, a;™'’is, as
the result of the iteration procedure, a function of the
n's.

4. THE DETERMINING EQUATIONS

If an order A™! approximate solution is sought, it
follows that n iterations must be performed and the
solvability condition must be satisfied each time. If &,
is taken in the form k,=7Y ,,,A™k,™’, we need k, to order
A™! (inclusive). Such k, are obtained by introducing the
order A" solutions, a*’ or Eq. (3.5), into Eq. (3.4b)
and solving for the #’s to order A", The solvability
conditions for the first through nth iterations will be
satisfied and, in addition, we obtain %, to order A™! (in-
clusive) for use as the first term on the right-hand side
of Eq. (3.7).

In particular, if a first order in X solution is sought,
we are required to substitute the a’s to order A° (name-
ly a,’=F,) into Eq. (3. 4b) and solve for the h’s to first
order in X, In this case the equation to be solved is

2 7\}1(“’2); -p%) FP,h, = V-le ’Z“ O pprarr hﬂha}lr' (4.1)

PE Ny

The superscript has been omitted from the #’s to keep
the notation more tractable. We note that Eq. (4.1) is
similar to Eq. (2. 3) except for the projection @, and the
restrictions on the frequencies of the k,’s given by
QJi,=h, We are leaving \, on the left side of Eq. (4.1)
to stress that both sides are of zeroth order in the di-
mensionless coupling parameter, thus ruling out the
usual approximation which involves setting A =0 on the
right side.

Using the representation h(t)=3 oy h,(0)exp(—iot),
we can define 4}, the positive and negative frequency
parts of &,:

Bt)= 3 6(c) k(o) exp(~iot)= Y U(0)exp(-iot),
oEN, cEN,

K= X 6(- 0)h(0) exp(~ iot) = Z  V(0)exp(~iot),
veNk u:Nk

where 6(x)=1 for x>0 and 0 for x <0. Since the
(frequency) supports of the (Fourier transformations of
the) 2,*’s are in narrow mass bands [where mass means
the invariant quantity (o — £?)}/2] about m, it follows that
this decomposition is relativistically invariant. The
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determining equation can be replaced by the equation for
the positive frequency parts U,

Ay (W} = p?)U (p)

=3V 20 20 Baup,qur Sovosn Up(O)* U (W)U, (1)

Pqr oy

(4.2)

and its conjugate. The summations are subject to the con-
ditions o, v, u positive and in the N of the corresponding
momentum. The reality condition for the field implies
h:(p)*=h: (= p). The factors have been normally ordered
by placing positive frequency factors (which lower
energies) to the right of negative frequency factors.

Qur objective at this point is to set up the space of
states on which Eq. (4.2) is satisifed.
5. CONSTRUCTION OF ONE- AND TWO-PARTICLE
STATES

In this section we construct one- and two-particle
states and look for two-particle states of energy E which

"is less than the sum of the energies of any two one-

particle states. Such a two-particle state corresponds
to a bound state. The one- and two-particle states are
constructed so that Eq. (4.2) is satisfied on these states.

The vacuum state is taken to be the state of lowest
energy which, by an adjustment of the energy scale has
zero energy. The vacuum state satisfies the condition

U (p)=0 (5.1)

for all 2 and pe N,, with p>0. This follows from the
fact that U, agrees with the positive frequency part of
5,, in the frequency gap region N, and is, therefore, an
energy lowering operator.

We note that Eq. (4. 2) is trivially satisfied on Q. The
conjugate equation applied to & gives
(02 - P Uy(0)* @=0.

The nonvanishing states of the type U,(p)*$ are in-
terpreted as one-particle states. The only nonvanishing
one-particle state of momentum % is of the form

Q) =U (w,)* Q.

(5.2)

(5.3)

Such one-particle states are all of mass m(m?=w? - k%)
even though U,(p)* has support over a range of mass
values.

Now Eq. (4.2) must be satisfied on the one-particle
states Q (k'):

NHwh = pP) U (p) k) =0, (5.4)

The right-hand side vanishes since there are two energy
lowering operators acting on Q(%’). We assume that the
gap determined by N, is small compared to the mass.
This, of course, means that we are dealing with a weak
coupling theory. Actually Eq. (5.4) can be proved even
if we do not assume weak coupling. In that case the
right-hand side differs from zero by a quantity of order
A which does not affect our result to leading order in A.
It follows that U, (p)(k’) =0, unless p=w,. For the case
p=w, we have

U0 )8(R) =20, 5, . 2, (5.5)

assuming that there is a gap about E =0 in the mass
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spectrum (i. e., there are no states whose mass squared
is less than $Am?, other than the vacuum state). The
factor (2w, is introduced for normalization purposes
to insure the validity of the commutation relations Eq.
(2. 2) on the vacuum state Q. See the Appendix for de-
tails.

Finally we apply the conjugate of Eq. (4.2) to Q(k'):
NHwE = p?) U \(p)* (k")
= 3V'1Z Z} 6k'p,q+r6p+u,uw

por ouy

XU (VU (1)U (0)U"). (5.6)

Using Eq. (5. 5) and restricting attention to the case
k'=-Fk gives

AWl = 02U 0)*Q(~ k)
=3Q2WW) T T B0, qur 850 o ULV URDIR.  (5.7)
o o

In terms of the new variable E=p+w,, Eq. (5.7) be-
comes

MHE = 20 U (E - w )*¥U_[w,)*Q
== 32w EVY' U (E-w,)*U_[(w)*Q.

(5.8)

Note that the states involved on both sides of this
equation have momentum zero and energy E. We con-
sider linear combinations of these states to get an eigen-
value equation for the energy E:

Zk)' FATE =20 U (E - w )*U_[(w,)*Q
= =30 fl2w,EVY Y U(E-w)* U_(w)*Q. (5.9)
R r

The primes on the 2 summations indicate that, for fixed
E, kis restricted according to the frequency support
condition (E — w,) & N,. The corresponding condition ap-
plies to the ¥ summation where & is replaced everywhere
by 7. Equation (5. 9) can be rewritten as

T f HE - 20,) + 32,) "f (20,EV)]
U (E—w)*U_ (w)*2=0, (5.10)

from which we obtain the eigenvalue equation to be
satisfied by E and f:

NHE = 20)f, = =32 (20, EV) 60um® - |(E - w,f - 0,%|)f,-

(5.11)

In the next section we look for solutions of this equation
subject to the condition E < 2m, corresponding to the
requirement that the rest energy of a bound state is less
than the rest energy of its constituent particles, in this
case 2m.

6. BOUND STATE CALCULATION

Equation (5. 12) resembles the eigenvalue equation
obtained using the quasisecular approximation proce-
dure in first order to determine a bound state.*?

Equation (4. 2) of that paper can be rewritten in the
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notation of this paper as
(E-2w)g,=~ (3)\N/4V)Zk] (ww)80m -2 |w, - w,]) g,

(6.1)

The approximate bound state energies E,=2m - E
found in that paper for the cases N=1, 2, 3 (corre-
sponding to 1, 2, and 3 space dimensions) are of order
A or higher order in A. We look for approximate solu-
tions of the same form for Eq. (5.11).

Solutions of this form can be obtained from Eq. (5.11)
by replacing E on the right-hand side by 2m to get the
approximate equation

(E-2w)f, =- (3>\N/4V)hZ (mw,) ™ 6(am —4|m - wkl)f,,.

(6.2)

Since w, and w, differ from m by terms of order X, both
can be replaced by their nonrelativistic approximations
to give
(E +m | 12)f, = (3N ,/aVm) D w,* 8(3am® ~ [k|?)f,
k
(6.3)

We define x =V 3w, 6(z3m* — | k1) f, and express
Eq. (6.3) in the form f,=(3x ,/4m) (E, +m™|1|?)'x. By
substituting this expression for f, into the definition of
X, we obtain the eigenvalue condition

(3xN/4Vm)§ W HE 5+ m |k [2YY 0(3am® - |k]|?)=1. (6.4)
It is clear that this equation can only have a solution E ,
for A, positive.

In the case of one space dimension we can pass to the
infinite volume limit of Eq. (6. 4) to obtain the equation

f””uz’" dk (mE @ + k2" = dmm /3.
This gives the transcendental equation
(m E ;2N 2 tan"t (vm /2E PV /2 =47 /3am,
where A is the dimensionless coupling parameter. In the

weak coupling limit tan™(Am /2E ;*’)*/2— 37 and the
lowest order contribution to EJ'’ is

E{'=(3r/8ym.

For the case of two space dimensions we again pass to
the infinite volume limit of Eq. (6.4) and get

a2t/ 2,
(M akk(mE, @ + |k|2y = 81/3,

]

which leads to
E@ = {xm exp(— 167/3))

for weak coupling. These results agree with those of the
previous work. 2

In the case of three space dimensions the bound state
occurs only for strong coupling (x> 8. 5) which is well
beyond the range of validity of our procedure.
APPENDIX

In the Appendix we show that the normalization of the
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one-particle states is given by

||U,,(wk)*9" =(2wh)-1/2. (Al)
The commutation relations

[ak(t), hl(t)]':ibk,-p (A2a)

lay8), a,(t)]=[ayt), a,(t)]=0 (A2b)

follow from those for the field equations (2.2). The
first order approximations 4!’ must satisfy these
commutation relations with an error of order A2 at the

most.

To determine the normalization of the one-particle
states, we need only the vacuum expectation value of
Eq. (A.2a):

(@, [a, (1), a,2X)]Q)=15,_, +O(?).

Simplifying the notation, we drop the superscript (1),
but the reader should keep in mind in the following that
we are dealing with the first order approximation. We
rewrite Eq. (A3) as

(ay(*Q, ay()Q) - (a;(1)*Q, a()R)=ib, _,+O(r?).

Note that the positive frequency parts map @ into zero.
Taking #=-1! and using the reality condition, we obtain
from Eq. (A2)

T 20(a3(0)* 2, ai(p)*Q) =1+ 0(?). (A4)

Introducing
a(p)* =Up)* + X (Wl - ) (I ~ Q YP) F\(h)*

into Eq. (A4) gives zeroth, first, and second order
terms in . Here P¢ indicates that after projecting with
P,, tis set to zero. The zeroth order term is

2w U (w)* R, Ufw,)*Q),

where we have used the result following from Eq. (5.2)
that only mass-m one-particle states occur. Concerning
the first order terms, these appear with fz;(p)* acting
on £ on one side of the inner product and with (w? ~ p?)™!
X{I - Q)PS F (h)* acting on the other side. The first
quantity is nonvanishing only when p=w,, whereas the
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(A3)

second factor vanishes in that case. Consequently, the
order A contribution from the left-hand side of Eq. (A4)
vanishes as it must if that euqation is to be valid. We do
not consider the order A2 contributions, since the right-
hand side of Eq. (A4) admits an order A? error, except
to remark that these terms involve states of energy near
4m and larger.

1t follows that
1T (w0 )*¥61% = (U (0, )*R, U w)*Q)=(2w,)™. (A5)

Equation (5. 5) follows from Eq. (A5) since the vacuum
is unique:

Ufw)QR)=U (0 U (w0 )@=CQ,

where C, is a constant. Taking the inner product of this
with & gives C,=(2w,)™ through comparison with Eq.
(A5).
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Theory of tachyons for arbitrary spin
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It is shown that, even though the finite-dimensional representations of the little group for tachyons,
particles with spacelike momentum, are not unitary in general, a fully covariant theory for spin-s
tachyons can be obtained. This occurs because a helicity dependent factor (—1)7, where o denotes
helicity, appears in the expressions for the invariant integral. This factor acts as a metric for the
nonunitary representations and a covariant theory results. As has been found for spin-(1/2), the ideas
of conserved particle number or total charge do not work for tachyons. The conserved quantities

depend on helicity.

I. INTRODUCTION

Dhar and Sudarshan' and Feinberg? have suggested
that a covariant theory of tachyons, particles with
spacelike momenta, may be obtained only when the
representations of the little group are unitary. Since the
little group for the class of particles with spacelike
momentum is the Lorentz group in two dimensions, the
only finite unitary representation is the one-dimensional
representation. This would restrict the covariant theory
of tachyons to the spin zero case only.

It was found in Bandukwala and Shay 3 that a covariant
spin-; theory could be developed. What was obtained
was a pseudounitary representation of the little group
0(2,1), with the appropriate metric appearing in the
invariant integral, a pseudoscalar, and the conserved
axial vector. It was the presence of the metric in the
expressions for the observables that made them invari-
ant with respect to the little group transformations and
made a covariant theory possible. It was also the
presence of this metric that prevented the construction
of a scalar probability and momentum 4-vector for the
tachyons. It was noted, as Tanaka? had earlier, that
particle number, charge, or energy—momentum were
not conserved quantities for tachyons, but rather
quantities involving helicity were the only constant
observables.

In different approaches Marx® and Hamamoto® have
considered the spin-3 and general spin cases, respec-
tively. For the spin-; case they have obtained spinors
and observables similar to those obtained by Bandukwala
and Shay® and in this paper. Both Marx® and Hamamoto °
eliminate the helicity dependence of the observables by
a reinterpretation or by assuming helicity dependent
commutation relations, thus obtaining a scalar prob-
ability and a momentum 4-vector. Their procedures
involve an unjustified disregard for the actual trans-
formation properties of these observables.

In an effort to see what happens in the general spin
case for tachyons, the spin-s equations given by
Weinberg” are applied to tachyons. For the sake of
simplicity a simple non-second-quantized theory is
developed. The negative energy states are included to
ensure covariance as was suggested by Arons and
Sudarshan. ® However, following the convention in
Bandukwala and Shay,® antitachyon states will not be
included since they are not necessary for covariance.
There is room in the theory for an indeperdent theory
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of antitachyons which may be just added on to the parti-
cle theory. This is noted at the end of Sec. II.

The tachyon spinors are found by solving the wave
equations in the transcendental #°=0 frame and then
boosting out of that frame to a general one. The trans-
formation properties of the spinors under the little
group are also found, along with the orthogonality rela-
tions for the spinors. The invariant integrals, a scalar
for integral spin and a pseudoscalar for odd half-inte-
gral spin, depend on helicity and are unaffected by the
little group transformations. So a covariant theory
results in all cases, and, in all cases, helicity and not
just charge or particle number is important.

ll. THE WAVE EQUATIONS

A tachyon field having an arbitrary spin s satisfies
the following wave equation:

(yH1°" g aul 6u23 +m2 )P x) =0, (1)
with the subsidiary condition that

(9,0* - m?) Y(x) =0. (2)
It should be emphasized here that the metric g**
=(+ — ~ =) is used. The 2(2s + 1)X2(2s + 1) y-matrices

have been given by Weinberg’; and, although the form
of the equations here appears identical to Weinberg’s,
the metric used here ensures that tachyons are de-
scribed.

The wavefunction, or field operator, may be expanded
as a Fourier integral in the manner of Bandukwala and
Shay 3:

PYx) =ms(2m)-3/2 f aQ fon dkO [(RO)2 + m2 /4
X3 [af@, Bl (@, k°) exp(~ ikx)

+ a(— @, - BW(— @, k%) exp(+ ikx)]. (3)

The negative energy particle states are included ex-
plicitly as was done by Arons and Sudarshan. ® The inte-
gral [ d is the solid angle integral over all directions
of k,

K=k,
and
k= V(R +m?,

where k° will be positive whenever it is written. The in-
dex o indicates the helicity and ranges from —s to +s
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in integral steps.
The spinors u;’(J), k%) satisfy the following equations:
@ * Zul(w, k°) = oul(w, k°) (4)
and

[ku e b

R YR (imY?$ ud(@, %) =0. (5)

The index e indicates positive and negative energy states
and is the sign of the energy. The momentum vector is
B = (V(B°Z + m2®, ek°), k° =0,

The y-matrices used here are defined in terms of the
three general 2s+ 1X2s-+1 spin matrices S. The
2(2s +1)x2(2s + 1) matrices are defined by

- 9)
75=<? é) (7
and
ﬁ:«) —01)’ @

where I is the 2s+ 1X2s + 1 unit matrix.

From Weinberg,  allowing for the difference in the
metric, the y-matrices are given in the following form:

k”1 ."k“zs y“r" “'Zs:_p(s)(k)‘ (9)

with

p(S)(k)=(ku_ku)35+ SZ-'E (k k”’)s-l-n

= n+2)!

x(2k - Z) [(2k - Z)? - (2k)?] -+~ [(2k - Z)° - (2nk)?]

X[(2k - Z)B + (2n + 2)(ek®)y°6] (10)
for integral s and
PENR) =~ (b B P12 [(ek*)B+ (2k - Z)r°B]
s=1/2 (kuk“’)s'l /2-n
Tt (2n+ 1)1
X[(2k-ZP -K?] - [(2k - Z) = ([2n - 1]k)?]
x[(2n+ 1)(ek®)B + (2k - £)7°8] (11)

for odd half-integral s.

In the transcendental frame k° vanishes and k=mw,
so the spinors satisfy the following equations:

(F@0)B = Nu(w, 0)=0 (12)
for integral s and
(G X056 + il u%(w, 0)=0 (13)

for odd half-integral s. In both cases the helicity equa-
tion (4) has been used to reduce the matrix 2 (k) to the
simple form given above. The polynomials which appear
in the above equations have the form

§=1 22'102(_ 1)""1

s ) — - — e — 2
F (0)_1+’§) CTED] 0?[0% - 1]+ [0® = n?] (14)
aud
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s=1/2 92n+l¢_ 1\
GeNo)=20+ 2, il il

) e O [0* = (n- 1]

(15)

These sums are terminated hypergeometric series
which may be rewritten as gamma functions and, in
turn, as trigonometric functions using relations given
in Whittaker and Watson. ® They may then be found to
have the values

F®Yg)=(-1)

and

(16)

G Xo)=(~1)"*/2, (17)

The 2(2s + 1) element spinors ug(cf), 0) may be written
in terms of the 25 +1 spinors xq(&), where
D+ 8 X (@) =0x,(w).
For integral spin the spinors have the form

1+ (= 1)) x (@)

u%(@,0)= , (18)
31— (= 1)) x,(w)
while for the odd half-integral spin,
A 3 Xo(®)
u(&, 0)= (19)

Fi(=1)71 2y (@)

In both cases the spinors are orthonormal,
u?" (&, 0)ul(@,0)=3,,.,
where

x; (‘I‘)X.,c(‘:’)—_— 5(,0'-

Notice that there is no distinction between positive
and negative energy states in the transcendental frame.
It is also true that there are only 2s + 1 linearly in-
dependent spinors u:(c::, 0). The other 2s + 1 spinors
could be used to describe antitachyon states, but they
are not required for the covariance of the theory and do
not affect the main theme of this paper. The antitachyon
states would satisfy a wave equation like Eq. (1) with a
minus sign in front of the mass term.

I1l. TRANSFORMATION PROPERTIES OF THE
TACHYON SPINORS

Following the notation used by Hamermesh, 1° the
spinors transform according to the following rule under
the homogeneous Lorentz group:

D(W)ud(®, k)= T ul(w’, k)[D(W,)]

are’

(20)

o7 €’y 06

where W is the transformation that takes

(VRO + m20, €k°) to (Y(EV' Y + m2&’, e’k°’). The matrix
[D(W)], . 4 is the matrix representation of the little
group, the group of transformations that leaves the 4-
vector (mc:), 0) invariant. It is made up of the rotations
about an axis parallel to @ and the Lorentz boosts
perpendicular to @.

Therefore, a tachyon spinor in an arbitrary Lorentz
frame may be written as
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w{ll, #) =D(Wi(lo, 0)= T3 ULk, 1) [DW ) s
(21)

where

D(Wohui(®,0)= 22 uZ(@,0)[D(Wo)ly o e (22)

The spinors U‘E’(l%, k") are obtained from the transcenden-
tal frame spinors u‘:(fe, 0) by boosting along the % direc-
tion. The spinors u‘e'(fe, k%), on the other hand, are ob-
tained from the u‘e’(fe, 0) by a general Loretnz transforma-
tion. In a sense, the little group matrices represent an
arbitrariness in the specific form of the spinors

ué’(l‘e, k%) in any frame. For tardyons, timelike momen-
tum, and massless particles the matrices [D(W(,)]c,,e,,(,6
are unitary. As a result, observables like total charge,
particle number, or energy—momentum are independent
of these matrices. This happens because the orthogonal-
ity relations used to calculate these observables are in-
variant with respect to the little group transformations.
So the arbitrariness in the tardyon and massless parti-
cle spinors due to the little group has no physical con-
sequence.

For tachyons, the little group is the two-dimensional
Lorentz group; it is not compact; and its finite-dimen-
sional representations are not unitary in general. Under
these circumstances the usual observables like total
charge or probability or energy—momentum will not be
invariant with respect to these transformations. It was
shown by Bandukwala and Shay?® that spin-} tachyon
theory yields the total helicity, a pseudoscalar, and the
product of helicity and momentum, an axial vector, as
the only conserved quantities. These observables were
found to be invariant with respect to the little group be-
cause of the unusual orthogonality relations that hold for
the spinors. Although the little group matrices were not
unitary, the helicity dependent parts of the relevant
orthogonality relations acted as a metric for the trans-
formations. The little group representations are found
here for any spin s >3, and it is found that what occurs

for spin-3 occurs for any nonzero spin.

The spinors U;’(&, k% may be obtained by boosting out
of the transcendental frame along w so that (mw, 0) be-
comes (V(E°)Y + m*w, €k°) and

~ o o .oy €R° PN
UY®, k%) =exp —{wy® Zsinh™ —— ul(w, 0), (23)
where sinh™ e2°/m appears for tachyons instead of the

usual sinh™'%2/m as for tardyons. The form of a general
boost is given by Weinberg, ” for example.

Expanding the exponential as an infinite series and
using the fact that the spinors are helicity eigenstates
yields

- RO -
exp (— w+y*Z sinh™! 67) u%(w, 0) = [5(«%, + k%)

- %e Ys(Ki'l - Kfl)]u:((‘:” 0)1 (24)

where

k2, = (k/m £ k°/m)°.
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This transformation gives the following spinors:

(ng + ("' l)dKfe)XG((:))
U@, K) =5 (25)

(k2 = (= 1)°k2)x (@)
for integral s and

X ) (K= ie(= 1)1/ 2 1% Yy (@)
U%w, k%) = —— (1 + ig(— 1)*1/2)
22 €K, + ie(~ 1)°7/2 k% Yy ()

(26)
for odd half-integral s.

The little group transformations, from Bargmann and
Wigner, ! are

D(W,)=exp(~ ¢ - v°Z) exp(— i’ - Z). (27

The right-hand term is a rotation about w and contri-
butes a phase factor when D(W,) acts on u% &, 0), so it
will be ignored. The remaining term is a pure Lorentz
transformation, a boost, in the % direction perpendicular
to @. The velocity of the boost is

v=tanhg.

For an eigenstate of helicity the matrix v%¢ - Z, for
¢-w=0, has the following property:

>

YL ZuY@,0)= X M, ul (0, 0), (28)

where
) Vis=o)(s+o+1) Vs+to)s—o+1)

Mao’ :exp(la) ( (S Z (; d 1) 604»1.0" + (s 0)(; z 1)

X 60-1,0’)
and

1 integral spin
exp(ia)=

i(=1)°1/2  odd half-integral spin.

This follows from the properties of raising and lowering
operators for angular momentum as discussed in
Edmonds, 2 for example.

For an infinitesimal little group transformation it
follows that

D(W u%(w, 0)= ;} (8, — EM )% (w, 0), (29)
so0, in general,
D(Whu(w, )= 2 [exp(= tM)] o ul'(w’, k) (30)

where
Wk=Fk'
and the choice of ¢/ depends on whether ¥°~k v is

positive or negative, v being the velocity associated with
the transformation W.

IV. OBSERVABLES AND ORTHOGONALITY
RELATIONS

The spinors U‘e’(&, £°) are found by boosting the tran-

scendental frame spinors u;’(tf), 0) along the w direction.
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This is a special set of spinors and U‘;(&:, k%) will be
transformed into U%@’, ¥°'), helicity remaining invariant,
only by members of the factor group of the little group
in the Lorentz group. A general Lorentz transformation,
on the other hand, will mix helicity states, the coef-
ficients of this linear combination forming the rep-
resentation of the little group [see Eq. (30)]. The theory
will be fully covariant only if the observables are unaf-
fected by the little group transformations, this is equi-
valent to saying that the results should be independent of
the choice of the #%(®, &%) or the UY(®, k°). So all or-
thogonality relations used to construct the observables
should be invariant with respect to the little group.

If an orthogonality relation for the spinors U‘e’(cB, E% is
indicated by

Ocre,o’e’ =U:t(a”k°) F US(‘:’,kO), (31)

then it will be invariant with respect to the little group
if

2:") (M*W"Oa”e.u’e' Mg an.u"e')ZO! (32)
where M, is given in Eq. (28). This follows from the
requirement of invariance under the infinitesimal trans-~
formations. Equation (32) will imply that the orthogonal-
ity relation will also hold for the spinors u%(®, k°). The
helicity dependence of the orthogonality relation acts as
a metric for the nonunitary transformations. Further-
more, relations simply proportional to § .., with no
other o dependence, will not be invariant; and these are
the relations used to calculate total charge, particle
number, and momentum.

For integral spin s, Eq. (25) implies the following:
U@, ROV (@, K°) = 3845, 6, (K3 + K20) + 5, (1= B,..),
(33)
UL, WD, k) = (=1)"8,. 5,

20"
K-.l

+2(=1)8,5:(1 - §,.)

X (K% + (34)

U™ (@, KOV UTL(D, k%) = — L€b g0 B, (K27 = k29_),  (35)

and

TG, B UL (G, k) = he(= 1)7 8, (1= 8,,.) (k25 = k29..),

(36)
In the odd half-integral spin case, Eq. (26) implies:

U (&, BV (@, K%)= 584006 oo (K25 + K20) + 5, (1= 5,.,.),
(37)
UH&, BOVUT(D, k) = bie(— 1)™/2 8,,(1 - 8, ) (1% - K29),
(38)
UT (@, W UT (D, BO) = ~ 5,500 . (K3 = K2D), (39)
and
UG, BOW UL (S, ) =i(= 1)71/25, 5, + Li(= 1) /2
XGW(I_Gee')(Kf:-FK%i‘)' (40)

In both cases, the definition
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U%w, k) =U (@, k)8
is used and the expressions x°
Eq. (24).

From the wave equation (1) a conserved current may
be found such that

= (k%% are defined in

au j“(x)=0, (41)
where
%)=~ 2s- Z; (- l)ka,,l Oy, P(x) Ty#1° " Hos-1#
2=0
(42)
a“kd.” K2s-1 9(x),

and I'=1, 7" for integral, odd half-integral spin, respec-
tively. Also since the wavefunctions satisfy the Klein—
Gordon equation, there are two more possible conserved
currents for each spin:

J (T, %)= 23 [T, (%) - 3, Wx)TY(x)], (43)
where I'=1I, —iy® for each spin. In arriving at Eq. (42)
the following properties of the y-matrices were used:

“1... “23? — u,l.-. “'25
By g=v

and

ysy;xl

By -ecligg

l“23.},5:_.},

The invariant integral, the integral over all 3-space
of the zero component of a conserved 4-vector, obtained
from Eq. (42) is proportional to that obtained from
J,(I,x) for integral spin and from J,(-iy®, x) for odd
half-integral spin. This can be shown by substituting
Eq. (8) into Eq. (42), integrating, and using the or-
thogonality relations for the U%w, #°) to show that

_[ A*xj%(x) =**"'ms(2s +1) T aa f

u2.9-1

X T, RVTY"Y " “21° UG, %) al (&, ek%)a (@, k),
where
B = (k, e&%).

The following relation is true:

UL, B)Th,, = by, | v UL, B)

. . R ;
=a® U%w, 0)m? ’I‘wi1 Wy Y !

* dn 40 ~
2 UL w, 0),

where the ¢* are the vector transformation coefficients
for the boost from the transcendental frame to the gen-
eral one. The use of the form of a°, and the properties
of the matrices 2‘*’(k) and the spinors in the transcen-
dental frame completes the proof.

For the case of integral spin, the invariant integral is

ffoo(I,x)=2 f dnfdko(_ 1)°[a?

Hw, k)ay(, k°)

- az(‘:” = ko)aq(d}v - ko)]» (44)

and
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f d3xd (- iy®, x) =0.

For the odd half-integral spin, the invariant integral is

jdsto(—i75,x)=Z)f aQ [ndk°(—1)"'”2

(45)

X [al(w, B)aw, &%) = al (&, = k%)a (G, - k%), (46)
while
[ d*xd (1, x)=0. (47)

Both integrals have essentially the same form, but under
spatial inversions o— — ¢ so that for integral spin (- 1)°
is a scalar but for odd half-integral spin (- 1)°1/2 js a
pseudoscalar. The invariant integrals are a product of
the number of particles and a helicity factor. In neither
case can the conventional interpretation of total number
of particles or charge be used. These integrals are not
positive definite. Also, for c=0, Eq. (44) reduces to
the form given by Dhar and Sudarshan® for spinless
particles.

It is simple to show that the invariant integrals are
unaffected by the little group transformations. Referring
back to Eq. (32), it can be shown that the orthogonality
relations that contribute to the invariant integral,

Ope e =(=1)5_5... (48)
for integral spin and
Oas.u’e’ =(- 1)0-1/2600’ Beer (49)

for odd half-integral spin, satisfy the condition for in-
variance with respect to the little group. What occurs is
that the little group, O(2, 1), is found to have pseu-
dounitary representations with respect to the metric

(- 1)° or (- 1)>*/2, The resulting invariant integrals,
and any observables, contain this metric as a factor;
and this is sufficient to yield a fully covariant theory
for any spin.

V. CONCLUSIONS

It has been shown here that Weinberg’s wave equations
for particles with any spin can be applied to tachyons.
The tachyon spinors form a basis for a pseudounitary
representation of the little group O(2, 1) with the metric
(= 1)°5,,. for integral spin and (- 1)**/26 , for odd half-
integral spin, where o denotes helicity. The invariant
integral in each case involves the metric as a factor
and transforms like a scalar for integral spin and a
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pseudoscalar for odd half-integral spin. It is precisely
because the finite representations of the little group are
not unitary that the need for a metric arises, neces-
sarily leading to a helicity dependent invariant integral
which cannot have the usual interpretation of probability
or charge. So the requirement of Dhar and Sudarshan,
that the little group representation be unitary, is not
necessary in order to have covariance, and the discus-
sion of tachyons need not be limited to the spinless case.

Positive and negative energy tachyons are taken to be
different states of the same particle since they are
identical in the transcendental frame and can be trans-
formed into one another. The reinterpretation of nega-
tive energy states as antitachyons leads to a noninvariant
vacuum. It is possible, on the basis of the transforma-
tion properties of momentum and velocity, to consider
that negative energy tachyons carry momentum directed
oppositely to their velocity. Momentum becomes an
internal property of tachyons and may further be con-
sidered unobservable. The expression involving the dif-
ference of the amplitudes which appears in the invariant
integral can now be interpreted as the net number of
tachyons with helicity o traveling in the @ direction.

The alternate addition and subtraction of particles
over successive helicity states is a problem to interpret.
Certainly, since helicity is an invariant, helicity eigen-
states can be constructed; and then the invariant integral
is proportional to the net helicity being transported. For
the spin-3 case the integral is the net helicity trans-
ported for a general superposition of states. For a gen-
eral superposition of helicity states for any spin the
interpretation of the invariant integral is just not clear.
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Nonmetrical dynamics. |
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Einstein’s nonvacuum gravitational field equations are examined. The following nonmetrical existence
theorem is proved. It is shown that given any analytic symmetric contravariant energy-momentum
tensor density as a function of the space-time coordinates, a solution to the gravitational field
equations always exists. Furthermore, this solution is such that the law of conservation of
energy—-momentum is satisfied. The new proof of the present paper makes no use of the coordinate
transformation method used in a previous paper. The Cauchy-Kowalewsky existence theorem is used
in the proof, and the literature on the Cauchy-Kowalewsky existence theorem is briefly reviewed.
(Riquier’s existence theorem is avoided except for a brief discussion in the Appendix.) The initial
value problem of Einstein’s equations is examined as part of the proof. The physical and
mathematical meaning of this new proof is discussed. It is noted that the nonmetrical existence
theorem disappears when Einstein’s equations are linearized whereas the familiar Lichnerowicz-type
existence theorems survive linearization. This suggests that the nonmetrical existence theorem may
add a new dimension to our understanding of the physical meaning of nonlinearity in Einstein’s

equations.

1. INTRODUCTION

In a recent paper,! the author has examined Einstein’s
field equations

(- g123G* = gaT*v (1.1

and proven the following theorem.

Theovem 1: Nonmetvical existence theorem: Given any
symmetric analytic tensor density T#(x), there always
exists a corresponding metric g*”(x) which satisfies the
field equations (1.1).

J.N. Goldberg has pointed out that it should be possi-
ble to prove this theorem without making use of the co-
ordinate transiormation method of Ref. 1. In the present
paper, it is shown that such a proof is indeed possible.

In addition, the proof of the present paper avoids
making explicit use of Riquier’s existence theorem. The
resulting proof is therefore more elementary than the
proof of Ref. 1.

The methods of the present proof help to broaden
one’s understanding of the physical meaning contained
in the original existence theorem of Ref. 1. In addition,
the methods of the present proof will allow a more rapid
generalization of the result to the Maxwell— Einstein
equations. ?

2. A NEW PROOF OF THE NONMETRICAL
EXISTENCE THEOREM

The new proof of Theorem 1 will now be presented.
One begins with an analysis of the energy—momentum
conservation law

™, <0, 2.1
Transvect Eq. (2.1) with g, and obtain

Bu(T% , + Tog? %) =0, (2.2)
which becomes

EuT , + T T _ g (2.3)

and this may be written
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Gru T, + Ty TV 420, TH+T,, , TH=0, (2.4)
where =1,...,4and i=1,2,3. But

Tagr=2(8ar s +8ora ~ 8as,1)- (2.5)
Substitute Eq. (2.5) into Eq. (2.4) and obtain
(st S am gu,r)f“ F(Eir gt 81— gu,f)TN“

+Ty, T +g, T, =0, (2.6)

Next solve Egs. (2.6) for derivatives of the form gy 4.
The first three Eqs. (2.6) (which have 7=1, 2, 3) can be
written

e g T =280, T - Gina T 8un,i— B W TH
- ru,kf” - & T~”,v. (2.7a)

and the fourth of Eqs. (2.6) (which has T=4) can be
written

%g44,4f“=_g44,iT“- Ty4TY - gy ™. (2. 0)

Equations (2.7) may be written, after division by f“,

1
Bap, s =284,

— (P2 T, \TH + Ty o T + g, T, ] (2. 8a)

and

Bu

=- 2(7‘“)'1[8’44,17:'“ + I‘”',j” 8w iuv,v]- (2. 8b)

Careful examination shows that the right-hand sides of
Eqs. (2.8) do not contain any derivatives of the form
&ar,4 OT Z4q 4. One can therefore apply the Cauchy—
Kowalewsky existence theorem®=® and conclude that one
can think of Eqs. (2.8) as defining the unknown functions
&4 Once the functions g;; and ™" are given. That is, re-
gardless of what analytic choice is made for the func-
tions g;; and T*¥, the g,, always exist provided that
T*+0. Note that if 7**=0, one can always transform to
a coordinate system in which T*4#0 provided that at
least one of the 7*” ig nonzero.

One can now proceed to consider Einstein’s equations

Copyright © 1975 American Institute of Physics 1939



(1.1). As is well known, Eqs. (1.1) imply the energy—
momentum conservation law (2. 1). Consider the com-
bined system

(- @1 2G* = - gnT™,
TN“'V;V —0.

(2. 9a)
(2. 9b)

The system (2. 9) is equivalent to Einstein’s equations
(1.1). A proof of existence for the system (2. 9) will now
be given. Lichnerowicz has shown’ that the system (2. 9)
can be replaced by the following equivalent system in
which four of Eqs. (2.9a) have been replaced by initial
conditions on the spacelike surface x4=0:

R;y=-8n(- g)-l /z[f"u_%guf], (2.10a)
[(-2* 2Gh + Bﬂf‘\“x]x&:o =0, (2.10p)
f"uu;v:O’ (2. 100)

where 7,j=1,2,3 and p=1,---,4,

For a demonstration that Eqs. (2.10) are equivalent
to Egs. (2.9), see Appendix B or Ref. 7.

The final step is to prove the existence of solutions
to the system (2.10) by using the Cauchy—Kowalewsky
existence theorem. *** To do this, one writes out Eqs.
(2.10) more explicitly. Equation (2.10a) may be written
%gas(gu,aa + g, ij = Buj,ie— Lig,0f)
+8n(- @ 2 (T,; - 281, D
== 8T 0T gou = Tisplag) g° (2.11)

Next, separate out the terms in Eq. (2.11) that are
multiplied by g* and then divide by g*. Equation (2.11)
then becomes

&ij,a0 T 8a4,is— S1j,00— Lia ag
+16m(g*) (= VAT, - 38, =Ny, (2.12)
where N;; is an abbreviation for the remaining terms:
Ny; Eg“(g“)'l(gu,ej +8ijpa— Lri,ia — Lia,ns)
+ gu(gu)-l(gu'” T+ 8154 — Eas,in— Ein as)
= 2@ ™M Gunyis T ispn= Gasyin= Lings)
- Zguﬂguu(gu)'l[rij,uraa,u- | AP N j,u.]- (2.13)

Note that although N;; contains both first and second de-
rivatives of the metric, it does not contain any of the
derivatives g; 4 and it also does not contain any deriva-
tives of the form g,, 4,. (See Appendix D.)

Using Egs. (2.12) and Eqs. (2.8), one can rewrite
Eqgs. (2.10) in the form

i T 84,15~ Baj,ia— Sia ai

+167() (- 9 AT - 321, T) = Ny, (2. 142)
[(- ) /2G* + 81T, |4,y =0, (2.14b),

Eu 4 :%g44,k
- (f«)-l[zrﬂ'kfu + ril,kf” + &ru fw,u], (2.14¢)
Sua=-2TW gy TH+T,, TV +g, T 1. (2.149)

In order to obtain from Eqgs. (2.14) a set of equations
which satisfies the requirements of the Cauchy—
Kowalewsky existence theorem, one must eliminate the
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derivatives gy, 4; from Egs. (2.14a). To do this, define

Ve =284~ (T4 (g at g, i- gi4,k)T~u

- (T‘4)-1[rij'kfij +gku fﬂl"”], (zn 158.)
Vy=-2(Tw)g, T
+2(8u,; +8u,i= 8 0TY +g4ufw,u]- (2.15b)

By using the abbreviations V; and V,, Eqs. (2.14)
become

Zisaat Eua, s - Eas, 1= Buaug T 161 (< g) 1 /2

X(g1u 8 = 28158un) T =Ny, (2.16a)
[(- 9! /2G4, + 878y, T .y =0, (2. 16b)
L a =V, (2.16¢)
Bua=Vs. (2. 164d)

One can now eliminate the derivatives g, 4, from Eq.
(2. 16a) by substitution, using Eqs. (2. 16¢) and (2. 16d).
The result is

i ua==8u,uy T VitV ;TN

- 16m(@ (- 27 g8 - 2818V T, (2.172)
[(- 217264, + 8T T4u Lao=0 (2.17)
Ex 4= Vs, (2.17¢)
Zua=Vy (2.17d)

where V,, V,, and Ny, are respectively defined in Eqs.
(2.15a), (2.15b), and (2.13). The significance of the
manipulations just completed may be summarized as
follows. Equations (2.17) have been obtained from
Einstein’s field equations (2. 10) by solving for a partic-
ular set of derivatives, namely, £;; 4 and gu4,4. The
resulting system (2.17a), (2.17¢), and (2, 17d) is now
in the form required for the application of Riguier’s ex-
istence theorem®? and it would be easy at this point to
prove existence using Riquier’s ordering procedure.
However, that path will not be followed here. Instead,
a proof of existence using the more familiar Cauchy—
Kowalewsky existence theorem will be presented. To
place Egs. (2.17) in the Cauchy—Kowalewsky form, one
notes that the terms V; ; +V, ; in Eq. (2.17a) contain
derivatives of the form gy, ;;. Unfortunately, the
Cauchy—Kowalewsky theorem does not allow second de-
rivatives of a function on the right-hand side of a system
of equations when any of the first derivatives of this
function (in this case gy ) appear on the left-hand side
of the system. To remedy this, one must change Eqgs.
(2.17c¢) so that the gy 4 do not appear. To do this, sim-
ply differentiate Egs. (2.17¢) with respect to x* (see
below).

A second problem appears with respect to gy since
the fivst derivative of g4, appears on the right-hand side
of Eq. (2.17d) and the second derivative of g, appears
on the left-hand side of Eq. (2.17a). The second prob-
lem is solved by differentiating Eqs. (2.17d) with re-
spect to x* (see below). In addition, one adds appropri-
ate initial conditions so that the new system is equiva-
lent to the old system. After these changes, the result-
ing system is as follows:
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iy == Bua, st VitV Ny,

- 167(g*) (- @ Agiugn - 5818 T, (2.182)
[~ 27264 + 812, T ] =0, (2. 18b)
lga s~ Vilao=0, (2.18¢)
B, = Vit (2.18d)
[g44,6— Vil =0, (2.18¢)
Bu,u=Veu (2. 18f)

Equations (2.18) still fall short of the Cauchy—
Kowalewsky form because the derivatives g, 4 appear
both on the left-hand side of Eq. (2.18a) and on the
right-hand side of Eq. (2.18d). Furthermore, the g 44
appear on the right-hand side of Eq. (2.18f). To remedy
these two circumstances, define a new abbreviation My
equal to the right-hand side of Eq. (2.18a):

Myy==gy itV tVy;+Ny

- 1677(8“)_1(— g)-l /2(glugjv - %g”g,“,)T“". (2- 19)
Equation (2. 18a) can now be rewritten in the form
8ij,u0-Mi;=0. (2.20

Next eliminate g;; 4 from Eqs. (2.18d) and (2.18f) by
subtracting an appropriate multiple of Eq. (2.20) from
Eqs. (2.18d) and (2. 18f):

Liiaa=—Zaay T VitV TNy,

- 167(*) (- 97 guugp - 2808 T, (2.212)
[(- &) 2G4, + 818, T* |4 =0, (2.21b)
[gye,4— Vel =0, (2.21¢)
Eirae=Veat (T 1TH(g,, ae— M), (2.21d)
(ga4,4 = Valitao =0, (2.21¢)
Bu,u=Vig- (7*;44)-17":;,:@“'“ -M,), (2.211)

where My;, V,, V,, and Ny, are given respectively by
Egs. (2.19), (2.15a), (2.15b), and (2.13), The system
consisting of Eqs. (2.21a), (2.21d), and (2.211) is now
in the form required for application of the Cauchy—
Kowalewsky existence theorem. Applying this theorem,
one concludes that solutions exist to the system for
every analytic choice of initial values on an x*=const
surface, and for every given analytic symmetric tensor
™ (x).

It only remains to prove that solutions exist to the
Egs. (2.21b), (2.21¢), and (2. 21e) which express the
conditions which these initial values must satisfy. A
proof of existence for this initial value problem is given
in Appendix C. (Note that the initial value problem
solved here is not quite the same as the usual initial
value problem since one has eight initial value equations
rather than four.) This completes the proof of the fol-
lowing theorem.

Theorem 1: Nonmelvical existence theovem: Given
any symmetric analytic tensor density 7#”(x), there al-
ways exists a corresponding metric g,,(x) which satis-
fies Einstein’s field equations.

This is the theorem which was to be proved. The the-
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orem has been proved for p=1,...,4andi=1,...,3.
However, the same procedure also holds for p=1,...,n
and ¢=1,...,n=1, n=3. For other related results, see
Ref. 1 and also Refs, 13—15.

3. CONCLUSION

One advantage of the proof just completed is that it
avoids the use of coordinate transformations. The en-
tire proof is carried out in a single coordinate system.
The result is an increase in our fund of information on
the mathematical and physical significance of the non-
metrical existence theorem.

A second advantage of this new proof is that no use
is made of Riquier’s existence theorem. Only the
Cauchy—Kowalewsky existence theorem is used. It is
hoped that this will make the proof more accessible
than previously. In addition the present proof serves as
an instructive and nontrivial example of the relationship
of the Cauchy—Kowalewsky theorem to Riquier’s
theorem,

One tantalizing feature of the nonmetrical existence
theorem is that a complete geometrical object of space—
time can be chosen arbitrarily. That object is T"*.
Equally important is the fact that this arbitrary choice
can be made without any prior knowledge of the metric.

The purpose of nonmetrical dynamics is to separate
out those properties of physical theory which can be de-
fined without reference to the metric.'® In this connec-
tion one should keep in mind that the nonmetrical exis-
tence theorem would disappear if one were to linearize
Einstein’s equations. By comparison, the original exis-
tence theorem of Lichnerowicz is unaffected by lineari-
zation. Thus, the nonmetrical picture differs from the
usual picture in a manner that is far more extreme than
one might think at first sight.
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APPENDIX A: COMMENTS ON THE CAUCHY-
KOWALEWSKY EXISTENCE THEOREM

There is a surprising variation in the statements of
the Cauchy—Kowalewsky existence theorem which ap-
pear in the literature. References 4 and 5 give the
Cauchy—Kowalewsky theorem in a form which applies
not only to a system of partial differential equations all
of which are of the same order m, but also to a system
of partial differential equations some of which are of
order my, some of which are of order m;, some of which

are of order m;, etc. Reference 6 gives a statement of

the Cauchy—Kowalewsky theorem which applies only to
a system of partial differential equations all of which
are of the same order m. If one is presented with an un-
familiar system of partial differential equations, it is
often easier to examine it using the more general
Cauchy—Kowalewsky theorems of Ref. 4 or Ref. 5
rather than to convert the system to a form suitable for
the Cauchy—Kowalewsky theorem of Ref. 6.
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In addition, one must keep in mind that there are
many systems of equations to which the Cauchy—
Kowalewsky theorem does not apply. If a given system
of partial differential equations possesses integrability
conditions, then the Cauchy—Kowalewsky theorem does
not apply to the system. It is possible, however, to re-
place some of the given equations by initial conditions
and thus build an equivalent system to which the Cauchy—
Kowalewsky theorem does apply.

There are also systems (a) which do not possess inte-
grability conditions and (b) to which the Cauchy—
Kowalewsky theorem does not apply. For example, con-
sider the following system:

%+v=0, ﬂ+u=0.

% 2y (A1)

Equations (A1) possess no integrability conditions. In
addition, the Cauchy—Kowalewsky theorem does not
apply to Eqs. (Al). Of course, Riquier’s existence the-
orem®!? does apply to the system (A1). Follow the no-
tation used in Appendix B of Reference 1 and take

du_odv_Oou_odv

a—x‘->a>a—y>5}->u>v,
Then the first member of the first equation of the system
(A1) is du/3x and the first member of the second equa-
tion is 9v/0y. (See Ref. 1 for a definition of the term
“first member.”) And the requirements for the applica-
bility of Riquier’s theorem are obviously satisfied. Fur-
thermore, one sees by following Riquier’s procedure
that the system (A1) has no integrability conditions.

APPENDIX B

Lichnerowicz’ has outlined the main features of the
methods needed to show that Eqs. (2.10) are equivalent
to Einstein’s equations in the form (2.9). However,
Lichnerowicz’s presentation makes the special
assumptions

THY — pvuvv
and
T =(p +plve” - pg*’.

It is therefore necessary for the purposes of the present
paper to demonstrate that Eqs. (2.10) are equivalent to
Eqs. (2.9) in the general case of arbitrary T"”,

Consider the following system of equations:
Ry;=—-8m(Ty;-38yT),
G4 =— 81T%,,
[Note that Eq. (B1b) has not yet been replaced by an ini-
tial condition. | One wishes to demonstrate that the sys-

tem (B1) is indeed equivalent to Einstein’s equations
(1.1). By expanding Eq. (B1b), the system becomes

(Bla)
(B1b)

Rij=- 8"(T£J‘ %gijT)y (B2a)
RY, = 8nT%,, (B2b)
RY - 304g" R, =~ 81T%,. (B2c¢)
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For convenience, define

Pyy=T,, ~38,,7T, (B3)
where

T,,=(-9*"*T,,. (B4)
Contraction of Eq. (B3) gives

P=_T, (B5a)

T, =P* - iP. (B5b)
Equations (B2) can then be written

R;;=-81Py,, (B6a)

Z%R,, + ARy =~ 81T, (B6b)
&¥[Rys—2814(8* Ry + 26 Ry; + gV'R, )]

+g4[Ryy — 284 ("Ryy + 284 Ry + 2Ry )]

=- 81T, (B6c)

where in Eq. (B6a) one has made use of the definition
(B3). Substitute Eq. (B6a) into Eq. (B6c), and the sys-
tem (B6) becomes

Ryj=— 8Py, (B7a)

4R,y - 81g* P, =~ 8P4, (B70)
g4(1 - 28" 840 Ry - 8418 840 — DRy

- 28" 818" (~ 81P, ) = 81 T*,. (B7c)
Simplification of Eqs. (B7) gives

Ryj=—8nPy;, (B8a)

Ry == 81P,,, (B8b)

Ry =~ 81Py, (B8c)

where we have divided through by g** and thus have as-
sumed that g**#0. Rewriting Eqs. (B8), one obtains

R,,=~ 877Puv, (Bg)

which is equivalent to Einstein’s equations (1.1). One
concludes that Eqs. (B1) are equivalent to Einstein’s
equations. The proof has been surprisingly long.

The next step is to demonstrate that the initial condi-
tion (2.10b) combined with Egs. (2.10c) implies Eq.
(B1b). To do this, one begins by writing down the con-
tracted Bianchi identity'”:

G,’,,=0. (B10)

Combine the identity (B10) with Eq. (2.10c). Then Eq.
(2.10c¢) may be written

(¢, +8r7°,],=0. (B11)
Equations (2.10) can therefore be written

Ry =-8nlT;;- 5g,,T], (B12a)

[GY + 8T ] =0, (B12b)

le¢", +8r7, ], =0. (B12¢)

Using Eq. (B3), one can rewrite Eqs. (B12) in the form

Ry; +81P,;;=0, (B13a)
[R;; +81P; ;)40 =0, (B13b)
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(B13c)
(B13d)

(GY + 87T 4= 0,
[¢°, +87T", ], =0,
where the redundancy of Eq. (B13b) is intentional.

It has been shown that Eqs. (B1) are equivalent to
Eqs. (B9). One can therefore conclude that Eqs. (B13b)
and (B13c) are equivalent to Eqs. (B14b) below:

Ry;+81Py;=0, (B14a)

(Ry, +87P,, L =0, (B14b)

[¢*, +8r7", )., =0. (Bl4c)
One may rewrite Eq. (B14b) and obtain

Ry;+81Py;=0, (B15a)

(6", +81T*,],4.0=0, (B15b)

[6", +8rT", ], =0. (B15c)

Equation (B15¢) may be written
[G4u + 877T4u],4 + erv[GBu + 8"Tsu]_ ruvB[G”B + 8‘"708]
+[G*, +8rT,] ;=0. (B16)
Evaluate Eq. (B16) at x*=0 and use Eq. (B15b) to
obtain
[(GY, +8rT*)) 4]uup=0. (B17)
Successive differentiations of Eq. (B16) with respect to
x* lead to the result

(B18)

an
[‘a? (G4, + 817’2“4“)] =0

for all =1, where we have put x*=¢. Finally one may
expand G,*+87T,* in Taylor’s series:

G, +8nT*, =i {[az" (G, + 81rT4“)] (t")}.
t=0

n=0

(B19)

Since by Eq. (B18), each term of the sum on the left-
hand side of Eq. (B19) is zero, Eq. (B19) can be written
G*, +8rT%, =0, (B20)

This proves then that Eqs. (B15b) and (B15¢) together
imply Eq. (B20) so that Eqs. (B15) become

R‘j +87TP”=O, (lea)
G, +81T4, =0, (B21Db)
[¢", +8rT", ], =0. (B21c)

Equations (B21a) and (B21b) are equivalent to Eqs. (B1)
and therefore can be rewritten in the form (B9). One
obtains

R,,=-87P,,, (B22a)
(6", +8rT,],,=0 (B22b)

as the final form of Eqs. (2.10). This completes the
proof demonstrating that Eqs. (2.10) are equivalent to
Einstein’s equations.

APPENDIX C

Consider the following system of initial value equa-
tions taken from the system of Eqs. (2.21):

[("' g)l /2G4X + 8‘”glu fdu ]ﬂ:(] = 0; (Cla)
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[ a— Vilaao=0, (C1lb)
las s = Valuaeo=0. (Clc)

Convert Eqs. (Cla) to the notation of Ref. 18. Then Egs.
(C1) take the form

N["‘”.'j-—N'lN”[N("”) — My, NGm _ gn]_ E"!Nj— enJ”

=-8rS", (C2a)
(@)% - @,Q*, - (2R =167(N)?g,,, T4 (- )72, (C2b)
Ny 4= V=0, {C2¢)
Saa,a~Vy=0, (C24)

where all quantities and equations are evaluated at x*
=0, where

2Q;;=%,8= Njsi =Ny, (c3)
St=FH N (= o) 2g,, T4 (C4)
withi=1,2,3 p=1,--.,4, and
Yi; =&t (C5a)
Myp =28 (C5b)
o = gt — ghgh(ght)t (C5¢)
Ny=4gu;, (c5d)
N=(-g*173, (C5e)

where Eq. (C2a) is equivalent to Eq. (5) of Ref. 18,
where R;; refers to the Ricei tensor formed from the
spatial metric 7;;, where

zenj =Ynia— ynjyim'yim.b (CG)
.and where
¥=[70]. ()

For the purposes of the present paper, it is unneces-
sary to determine the complete range of arbitrariness
in the solution of the initial value problem (C2). Instead,
existence will be proven for a particular class of solu-
tions. Consider those solutions of Eqs. (C2) such that
N'=0, [Note that since Eqs. (C2) are required to hold
only on an x*=0 hypersurface, there is no contradiction
in the fact that the value we choose for the N' is quite
independent of the value given for N, , in Eq. (C2¢). ]
With this special assumption, Eqs. (C2) become:

First members

€™y = NN, e = 8nsT, e s (C8a)
Q%)%= Q,°Q", - (V2R
=167(N)*(- &)™ /zgm fy: V22,38 (C8b)
Ney= Ve, Ny, 4 (C8¢)
Buua=Vy S (csd)
N, =0. N, (C8e)

If one solves each of the equations in Eq. (C8) respec-
tively for the derivatives indicated in the First mem-
bers column, one obtains a system of equations which is
in the form required for the application of the Cauchy—
Kowalewsky existence theorem. Applying the theorem,
one concludes that solutions exist to the initial value
system {C1) from which Eqs. {C8) were obtained. Note
that the proof holds regardless of what analytic choice
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has been made for the tensor density T””(x) on the initial
value surface x*=0,

APPENDIX D

In explanation of the argument following Eq. (2.13)
one should note the following:

Rauvs =3 uv a8 +gas,u.v
(DY)

where the parentheses contain no derivatives of the met-
ric except first derivatives. If a given second derivative
of the metric has three equal indices, then it is cancel-
led by other similar terms. For example, derivatives
of the form gy4,4, do not appear in the Riemann tensor.
A similar result holds for the Ricci tensor.

=~ Sav,u8~ 8us,av + (' M )],
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Quantum theory of anharmonic oscillators. . Energy levels
of oscillators with positive quartic anharmonicity*
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This is an investigation of the energy levels of an anbarmonic oscillator characterized by the potential
(1/2)x2+Ax*. Two regions of A and n are distinguishable (n being the quantum number of the energy level)
one in which the harmonic oscillator levels E, = n+ 1/2 are only slightly distorted and the other in which
the purely quartic oscillator form E,~cA!*(n+ 1/2)* {c being a constant) is only slightly distorted. Rapidly
converging algorithms have been developed, using the Bargmann representation, from which energy levels

in any (A,n) (with A > 0) regime can easily be computed. Simple formulas are also derived which give
excellent approximations to the energy levels in various (A, n) regimes.

I. INTRODUCTION

An early quantum mechanical model to which the
Rayleigh—-Schrodinger perturbation theory was applied
was the anharmonic oscillator characterized by the
Hamiltonian :

H=H(w, ) =3(p% +x20?) + Mt, (.1)

In the Schrodinger representation the associated energy
levels and wavefunctions are solutions of

Hyp=Ey with H=~% d?/dx® +5x%w% + M4, (1.2)

We have chosen units in which i=»=1. The formal
perturbation theory of this eigenvalue problem yields
the power series expansion
EN =tw+20A,(/?)" (L.3)
n=1
for the ground state energy. The first few 4, are known
to be

A =3/4, A,=-21/8, A,=333/16,

A,=-30,885/128, A =916731/256, etc. (1.9)

70 more A,’s have recently been calculated by Bender
and Wu.! The rapid increase in the 14, with n suggests
that the series (I. 3) does not converge; Bender and Wu
have proven that (1. 3) diverges for any A>0.

Intuition gained from perturbation theory in classical
mechanics warns of difficulties in series such as (I. 3).
The classical solutions of Newton’s equations for model
(1. 1) (with A>0) are periodic elliptic functions. How-
ever, simple perturbation theory generated from the
unperturbed trigonometirc solutions of the harmonic
oscillator (A=0) equation yields secular terms which
are products of powers of ¢{ with the trigonometric func-
tions. When the perturbation series is terminated at
finite order the secular terms cause calculated displace-
ments to become arbitrarily large at sufficiently long
times thus strongly violating the energy conservation
principle. Lindstedt and Poincaré, through a frequency
renormalization of the zero order trigonometric terms
(i. e., introduction of a new frequency @=tw +Xxw; ++-+)
have eliminated secular terms. It would not be surpris-
ing if a quantum mechanical perturbation series calcu-
lated from a basis set expressed in terms of the origi-
nal frequency w did not lead to a convergent series ex-
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pansion. A second indicator of impending trouble is
evident from expressing H in a momentum representa-
tion with

p~p and x ~id/dp,
(P2 - s d?/dp® + xd*/dp*)y=Ey. (1.5)

In this differential equation the “small” parameter A
appears as the coefficient of the highest derivative.
This is a situation analogous to one encountered in the
Navier--Stokes equation of hydrodynamics in which the
viscosity m, which in certain regimes is considered to
be small, is the coefficient of the highest order deriva-
tive in the equation. One of the obstacles in the develop-
ment of a theory of turbulence is associated with the
identification of the turbulent regime with small 7, and
the observation that a perturbation theory in which the
7=0 solution (that of an equation of lower order) is used
as an unperturbed starting function is misleading and
generally useless. Hence, we should be reconciled to
the possibility that a standard perturbation solution of
(I. 1) might yield nonconvergent series.

Bazley and Fox? have, by variational methods, derived
excellent upper and lower bounds for various energy
levels. When 0 < A <3 the gap between these bounds may
be only a few parts per thousand. However, with in-
creasing A>3 it widens considerably. Reid® has further
developed the variational calculations using a method
of Lowdin. He also calculated energy levels of high
quantum number states. Loeffel, Martin, Simon and
Wightman*+® made a detailed investigation of the Padé
method taking it to 20th order and obtaining excellent
numerical results in the range 0 < A<3. They have pro-
ven the convergence of the method for the problem at
hand. Graffi, Grecchi and Simon® have proven unique-
ness theorems for energy levels which were derived by
applying Borel summability methods to the Rayleigh—
Schrodinger series.

The most extensive numerical results on anharmonic
oscillator energy levels (which extend into the range
0< XA <50) have been obtained by Biswas, Datta, Saxena,
Srivastava, and Varma® who postulated wavefunctions to
be of the form

p=(exp - 3x%) 2, c, %", (1.6)
n=0
Copyright © 1975 American Institute of Physics 1945



When they substituted this expression into (I. 2) they
obtained a three term difference equation for the {c,}
and the energy £. In order to assure the existence of
solutions they had to set the infinite determinant of the
coefficients equal to zero. The energy levels were then
found numerically from the resulting “Hill” determi-
nant. The numerical method used by the above authors
was to truncate the determinants, calculate the eigen-
values at different levels of truncation, and search for
the limits of successive estimates as the truncated de-
terminants were increased in size. Determinants of
orders as high as 100X100 were used for large values
of A, As determinants become very large, machine
round off errors can become severe.

Several other interesting papers have recently ap-
peared on the quantum mechanical anharmonic oscil-
lator. They are listed in Refs. 8—13. However, no one
seems to have produced simple formulas which give
good approximations to the energy levels in either the
small or large A regimes. One of the aims of this paper
is to produce such formulas. A scaling argument due to
Symanzik will be very useful for the derivation of for-
mulas which are valid in the large A range, say A> 2.
Since the argument is very simple, we sketch it here.

Let us write the Hamiltonian of Eq. (I.2) as H{w, ).
Then if we let x= X178y, we see that

H(w, )= X73H(wa" 73, 1), (L 7a)
so that as A~
H(w, ) ~2/3H(0, 1). (1. ™)

Since H(0, 1) is independent of A, we would expect the
energy levels of H(w, A) to have the asymptotic form

E(w, ) ~C,\/% ag x— (1.8)

where C, depends on # and w. We will show for example
that the ground state energy can be represented to better
than 1% accuracy when A > 0.3 and to better than one
part in 10% accuracy when A >100 by

E{w, N) ~\1/3(0, 667 986 259 18 + 0. 143 671"2/3

~0,0088)4/34+...), (1. 9)

Schiff' by a numerical calculation and Schwartz!® by a
variational method which he called a new Tamm—
Dancoff method, discussed the Hamiltonian H(0, 3) and
obtained a ground state energy which is equivalent to
0.667 986 26 for that of H(0,1). For small A, we will
also present a simple iteration scheme by which the
energies can be obtained to an excellent accuracy.

The second quantization form of the Hamiltonian (I. 1)
is obtained by introducing the creation and annihilation
operators a' and a through

a'=(xwt /2= ipwl/?2t/e (1.10a)

a=(xet 2 +ipwt/?at/2 (I.10b)
which yield

H=wla'a+3) + 10w +a)t. (1.11)

In our consideration of this Hamiltonian we will employ
the Bargmann'®*? representation and follow some of the
ideas which we introduced in a previous paper on the
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interaction of a photon with a two level atom.!® In the
Bargmann representation a' and a are related to a com-
plex variable z by

a'=z and a=d/dz. (1.12)

Then the eigenfunctions of a' a have the remarkably
simple form, 2", as is clear from

(zd/dz)z"=nz", (1. 13a)

so that the eigenfunctions and eigenvalues of (a'a +3)w
in this representation are obtained from

wl(zd/dz) + 32" = (n+3)wz". (1. 13b)

Bargmann*? has constructed a kernel function which
transforms the function f(z) into a corresponding func-
tion in configurational space.

The operator equation Hy= E3 with H given by (1. 1)
has the Bargmann representation

[w(% +zd—‘i)+% A/ (z +d—‘i )4]4): Ey.

As with the momentum representation (I.5), X appears
as a coefficient of the highest derivative in the equation.
In Sec. II we will seek solutions of this equation of the
form

(1.14)

E,N=@G+tnw+A,0), (1. 15)

b,(2) =f, (X, 2)=2"B,(}, 2) (1. 16)
with

B,()\ z)= f} (U + 6, 4Je* and Uy(d) =0, (.17

k==n

In order to develop series such as (I. 9) we rewrite
the Hamiltonian H(wx/3,1) as

wa-l/s 1 =1 2+w2xz X2/3)+x4
y 2

=3 (p? + wx®) — €win® +ut (1.18)

€=3(1-x?%/3) and O<e<z, if A>0. (1.19)
We put this in second quantized form by setting

x=(a'+a)/2w)}’? and p=ila' - a)(w/2/%. (120

Since
H(wA 3 1) =w(a'a +3) - sew(a’+a)* + (a' +a)*/4u?,
(1. 21)

in the Bargmann representation, we have the eigenvalue
equation

(oo o) o) a0

The parameter €, which might be considered as a per-
turbation parameter [being restricted to the interval

(0, %)] is not a coefficient of the highest order derivative
in our equation. Equation (I.22) will be discussed in
Sec. III where formulas such as (I.9) will be derived.

The detailed program developed in this paper is a
combination of analysis and computer evaluation of cer-
tain determinants which appear in solving the basic
difference equations which are required to solve (I. 14)
and (L. 22) using (1. 15)—(1. 17). We present some new re-
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presentative tables (see Table II) of energy levels accu-
rate to 7 or more significant figures. They sample the
entire range 0 <A< and 0 <n <<, Our main thrust,
however, will be to derive various analytical formulas
which when combined, give excellent values of E,(\) over
all positive A and n. The single formula which seems to
have the greatest range of validity is the large n, large
A formula

ABE () =C{(r +5) + 0(n +3) 13 +ax ¥ (n +3)

+o(n ) RS+ paA
where
C =331 $)}?/3=1.376 507 40,
a=4-323{r({)}1%/3=0. 268 055 493,
b=6m{r)}® - (1/32) =~ 0.011 674 983,
6=10.026 50 .

An important feature of our general numerical algo-
rithims is that each energy level is calculated indepen-
dently of the others so that small errors in the ground
state calculations do not propagate with amplification
into the excited state energy calculations.

In the remainder of this paper, the various formulas
can be converted into those appropriate for the differ-
ential equation

B & r o1 2 14)
— -3 - = 1.23
(Zmd7+(E imw?® - XY ) =0 (1.23)
by noting that if we set
E=E’/hw and y=x(mw/H/? (1. 24)
then
14 1.2y &y
(§W+(E—2y -xY)y=0 (1.25)

where

Yen d-mz €_n+a

b '

a by v, dy e

a b_z Yo dz ey

( )

A= A"H/m208, (1. 26)

All our analysis will be based on (I.25) or its equivalent
Bargmann representation. Hence all formulas which
relate E and A can be transformed to relations between
E' and A’ by using (1. 24) and (I. 26).

1l. ON THE SMALL X\ REGIME

In the small X regime, we start with Eq. (I.14). After
substituting (I. 15)—(1. 17) into (I. 14) and equating co-
efficients of like powers of 2*™, we obtain [with U,
=U{M(N)] when 2 is even

aUk-& + bk-zUk-z + "% Uk +dk+2Uk+2 +ek44Uk+4

== a8, 4= b, 28 2 F & AN ~ ¢l = dy 138y, 2= €rusds, s

(. 1)
k=—ny-n+1,...,0,1,2, ...,
where
a=%r =t A1+20m+R)(n+E+1)] (1. 2)
by=ME+k+n), n=Fk+tc,—AM), (1. 3)
dy=Mn+R(n+k-Dn+k-3), (1. 4)
g=tMn+r)n+k-1)n+k-2)n+r-3). (1. 5)

All these coefficients except 7, are proportional to A as
x—~0. The set of Eqs. (II. 1) has a simple matrix repre-
sentation. It should be noted that only U, with even sub-
scripts appear in the equations. For example, if n=4
the only U, which appear are U, U, U, Uy, ---. One
can arbitrarily set U y=U_=U;=...=0 since they
don’t appear in any formulas, If n=3, the only U, which
appear are U, Uy, Uy, - - -. Generally, for even n the
lower index of Eq. (I.17) starts with —» and for odd n
the lower index of Eq. (I.17) starts with — (k~1). The
matrix form of (IL 1) is

(0\

()

.

0
. - e
Ua| T ~ dy . (I1. 6)
U, AN - ¢
U, - b,
-a

\ )

All elements in the matrix which do not lie on the main
diagonal, or the two off diagonals immediately above or
on the fwo immediately below the main diagonal vanish.
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Let us first consider the ground state with n=0. An
analysis of other » values follows in a similar way. The
basic matrix equation in this case is
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/‘)’Odze40 00 \ /UO\ G()\)_b

by¥ydieg0 0 - | |U, - b,

a b, v dsg e, 0 - Uy |=]|~a , (m.m
0 a byvgdgeny---||Us 0

where now
a=gX, b,=3M3+2R), d,=Xe(k-1)(k-%),
=g M1 +2k(k+1)], e=1Xe(k~1)(k-2)(k-3),
Ye =kt op— AN, (1. 8)
By constructing the inverse of the matrix on the left of

Eq. (IL.7) (which we call G), we can solve for Uy, Uy, - -,
Let

Yo dy eg 0 . Yo dgeg 0 0
by Yy ds € ... dye,0 00
X=la byvedg... |, Z=|a byvgdgey---|,
0 abgvg... 0 a bgygdyy - - -
(IL 9a)
dy 000 0 ...
by Yadgeg0 0
Y=(a byYedye0 .. (11. 9b)
0 absysdloelz...
Then
Ug(N) = (det G)[(A(N) - c)det X +bydet Y +adet Z].
(I11. 10)
Since we postulated Uy(}) =0, we find that
A A d
A()\):é A_i)’______detY___ etZ (1. 11)

It is to be remembered that each of the determinants
X, Y, and Z are functions of A(}) through the depen-
dence of the diagonal elements {%} of each on A(}).

We have used the following numerical scheme to solve
Eq. (II. 11) for the ground state energy level shift A(N)
due to the anharmonic term in (I. 2). Each of the deter-
minants X, Y, Z is truncated to some order, say into
a 2X2 determinant. A trial value of A(}) is substituted
into those determinants and a corrected A(}) is calcu-
lated as the left-hand side of (II. 11). The corrected
A(}) is then substituted into the determinants X, ¥, and
Z and a second correction to A()\) is obtained. The pro-
cess is repeated until A(})) is obtained to the required
number of significant figures. The convergence of this
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process has been experienced to be very rapid. The de-
terminants X, Y, Z are then truncated at a higher order
say into 3X3 determinants. The value of A(}A) obtained
from the 2X2 truncation is used as a first approxima-
tion to be inserted in the 3X3 determinants which with
(IL. 11) are used to find a next approximation to A(}).
This approximation is used to obtain a better one until
the A(}) from the 3X3 truncation is obtained for the re-
quired number of significant figures. The result of the
3% 3 truncation for A()) is used as the starting point for
the iteration processes using a 4X4 truncation, etc.
The A(M) obtained from successive levels of truncation
are compared and the calculation terminated when the
successive A()) agree with each other to the required
accuracy.

Table I shows how rapidly these iterations of A(\) con-
verge for some small values of A used by Loeffel ef al.
The table was produced in less than 10 seconds of com-
puter time. Notice that the results given by using only
the 2X2 determinants are already remarkably close to
the exact values.

With the aid of the Schweinsian expansion of the ratio
of determinants'® we can apply the above ideas to the
derivation of analytical expressions for A{}). A conve-
nient notation in terms of which the Schweinsian expan-
sion can be expressed is

@ by dy

as by cp dy

‘ a,65C4d, ! = (11. 12}

as by 3 dy
ay by ¢y dy

In this notation the expansion of the ratio of two determi-
nants which differ only in the first column is

|mbycydy - - | /| aybyesdy - - |
=h/a+ lhxaz‘b1/a1‘aqbz|
+ | hyaghy| [Dycy| /1 ayby ]| | aybycs]|

+ | hyagbgcy| | bycady| /| aybocs | |aybycydy|+ - - -

(11. 13)

The expansion (II. 13) is of course still applicable after
interchanging rows and columns in X, Y, and Z.

Application of (II. 13) to terms in (II. 11) yields

A / 75 byl
- +22 )% Y, 2 U2
detY/det = (dy/7,) Y { es dg|/ |4, 7’4(}
lbza [da Yy by I'Yzbzal Y2 b2
+ LRI 1. 14)
|7 b, "34 dy /Id4 Vg by | dy 74 ¢
0 esds| les dg 76]

TABLE 1. The convergence of ground state energy shifts A;(A).

Size of A=0.05 A=0.1 A=0,5
determinant
2 X2 0.032 687 83 0.059 385 59 0.197 535 77
4 X4 0. 032 642 85 0.059 146 65 0.196 685 53
6 X6 0.032 642 76 0.059 146 40 0.196 18747
8 X8 0.032 642 75 0.059 146 33 0.196177 74
10X%X10 0.032 642 75 0.059 146 33 0.196 176 22
12 X12 0.032 642 75 0.059 146 33 0.196 175 82
14 X14 0.032 642 75 0.059 146 33 0.196 175 82
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e Yy
d; by

Vs dy
by 7,

/ }
(11. 15)

The first term in the ratios is, as A~ 0 of order A, the
next of order A%, etc. From the definition (II. 8) and
especially

Y2.=2+(390/4) - AN,

detZ/detX = (e./v,) +%: {

7 =4+(123)/4) - A(V), (I1. 16)
we find that
A =§r- P23y + ]
_8 (e +(/y)-2] | (IL 17)

2 (va7s ~ 147X%) ’

When A is very small, we can choose as a zeroth ap-
proximation A()) ~3X. The next approximation is ob-
tained by substituting this form into ¥; and ¥ and re-
taining only the first and second term in (I 17). Then

3 3 3 1

A =5r- <m+m)+ ree,
Notice that the radius of convergence of (2 + 93!
=3[(1-(9r/2) + .- ] is | X1 <2/9 while that of (4 +30))"
=3[1-(152/2) +-.-]is 1X| <2/15. The term 1/7; still
has a smaller radius of convergence. Hence, if expan-
sions such (II. 17} and (II. 18) are to be useful for even
small A, one must refrain from expanding denominators
containing A. This observation is consistent with the
result of Simon, that Padé approximant expressions for
A()) converge while the basic perturbation series (I.3)
diverges. A second order approximation can be found

(I1. 18)

3

A== 3N {3/ [z+ 9A +-22 (__3_ 1

e 3ox)]

3..( 3 1
+1/[4+3°H§A (2+9A+4+3ox)]}

632 /3x-4 oY
T2 \2+9) 4+30X

2 \2+0x

)/(8 + 961+ 12322) + O(A%),

(I1.19)
For an arbitrary energy level n, we have

detU ,  detV . detY detZ
=Cn—~ (= + + -
AN =c, (e°det)( Y gex " 013etx ~ “derX

) (11. 20)

where U, V, X, Y, Z are matrices obtained from G by
striking out the rows and columns of the elements a,,
by, vy dg, and e, respectively, G being the matrix on
the left-hand side of Eq. (II. 6), The elements a, b, v, d,
and e are defined in (II. 2)—(II. 5) and are, of course,
dependent on 7. A number of values of A,(A) for 0< X
<1 have been computed for » ranging from 0 to 10. To
obtain an accuracy of 8 decimal places for A=0.05, for
example, the size of determinants required ranges from
X7 for n=0 to about 20X20 for =10, and for A=1,

it ranges from about 20X 20 for n=0 to about 40X40
for n=10,

Our numerical data suggest, however, that for small
values of A, the values of A,(}) are given to rather good
accuracy by determinants of much smaller sizes. In-
deed, we find that the following simple jteration formu-
las give better than 1% accuracy for 0 <A<0,2 when
n<4,

For n=0,1
for A(M) by using the first order approximation for 7, T 1 \dy e ‘ va d,|
and ¥, in the term of O(®) in (II. 17), and the zeroth AN =cy- o {bO‘ bz 74‘ +a dz e‘* | } (m. 21)
order 7, and ¥, (with A(A) =3)1/4) in the term of O(X%) in b 74\ 27 2 %4
(I1.17). Then we find | z
For n=2,3,
_ "}'.2620 + Y.zezol+dlb-zdze4
AN =c,- b0y de T vdy| TPl v (11. 22)
0 by bz dz ey 0 b2
For n=> 4,
. l'y_4d_300 ¥4ds0 0 Yady, 00 a b,d,e,
byva€,0 |, 1047260 a byd,e, byvse 0
=cy- +
AN =cq Yad, 00 Y014 bodye, 210 a vd Plo a %ndl %o a %4, (I1. 23)
bavae0 0 0 b7 la badye [0 0 b, %l 0 0 by
0 a '}’2 d4
0 0 b,

Since (1. 21), (II. 22), and (II. 23) give cubic, quartic,
and quintic equations, respectively, in A(}), we can, in
principle, express A,(}) for small values of X in closed
form expressions in terms of the roots of these cubic

or quartic equations, or in terms of some elliptic in-
tegrals. We shall not write down the solutions here
because in practice, given any small value of A, A(})
can be readily obtained (to within 1% of the exact values)
by iterating (II. 21), (II.22), or (II.23). In Table II, we
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| present some examples of these values. The large X
case (say A>0.2) will be discussed in the next section.
A larger collection of these data has been obtained but
we shall not present it here as those presented in Table
II are quite representative of these data.

In the same manner as the approximate series expan-
sion (I1. 18) was derived for the ground state energy
shift, we have, for an arbitrary energy level »n, the
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TABLE TIA. Comparison of the exact values of E,(\) for =0, 1, and 2 with those obtained by using Eqs, (I1.21), (IL22), or (II.23)

or those obtained by using Eq. (IIL 9).

n=0 n=1 n=2
0.002 0.501 489 66 0.501 489 66 1.507 419 39 1.507 419 40 2,519 202 12 2.519 20215
0.006  0.504 409 71 0.504 409 74 1.521 805 65 1.521 806 05 2.555 972 30 2.555 974 52
0.010 0.507 256 20 0507 256 44 1.535 648 28 1.535 650 77 2.590 845 80 2. 590 856 44
0. 050 0.532 642 75 0. 532_687 83 1.653 436 01 1.653—703 49 2.873 979 63 2.87:1 656 64
0.100  0.559 146 33 0.559 385 59 1.769 502 64 1.770 324 14 3.138 624 31 3.139 625 55
0.300  0.637991 78 .y T 2.094 641 99 oo ST o 3.844 782 65 S Bas 399 36
0.500 0.696 175 82 8: gg; ggg " 2,324 406 35 gggg égg gg 4.327 524 98 4,395 212 17
0.700 0.743 903 50 g: ;:g gii oo 2,509 228 10 2. 508 297 60 4.710 328 10 4,708 778 94
1.000 0.803 770 65 g: ggg gig e 2,737 892 27 2. 737 444 02 5.179 291 69 5. 178 265 39
2 0.951 568 47 0. 951"240 90 3,292 867 82 3.292_788 53 6.303 880 57 6_30; 405 63
50 2.499 708 77 2-499_704 46 8.915 096 36 8. 915'101 83 17.436 9921 17_43; 9762
200 3.930 931 34 3930 930 56 14-059 2268 14.059 2281 27,551 4347 27 551 4312
1000 6.694 220 85 660422079  23-972 2061 23. 975 2062 47.017 3387 47, 017 3384
8000 13.366 9076 - 47.890 7687 - 93.960 6046 -
13.366 9076 47.890 7687 93.960 6047
20000 18.137 2291 18.137 2291 64.986 6757 64.986 6757 127. 508 839 127. 508 839

following approximate expansion:

defined in Eq. (II, 2)—(II. 5), but with A=1 and the primed

parameters related to the unprimed ones through

n+1)(n+3/2P%n+2)
2F3A(2n +3)

n{n-3)%(n-1)
243\2n-1)

A =31+ 2n(m+1)} - 22 (

n+1)n+2)(n+3)(n+4)
16[4 + 61(2n + 5)] -

n(n—1)(n—-2)(n-3) e
T T16[4+ 6A(2n - 3] ) )

We observe, as we shall again do in the following sec-
tions, that as » increases, the range of validity of this
approximate expression decreases.

(1. 24)

i11. ON THE LARGE A REGIME

In the large X regime we start with (I. 22) and proceed
with a series expansion for ¥(z) of the same form as that
used in the last section. The coefficients U, = U (¢)
again satisfy a recurrence formula similar to (II. 1)
(with b=-n,-n+1,...,0,1,---)
Uy 4+ by 2Una ¥ YeUp + douzUpuz + s Uns (111 1)

=ad, 4~ bt:-zék,z + 8, olAN) = ¢g] - dtz'+25k,.z = Oy,

where now the parameters a, b, ..., ¢, are just those

1950 J. Math. Phys., Vol. 16, No. 9, September 1975

by==3€+b,, d,=~3e(k+n)(k+n=1)+d,

.2
Ye=—€( +n+k) +7, with e=3(1-212"%), (1. 2)

As in Sec. II, let us first consider the case of the
ground state. Then the analog of Eq. (II.11) is

Ale)=2-te-1(3- €){detY’/detX’) - sdetZ’/detX’
(111. 3)

where the matrices X', Y’, and Z’ are obtained from
(11. 9a) and (II. 9b) by replacing those elements

Y5 djy .., etc. by the primed elements v, dj, - - - (with
n=0). The numerical work for the determination of
A(e) for a fixed value of € follows in exactly the manner
discribed in Sec. II after Eq. (II.11). The €=3 (A~x)
results are as follows (using the scaling argument of
Eq. (I.7a):

Eo(N) ~ N33 + A 3)]. (11 4)

The values of 4,(3) which have been obtained from con-
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TABLE IIB. Comparison of the exact values of E,(\) for n=3, 4, 5 with those obtained by using Eqs. (I.22) or (I.23) or those ob-

tained by using Eq. (1L, 9).

n=3 n=4 n=>5
x E® Eq_(1.22) 0 Eq. (1,29 E,0 Eq._(123)
Eq. (IL9) Eq. (IIL.9) Eq. (IIL.9)
0.002 3.536 744 13 3.536 744 29 4.559 955 56 4.559 956 06 5.588 750 05 5588 751 42
0.006 3.606 186 33 3.606 194 63 4.671 800 37 4.671 824 29 5.752 230 87 5.752 287 77
0.010 3.671 094 94 3.671 137 50 4.774 913 12 4.775 023 88 5.901 026 67 5.901 257 11
. 30
0.050 4.176 338 91 4.177245 52 5. 549 297 81 5.550 191 03 6.984 963 10 6.988 463
4,631 45713 6.240 080 74 7.988 925 29
0.100 4,628 882 81 o1 6.220 300 90 S 219 599 8 7.899 767 23 T 599 B 20
5,979 729 13 8.555 269 81 -
0.300 5.796 573 63 2" 793 670 48 7.911 752 73 7 ove 520 94 10.166 4889 10168 7642
0.500 6.578 401 95 6. 576 931 56 9.028 778 72 0. 09 513 74 11.648 7207 11, 648 4741
0.700 7.193 265 28 7.192 309 47 9.902 610 70 9 902 498 08 12.803 9297 12,803 8175
1.000 7.942 403 99 7 041 790 01 10-963 5831 10.963 5485 14.203 1394 14.203 0966
; - = -
9.727 323 19 o737 053 94  13-481 2759 15,481 2680 17.514 1324 17514 1335
50 27.192 6458 27.192 6380 37.938 5022 37,938 5037 49,516 4187 49. 516 4171
200 43,005 2709 45,005 2693 60. 033 9933 60.033 9934 78.385 6232 78,385 6216
1000 73.419 1140 7,419 1139 102. 516 157 102,506 157 133,876 891 135878 890
8000 146. 745 512 146,745 512 204,922 711 204,972 Ti1 267.628 498 267,698 498
20000 199.145 124 199, 145 124 278.100 238 278. 100 238 363,201 843 263,201 843
sidering ratios of various truncations of the determi- The expression
nants are given in Table III.
& E,(N=N/3e,+ a2/ +8 x5 +...) (111. 9)

We have calculated the Ay(}) in

EN) =N3[3 +4,(V] (111. 5)

as well as Ey(}) for the range 1 <A<, Some values are
recorded in Table II. These results as well as those in
a much larger collection were fitted to the asymptotic
formula

E,=X/3(0.667 986 259+ 0,143 67223
-0.0088x4/3+...) | (111. 6)
The tabulated results were themselves used to obtain
the coefficients of A-2/% and A%/3, A sequence of E,(N)
was calculated for A=2, 10, 50, 100, 200, ..., 10°, From
these the number @, defined by
Lm[A1/3E(N) - 0.667...]32/3= g,

A~

was calculated to be 0,143 67. With this constant eval-
uated, we proceed to evaluate the coefficient of A-4/3,

(111, 7)

For an arbitrary energy level n, the analog of Eq.
(I1. 20) is

A(e)=cg_(

detU’ | .detV’ | ,det¥’ detZ')

- ~+ -+ > - —
¢ getxt” T Naetx” T O0qett” ~ Y qetX
(III. 8)
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was constructed in a similar manner for # in the range
n=1,2,3,...,10. Equation (III. 3) was used to evaluate
all A,(e)=A () by using the U', V', X', ¥’, and Z' for
the appropriate » using the matrix elements (III. 2). The
results of these calculations are collected in Table IV,

Putting the values of €, «,, and B, in Eq. (III.9), the
values of the energies so calculated for 0.3 <i<10°
are given in Table II, and they are, as it will be ob-
served, remarkably close to the exact values.

Thus for small n, the small X regime (say 0 <1 <0,2)
is covered well by the simple iteration formulas
(11, 21)—(11. 23), while the large A regime (0.2 < X < =)

TABLE IIl. The convergence of Aylc) for =3, i,e., A= as
the sizes of determinants increase.

Size of determinant Ay®
2 %2 0.172 798 464
8 X8 0.167 998 149
14 x14 0.167 986 327
20 x20 0.167 986 261
26 xX26 0.167 986 259
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TABLE IIC. Comparison of the exact values of E,(A) for n=6, 7, 8 with those obtained by using Eq. (II,23) or those obtained by
using Eq, (I, 9).

n=6 n="17 n-8
0.002 6.623 044 60 6.623 047 83 7.662 759 33 7.662 766 21 8.707 817 30 8.707 830 68
0.006 6.846 948 47 6.847 064 52 7.955 470 29 7.955 677 56 9.077 353 66 9. 077 680 58
0.010 7.048 326 88 7048 725 00 8.215 837 81 8.216 411 26 9.402 692 31 9.403 362 81
0.050 8.477 397 34 2::23 it oy 10.021 9318 ig:ggg ';Z‘;; 11.614 7761 ﬂ e g??g
0.100 9. 657 839 99 T 11.4873156 11,482 6361 13.378 9698 1 oo oo
0.300 12, 544 2587 12. 54‘3 6302 15.032 7713 15'03‘2 2095 17. 622 4482 17, 62’; 9566
0.500  14.417 6692 L4417 4616 17.320 4242 17,950 2304 20,345 1931 20.347 0402
0.700  15.873 6836 15,873 5937 19.094 5183 19, 094 4385 22.452 9996 22,452 9391
1.000  17.634 0492 17, 694 0196 21.236 4362 21,296 4095 24.994 9457 24,992 9237
2 21.790 9564 21790 9635 26.286 125 26.286 191 30.979 883 30.979 896
50 61.820 3488 61.82"0 3490 74. 772 829 74.77‘2 829 88.314 328 g8, 31; 330
200 97.891 3315 97_89’1 3308 118.427 83 118.42‘7 83 139.900 40 139'903 40
1000 187,212 258 - 202.311 20 - 239.011 58 -
167.212 257 202,311 20 239. 011 58
8000 334.284 478 534, 208 478 404.468 35 404, 468 35 477.855 70 477,855 70
20000 453.664 875 453, 604 875 548.916 14 548,016 14 648.515 33 648,515 33

the WKB method to the Hamiltonian H(wX™ /3, 1) rather
than to H(w, M.

Let us first consider the limit A - which yields the
Hamiltonian of a purely quartic potential energy func-
tion. This case has been treated by Titchmarsh in his
more rigorous adaptation of the WKB type formulas
(see Ref. 20, p.151, Eq. 7.7.4). Let Uk, Uy, --- be the
eigenvalues of

is well covered by the simple formula Eq. (III.9). We
shall now discuss the large n regime in the next section.

IV. LARGE n REGIME

It is evident from Table IV that ¢, and a, depend on
n while as n increases £, becomes independent of #. In
Table V we show that €,(n+3)™/% and a,(n+3)2/% ap-
proach constants as »n increases. Since the WKB approx-
imation should be valid for large n, these constants
should be related to WKB results. Furthermore, since
we are concerned with the large A expansion, we apply

v +[p=g)ly=0 with g(x) ~~ asx—zx, (IV.1)

TABLE V. The approach to the WKB results.

TABLE IV. Values of €,, ¢,, and B, for n=0, 1...., 10. n €,/ (n+HY? o,/ (n+ PV3 8,
n e @ s 0  1.683219 90 0.228 06 —0.0088
n n n

1 1.394 02711 0.273 05 —0.0140
0 0.677 986 259 0.143 67 —0.0088 5 1.584 25137 0 265 16 o o125
1 2,393 644 02 0.357 80 —0.0140 5 1880445 55 0 268 20 o o122
2 4.696 795 39 0.493 97 ~0.0125 4 1.37889955  0.26813 —0.0116
3 7.335 730 01 0.618 26 -0.0122 5  1.378111 41 0.268 10 ~0.0116
4 10.244 3085 0.730 84 ~0.0116 6  1.377656 94 0.268 08 -0.0116
> 13,379 3366 0.835 36 - 0.0116 7 1.377371 35 0.268 08 ~0.0116
6 16.711 8896 0.933 73 - 0.0116 8  1.37718030 0,268 07 ~0.0116
7 20.220 8495 1.02716 —0.0116 9 1.377 046 24 0.268 07 —0.0116
8 23. 889 9937 1.116 53 —0.0116 10 1.376 948 59 0.268 06 —0.0116
9 27. 706 3935 1.202 45 —0.0116
1o 31.659 4566 1.285 40 —0.0116 WKB 1,376 507 40 0.268 055 493  —0.0116 749 83
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y(x o) =y'(x=)=0.

Then, if ¥, and x, are roots of q(x) = L,

- a0P ax=n+3 4001/, (v.2

When q(x)=2x¢%, x,=(Gp)'’4, and xi=~ G u,)*’* (see
Ref. 20, p. 144, Eq. 7.17)
L )
If (III. 9) is compared with (IV. 3) this implies that as
n—= (identifying i, with 2E,)
C=lime,(n+3)*/3=34"222/r(%)]?/*=1. 376 507 40.
nee
(Iv.4)

This result is consistent with the fact that in Table V,
when #=10, the value of €,(n+%)"/% has already become
1.376 948.

(Iv.3)

Now let us choose g(x) in (IV. 2) to be

gx) = Ex? + ma; (Iv. 52)
we can discuss the small A case with the
E=1 and n=2); (Iv. 5b)

we can also discuss the large A case by choosing

E=x2/% and n=2. (Iv.6)

Equation (IV. 2) becomes the elliptic integral
n+3+0(1/n) =27 /2/1r)fo’°[(x§- (2 + a2 dx,

or

n+5+001/n) =@ ('t + L2 'YK (R)

- 28 4E(R)), (.7
where x2 and %% are defined by
%2 £ (gz " )1/2 (1v. 8)
= F =4 + = » .
xf} ¥ 20 \4a7 7
u=(£+4anp,), (Iv.9)
Rr=3[1- {& +anu,)t /2, (Iv.10)

and K(k) and E(k) are the complete elliptic integrals of
the first and second kinds, respectively. With the
choices given by Eqs. (IV.5) and (IV.86), u,=2E, in our
case,

In the large i regime the elliptic integrals can be
expanded yielding a series in K,. If only the first few
terms are retained one can solve for p,=2E, in terms
of 7 as is done in the Appendix. In our case, we find the
form (IT. 9) with the limits of «, and B, as n—~*= given
by

a=lim a,(n+3)"2/3=4,32/373 /[p(L)Pe/3

=0.268 055493, (iv.11)
b=limB,=-(1/32) +6m /[ () |¥= - 0.011 674 983.

v

(Iv.12)
These numbers are very close to those in Table V for
n=10.

A still further improvement can be made by noting

1953 J. Math. Phys., Vol. 16, No. 9, September 1975

that in Titchmarsh’s formula (IV.2) the combination
(n+3) is corrected by a term of O(1/n) which he has

not calculated. Let us suppose that
n+3+0(1/n)=n+3+8/(n+z)+0(01/n? (Iv.13)

and we use our numerical data to find the coefficient 6.
If we let the constant in Eq. (IV.4) be C, then

6=1lim (n +3)(€,/CP4 = (n +3)].

N o

(Iv.14)

Our numerical data for ¢, for n=0,1, ..., 10 of Table
IV yields the results in Table VI from which we acquire
the estimate 6=0,026 50.

We thus find that for the quartic oscillator with poten-~
tial energy V(x) = M\x* the energy levels are

E, =3 /3(34373/[ () /) (1 +4) +0. 026 50(n +1)"

e 8 (IV. 152)
=X/3(1.376 507 40)[(n +3) +0. 026 50(n +3)F +- - ]¢/3,
(Iv. 15b)

This formula yields two figure accuracy when = is as
small as 1, three figure when n=2, four when n=3,
etc. When combined with

E,=0.867 986 2592\'/3, E, =2.393 644 02\'/3,

E,=4.696 795 39A!/3 (Iv. 16)

we have very accurate results for all energy levels of
a quartic oscillator with A>0.

The energy levels for our general oscillator with both
quadratic and quartic contributions to the potential en-
ergy are given in the large n, large » regime by

1/3 1, 8 \° 112/35-2/3
E, =X C n+§+-n—+ﬂ_- +a(n +3)%/3x
2

+oNtS 4. .. (Iv. 16a)
where C, a, b and 6 are given by (IV.4), (IV.11),
(IV.12) and (IV. 14), respectively. While our asymp-
totic expressions were derived for large values of n
(say > 8) they are very accurate for » even as small as
3. When A is small and » is large, series expansions in
A diverge and Padé approximants converge rather slow-
ly as do expressions such as (1. 24) unless 1 <0, 2.
However, the elliptic integral scheme described below
converges rapidly.

The elliptic integral formula (IV.7) can be used most

TABLE VI. Estimates of 6 from Eq. (IV.14).

b

.040 711 18
. 021 443 93
. 026 352 50
.026 275 77
.026 387 73
. 026 433 28
. 026 459 77
.026 476 49
.026 487 63
. 026 495 36
.026 501 19

HoOoo_aouk oo
QO OO0 OOoOoOO0OOS |O

o
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effectively by noting that » being a function of E,, is
equivalent to E, being a function of »n. Consider an ar-
bitrary sequence of choices of E,. These give rise to

a succession of corresponding values of n +3% which gen-
erally would not be half integers. If one wished for a
given X to determine with some accuracy the mth energy
level (with m “large”), one would choose the two values
of £, and E,, which yielded values of n; <7 <#,. Since
in our model E, lies between E,,1 and E,,z, a first esti-
mate of m could be determined. The process could be
repeated until m +3 was sufficiently well approximated
so that one would have a value of E,, to the accuracy
required. Since, this procedure is a numerical one and
does not involve an expansion in any parameter, Eq.
(IV.7) can be used with either the choice (IV. 5b) or
(Iv.6). If (IV.5b) is used, the numbers E, represent the
energy levels, while if (IV.6) is used the energy levels
are X'/% multiplied by the appropriate E,.

For a fixed n the large X and small X regimes can be
identified by examining the combination (£ +87E,) which
appears in various terms in Eq. (IV.7) as some
function

f(8%+81E,).
Since one can write

&1 +8nE,/ %]

2+ 8ME, =
S, {BWE,.[H&a/BnEn],

(Iv.17

the manner in which various series expansions are to
be made depend on whether

E,<£/8n or E,>£/8n. (Iv.18)

If we identify £=1 and =22, then the regime of small
A corresponds to

E,<1/162, and large A to E,>1/16A.

If A=0.01, and in the small X regime E,=(n+3), the
energy level » to which the small X regime would end
would be that for which

n+5<100/16=6.25.

(Iv.19)

(Iv. 20)

would be violated, i.e., when n is about 6. The larger
the quantum number » of an excited state the greater
the root mean square displacement of the oscillator
from equilibrium and the more important the anharmo-
nic term Ax* becomes in determining the motion. Hence
it is natural to expect that with increasing X the critical
number » at which the large A regime becomes appro-
priate decreases. These statements are bourne out in
Table II where various analytical approximations to the
energy levels are compared with exact results.

Thus, to summarize, we have the following simple
formulas or iteration schemes for all regimes of (A, n):

Small n Large n
Small x Eqs. (II. 21)—(II. 23) Eq. (IV.7)
Large A Eq. (I1I.9) Egq. (IV.16a)
ACKNOWLEDGMENT

We wish to thank Robert Helleman for a number of
interesting discussions on anharmonic oscillators.

1954 J. Math. Phys,, Vol. 16, No. 9, September 1975

APPENDIX
Consider
H=3(+ &) + me*,
If we choose
=223 p= 2,

3

the elliptic integral iteration formula is

n+%+0(l): ((524’4'1-@3“ + §(£z+4"“ﬂ)“4)K(kz)

n 3m 3mn
26(8 +anu )t -,
—T—E(k ) (A1)

where i,=2E,, E, being the nth energy level of H, and

Y £ -
kz_z(l W)—C. (A2)

Denoting K(3) by K,, and E(3) by E,, to the order £,
we have

K(kz)zKo—é%%{’—zm mf%m----, (A3)
where we have used the formulas

K - [B(e) - (1- IR ()] /2001 - (a9

2B _m(e) - k(e)) 2. (45)
Similarly,

E(kz):EO_E(—gz%fl,z+--- (A6)

Substituting (A3) and (A6) into (A1) and expanding in
powers of £, then retaining terms up to £2 only, we get

1 1\ 2872k £(2E,- K )4
+2+0{(2) = 0 ,,3/4 _ 0 0 1/4
T3 O(n) Z 7% oT72; Hon

221 /ZK
fsﬂn ] “;l /4. (A'?)

Letting x = p2/%, (A7) is a quartic equation in x. Solving

n

for x, letting u,=2E, in the end and noting that

Ky=3m"4r@F (a8)
and

2E;- Ky=2m%"¥r ()%, (A9)
we find

1\]4/3 117278
E,=C [(n +3)+ 0(;)] +ax-2/3 [(n +3)+ O(Z)]
+pAt3 ... (A10)

where

C=3*372r(1)]8/3=1.376 507 40- - -, (A11)

a=4.3233[()]1%/*=0.268 055 493 - -+, (A12)

b=6m4r)]8-(1/32)=-0.011 674 983 --... (Al3)

WKB elliptic integral methods have also been used
by Mathews and Eswaran'? for the quartic anharmonic
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oscillator and by Lakshmanan and Prabhakaran®® for the
sextic one. In the quartic case Mathews and Eswaran
have explicitly derived the equivalent of our large and

small A limits but they have not obtained series expan-
sions such as (A10).
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Moment inequalities for ferromagnetic Gibbs distributions*
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Moment inequalities analogous to Khintchine’s inequality (for sums of independent Bernoulli random
variables) are obtained for a certain class of random variables which naturally arises in the context
of ferromagnetic Ising models and ¢* Euclidean (quantum) field models in a positive external field.
These results extend ones obtained previously which applied only to the mean zero (vanishing

external field) case.

1. INTRODUCTION

Throughout this paper we consider finite collections
of (spin) random variables {X;: j=1, ..., N} whose joint
probability distribution v on IR¥ is of the form:

1 & X N
vy, . 9x1v)=?em(jghjxj+j§2k=l‘]jkxixk)jglpj(xj) 1.1)

with J;, >0, k; =0, and each p; an even probability mea-
sure such that

J exp(®x®)dp,(x) <> ¥ be R, 1.2)

When p, (x)=[6(x ~1)+6(x +1)]/2 for all j, (1.1)is
the Gibbs distribution of a spin-; Ising model with pair
ferromagnetic interactions J,,, in a positive external
magnetic field k,. Distributions of the form (1.1) also
arise naturally as lattice approximations to Euclidean
(quantum) field theories; for example, the lattice ap-
proximation to an a¢*+ b¢? - ¢ Euclidean field model
yields

dp;/dx=exp(- a;x* - b,x®) for each j.'

We define F(r)=1ogE(exp[X(r)]), where X(r)=3Fr,x;.
The Griffiths—Kelly—Sherman inequalities®* state,
with no further restrictions on the p,’s, that, for any
choice of m, n, j;, &,

E(le---ij)zo (1.3a)

and
E(le- . .ijxkl. . .Xkﬁ); E(XJI . 'ij)E(Xkl' . .th).
(1.3b)

In particular this shows that aF/arJ. z 0 and azF/arjark
20 whenr>0 (i.e., when»; 20V i),

For certain choices of p,, including both spin<z
models and g¢*+ b¢? — u¢ lattice approximations,® the
Griffiths —Hurst—Sherman inequality® states that for any
i, 4, k,

3%F

———<0 whenr=0.
97;07,07,

(1.4)
The following simple proposition will then apply to the
random variable X(r) when r= 0,

Proposition 1: If X is any random variable such that
E(exp(rX))=exp[F(r)] <~ ¥ » and such that F® (r)<0
vr =0, then

E(exp(rX)) < explrE(X) + 2 0?(X)/2] (1.5)
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for »> 0, where o*(X)=E(X?)-[E(X)]? is the variance
of X.

Proof: By Taylor’s theorem
Fr)=F(0)+F Q)+ tF" 002+ 1/31)FP W (1.6)

for some se[0,7]. Now F®(s)< 0 for s> 0 so that F(r)
< F(0)+ F' Oy + LF" (0. Since F(0)=0, F' (0)=E(X),
and F” (0)= 0*(X), the proof is complete,

In Ref, 7, it was shown by means of the Lee—Yang
theorem (see Sec, 3) that when 2, =0V in (1.1), then,
for any ze €%,

| E(exp[X(2)])| < exp[$E(X(|Rez])?)], a.m

where |Rez| denotes (IRez,!, ..., |Rez,!)eRY. The
following theorem extends this result to nonzero k, and
gives a simpler proof even in the 2, =0 case.

Theorem 2: If the GHS inequality (1.4) is valid for the
{X,}Ndeﬁned by (1.1) (with J,,, k; > 0), then, for any z
e ¢¥,

| E(exp[ X (2)])|
< exp[E(X (| Rez|)) + 30?(X(| Rez]))].

Proof: The left-hand side of (1.8) is, of course,
bounded by E(exp[X(Rez)]), which, by expanding in terms
of the moments of X(Rez) and using (1, 3a), may in turn
be bounded by E(exp[X(IRez!)]). The right-hand bound
of (1.8) is then obtained by applying Proposition 1to X
=X(IRezl).

Remark 1; A simple symmetry argument shows that
Theorem 2 is still correct when i, < 0V j, providing that
E(X(IRez!)) in the right-hand side of (1,8) is replaced
by its absolute value.

1.8)

It was shown in Ref, 7 that for i, =0, not only is in-
equality (1.7) correct, but in addition

0< EX(@Pm)<[@m)!/2"m [ EX P

for r>0 and any m=2, 3,++ . For a spin-; model with
J; = 0, (1.9) is a statement about linear combinations of
Bernoulli random variables and is just Khintchine’s in-
equality (Ref. 8, Chap. 5). A direct consequence of
(1.9) (Ref. 8, Chap. 5) is the existence (for 0<p < =)
of positive constants A, and B, depending only on p {with

B, =[(@m)1/2™"m!]"/ 2”‘? such that

1.9)

ANX @, < 1XE)N, < B, X @,y (1.10)
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where 11X1l, denotes the p-norm [E(| X1#)]'/%,

Now, a natural conjecture from (1.8), is that by
analogy with (1,9), we should have for &, > 0 that
In/21

0<BX(I< 2 grrltgmr BXENT o))

1.11)

for r>0 and any n=1, 2, 3, -+, where [n/2] denotes
the greatest integer <n/2; a further conjecture would
be that (1.,11) could be strengthened to yield point cor-
relation inequalities (such as in Ref. 7, Eq. (3.3)),
Unfortunately, we have not been able to obtain either of
these very strong results; instead, we do derive that
(1.9) [and consequently (1.10)] is still valid in the #,
>0 case (see Theorem 4 below), The remainder of this
paper is concerned with the derivation of this and other
results and an application of them to the construction
of ¢* Euclidean field models: in Sec. 2, we define and
study random variables of type L, and, in Sec. 3, we
show that for general Ising models obeying the Lee—
Yang theorem, X(r) is of type [, for r=0.

2. RANDOM VARIABLES OF TYPE [,

Definition: A random variable X will be said to be of
type L, if, for some real C, C,

|E(exp(2X))| < Cexp(C’ |2]?) ¥ ze €,

and the zeroes of E(cosh(zX)) are all pure imaginary.

2.1)

We recall from Ref. 7 that a random variable X of
type [ is one satisfying (2.1) with E(X)=0 and with the
zeroes of E(exp(zX)) pure imaginary. It was shown in
Ref. 7 that such an X is necessarily even so that random
variables of type /[ are exactly those of type / , which
are also even, The following trivial proposition allows
us to extend many of the results of Ref, 7 to the class

Lge

Proposition 3: If X is of type [ ,, and W is a Bernoulli
random variable independent of X, then WX is of type

L.
Proof: This follows immediately from the fact that
E(exp(2WX))= E(exp(zX) + exp(- 2X))/2
= E(cosh(zX)). (2.2)

The cumulants u,(X) of a random variable X may be
obtained from the relation

E(exp(zX)).—:exp(’Eu"(X)Z—,). 2.3)
We define modified cumulants u;(X) by the relation
E(cosh(zX))=exp <n§u:()():ﬂ_l>; 2.4)

thus g, ,, =0, ¥ =E(X?), u¢=E(X") - 3[E(X?)]?, etc. It
is, of course, clear that for X even, u¢(X)=u«_ (X). Al-
most all the results of Ref. 7 for random variables of
type L can be extended to those of type [, (with certain
obvious modifications); the following theorem gives only
the most interesting of these,

Theovem 4: If X is of type L, then ¥ zc €
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| E(exp(2X))| < 2E(cosh[(Rez)X])

< 2 exp| |Rez|2E(X?)/2]. 2.5)
In addition, for any m=1,2, ...,
0< E(X®™) < [(2m)1/2"m ][ E(X®)]™, (2.6)
E(X*m-1)< E(| X |?™=1)
< [@m)1/2mm =1/ 2 E(x?)] emet) /2 2.7)
and
0= (- 1)"g (X)< [(2m)!/2"m][E(X?)]". (2.8)

Proof: We let Y= WX as in Proposition 3 and note
from (2.2) and (2.4) that E(X?") = E(Y*") while u}_(X)
=u, (Y). Thus (2.5), (2.6), and (2.8) follow from the
analogous results for ¥ (Ref. 7, Theorems 4 and 5).
(2.7) is a special case of (1.10) and follows from (2.6)
together with the fact that [IX||, is increasing with p so
that (11X, _, )Pt < (X1, )2=-1,

The next theorem is a fairly simple corollary of
Theorem 4. A more sophisticated version for use in
constructing quantum field models is given at the end
of Sec. 3. We write X, ™ X when the probability distri-
bution of X, converges weakly to that of X or equivalent-
ly when E(exp(iyX,)) — E(exp(iyX)) for all real y.

Theorem 5: If {X,} are random variables of type /,
such that E(X2) < A independent of m and if X, ™ X, then
E(exp(zX,,)) ~ E(exp(2X)) uniformly on compact subsets
of € and X is of type [,.

Proof: The bound on E(X2) implies by (2.5) that
| E{exp(zX,))| < 2exp(4|z]2/2) independent of . Since
E(exp(z2X,)) was already assumed to converge for pure
imaginary z, Vitali’s theorem implies uniform conver-
gence on compacts for both E(exp(zX,,)) and E{cosh(zX,,))
(Ref, 9, Sec, 15,3) and also the.estimate (2.1) for X,
By Hurwitz’ theorem (Ref. 9, p.205), the zeroes of
E(cosh(zX)) must be pure imaginary, which completes
the proof.

3. INEQUALITIES FOR ISING MODELS AND
#* FIELDS

In this section we consider random variables {X,}]
whose joint probability distribution is given by (1.1)
with J; >0, h; >0, and each p,; an even probability mea-
sure satisfying (1,2) and such that

(3.1)

A general version of the Lee—Yang theorem (Ref, 10,
Theorem 1,1} implies that under these circumstances
E(exp[zX(r)]) for r = 0 has all its zeroes in the closed
left half-plane and that the zeroes are pure imaginary
when k; =0,

f exp(zx)dpj(x)—_-0=>z =ia for some real a.

It is possible to obtain a factorization for E(exp[zX(r)])
(when %, = 0) analogous to that of (Ref. 7, Prop. 2) and
to then show directly that X(r) is of type /,. That tech-
nique, however, is quite lengthy, amd there is a much
simpler method due to Griffiths*® of introducing a
“ghost” spin which has the effect of replacing the origi-
nal i, > 0 Ising model with a new %; =0 model, The fol-
lowing proposition is a version of Griffiths’ method.

Proposition 6: Suppose X,,.. . ., X, have the joint
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distribution v given by (1.1) (with each p, even) and W
is a Bernoulli random variable independent of {X,};

if we define Y,=W and Y,=WX, (j=1,...,N), then
{Yj: j=0,...,N} have the joint probability distribution
7 on RY*! with

- 1 L N

V(905 o« '!yN)=7exp<j‘§°ijyjyk)jl}o p;(3,), (3.2)
where J,,=0, Jo,=h,, and po(y)=[6(y - 1)+56(y +1)]/2.
Further, X;=WY, (j=1,...,N) so that for any m=1,
2,--- and any choice of j,, . . .,jo, € {1, ...,N},

E(le...ijm)=E(le...Y12m), (8.3)
E(le. .. szm-1)=E(Y°Y11' .. Y,zm_l), (3.4)

Pyoof: From (1.1) and the evenness of the p,’s, we
have

N
Elexp (/Z%sz) =1 27 E(explzga +aX(z)])

guxl

a=%1

N
=12 g_x_g_(_zga_)s exp(lgz,(ax,)

N N N
+ EE halax;)+ ; 2 (ax, )(axk)>jI=I1 p; (alax,))

kel

= Iexp<jézjyj> AV(Vgy o v« 3y )

This proves (3.2) while (3.3) and (3,4) follow from the
fact that WYJ=W2X1=XI (j=1, . .,N),

We note-that since J,=h, in (3.2), we have J,,> 0
(j<k=0,...,N) whenever h, >0V k and J,, >0 (j<k
=1,...,N). It thus follows from (3.3) that any cor-
relation inequality involving only even correlations which
is true in ferromagnetic Ising models with 7,=0 is
necessarily also valid with &, > 0. We also note that with
h;y J,, >0 and with (3.1) satisfied, ¥, is of type L
for” a; > 0 so that by (2.2) we have the following result,

Theorem T: If {X,: j=1, ..., N} have joint distribu-
tion (1.1) with #,> 0, J,, > 0 and each p, an even prob-
ability measure satisfying (1.2) and (3.1), then for any
choice of A, >0 (j=0, ...,N), 2, +I,X, is of type L.

The next theorem is an extension of (Ref. 7, Theo-
rems 8 and 9) to the case of nonzero external field; it
is an immediate consequence of Theorems 4 and 7 above
together with the proof of Ref. 7, Theorem 9,

Theorem 8: With the same hypotheses as in Theorem
7, it follows that for any 2z, z',...,Z°c € and any A
cRY withr, 20V,

| E(exp[X(2)])] < 2E(cosh[X(|Rez]|)])

< 2 exp[E(X(|Rez|)?)/2] (3.5)
while
e(fix@)| <o, fi [0 pp2, (3.6)
where D, = (2m)!/2™n! and D,,_, = (D, )'"'/?"; in
addition,
(= g, (X)) = 0. 3.7

Remark 2: It follows from (3.3) above that the con-
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jectured point correlation inequalities given in Ref. 7,
Eqs. (3.3) and (3.4), would immediately extend to the

h, = 0 situation providing that the Ursell functions in Ref.
7, Eq. (3.4), were replaced by modified Ursell functions
defined in analogy with (2.4).

Remark 3: We include (3.5), which is weaker than
(1.8), in the statement of the theorem above since it is
not known whether all Ising models satisfying the hy-
potheses of Theorem 7 must necessarily obey the GHS
inequality (1.4). The GHS inequality does not follow
from the spin-3 approximation of Ref. 10, Theorem
2.3, because of the exp(in,m9,/2) factors used there [see
Ref. 10, Eq. (2.3)]. Examples of measures which satis-
fy (3.1) but for which “physical” (n;=0) spin-% ap-
proximations are not known include dp/dx =const exp(- A
coshx) forl® x >0 and dp/dx = const (1 —x?)4-2)/2 on the
the interval [-1,1] for d>0. The latter example is,
for 4 an integer, the one-dimensional marginal distribu-
tion of uniform surface measure on the d-sphere (in
IR?*); a physical spin-3 approximation is known for!! d
=2.

Our final result (Theorem 9) is an application of
Theorem 8 to the construction of a¢?+b¢? - u¢
Euclidean field theories as limits of lattice approxima-
tions; it strengthens the original results of this type by
Glimm and Jaffe!? and is an extension of Ref. 7, Theo-
rem 10, which only applied to even ¢* models (u=0).
For the sake of convenience, we state the results only
for ¢* models rather than for general random fields
satisfying the Lee—Yang theorem where a clearly analo-
gous theorem would apply. Theorem 9 follows imme-
diately from Theorems 2, 5, 7, 8, and the proof of Ref.
7, Theorem 10.

By a random field ¢(f) (indexed by f in some topologi-
cal vector space F) we mean a linear mapping from F to
random variables on some probability space such that
¢(f,) — &(f) in probability as f, —fin F. As in Ref. 7
we consider a lattice approximation Ising model as a
random field ¢(f) indexed by f in the Schwartz space
S (R?) with (=3 f(w,)X, for some specified {w,: j=1,

. ..,NICIR? (see Ref, 7 for further details).

Theovem 9: Suppose {¢,} is an infinite sequence of
random fields which are lattice approximations to a d-
dimensional a¢?®+ b¢? — u¢ Euclidean field theory with
a>0, u=0.If

|E(p, (A2 <lIA2 (3.8)

for some fixed § -norm (- Il, then (3.8) also holds with
I« i taken as

iAl=C sup [ @+ | w]2)5fw)|

for some choice of C and s. In addition, there exists
a subsequence %, ~= and a random field ¢ indexed by
fe F, the Banach space of continuous functions with
finite (/ + I-norm, such that

(3.9)

Elexp[¢(N] =1im Elexpl¢, (1)) (3.10)
and

E((fy)+ =+ S =Lim E(g,,(f)+** &, (£,) @.11)
for any f, f,, . - ., f,€ F. Further, E(exp[¢(/)]) is an
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entire functional on F (i.e., for f=z,f; ++ - +2,f, with
any m and any choice of f,€ F, it is entire in z,, . . . )
satisfying

| E(expl¢(N])] < exp[E((|Ref])) + o*(¢(| Ref]))/2] (3.12)

and

|E@@()- -+ o(£,) <D, BE(e(| 7, D)F/2

<D, I A, (3.13)
where D, is as in (3.6). Finally, if />0, then () is a
random variable of type [ , so that Theorem 4 applies;
in particular,

(-1)""g (6(f) =0. (3.14)
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Page 756: Schur is not spelled correctly. The first
lines of the two lemmas in Sec. II should read Lemma I:
Any nXm matrix A has a Hermitian product... . Lemma
II: Any square matrix Y formed as the order... .

Page 757: The matrix on the right of Eq. (2a’) should
be El,,. The expression following Eq. (3) should read

(4,7 =2n +7) exp(BjIj'"_nl,j)(j,n —2n, +§).
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Page 758: In the second line before Eq. (4) the di-
mension should be ny=,n-1n,.

Page 759: The right-hand side of Eq. (9) is missing

the bracket

[1N1! oNiiml 172
NI! liTil lzT1|

The right-hand side of Eq. (11) should have T=Ax.
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entire functional on F (i.e., for f=z,f; ++ - +2,f, with
any m and any choice of f,€ F, it is entire in z,, . . . )
satisfying

| E(expl¢(N])] < exp[E((|Ref])) + o*(¢(| Ref]))/2] (3.12)

and

|E@@()- -+ o(£,) <D, BE(e(| 7, D)F/2

<D, I A, (3.13)
where D, is as in (3.6). Finally, if />0, then () is a
random variable of type [ , so that Theorem 4 applies;
in particular,

(-1)""g (6(f) =0. (3.14)
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